Momose A. Recent advances in X-ray phase imaging. Jpn J Appl Phys. 2005;44(9R):6355.
Article
Google Scholar
Bech M, Jensen TH, Bunk O, Donath T, David C, Weitkamp T, Le Duc G, Bravin A, Cloetens P, Pfeiffer F. Advanced contrast modalities for X-ray radiology: phase-contrast and dark-field imaging using a grating interferometer. Z Med Phys. 2010;20(1):7–16.
Article
Google Scholar
Chapman D, Thomlinson W, Johnston R, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D. Diffraction enhanced x-ray imaging. Phys Med Biol. 1997;42(11):2015.
Article
Google Scholar
Levine LE, Long GG. X-ray imaging with ultra-small-angle X-ray scattering as a contrast mechanism. J Appl Crystallogr. 2004;37(5):757–65.
Article
Google Scholar
Endrizzi M, Diemoz PC, Millard TP, Louise Jones J, Speller RD, Robinson IK, Olivo A. Hard X-ray dark-field imaging with incoherent sample illumination. Appl Phys Lett. 2014;104(2): 024106.
Article
Google Scholar
Yang J, Zong F, Lei Y, Huang J, Liu J, Guo J. X-ray dark-field imaging with a single absorption grating. J Phys D Appl Phys. 2019;52(19): 195401.
Article
Google Scholar
Wen HH, Bennett EE, Kopace R, Stein AF, Pai V. Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings. Opt Lett. 2010;35(12):1932–4.
Article
Google Scholar
Mayo S, Davis T, Gureyev T, Miller P, Paganin D, Pogany A, Stevenson A, Wilkins S. X-ray phase-contrast microscopy and microtomography. Opt Express. 2003;11(19):2289–302.
Article
Google Scholar
Pfeiffer F, Herzen J, Willner M, Chabior M, Auweter S, Reiser M, Bamberg F. Grating-based X-ray phase contrast for biomedical imaging applications. Z Med Phys. 2013;23(3):176–85.
Article
Google Scholar
Wang H, Kashyap Y, Sawhney K. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper. Sci Rep. 2016;6(1):1–9.
Google Scholar
Endrizzi M. X-ray phase-contrast imaging. Nucl Instrum Methods Phys Res, Sect A. 2018;878:88–98.
Article
Google Scholar
Pagot E, Fiedler S, Cloetens P, Bravin A, Coan P, Fezzaa K, Baruchel J, Härtwig J. Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging. Phys Med Biol. 2005;50(4):709.
Article
Google Scholar
Vagberg W, Persson J, Szekely L, Hertz HM. Cellular-resolution 3D virtual histology of human coronary arteries using x-ray phase tomography. Sci Rep. 2018;8(1):11014.
Article
Google Scholar
Vågberg W, Larsson DH, Li M, Arner A, Hertz HM. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging. Sci Rep. 2015;5(1):1–7.
Article
Google Scholar
Tang R, Li Y, Qin L, Yan F, Yang GY, Chen KM. Phase retrieval-based phase-contrast CT for vascular imaging with microbubble contrast agent. Med Phys. 2021;48(7):3459–69.
Article
Google Scholar
Jud C, Sharma Y, Günther B, Weitz J, Pfeiffer F, Pfeiffer D. X-ray dark-field tomography reveals tooth cracks. Sci Rep. 2021;11(1):1–8.
Article
Google Scholar
Horng A, Stroebel J, Geith T, Milz S, Pacureanu A, Yang Y, Cloetens P, Lovric G, Mittone A, Bravin A, Coan P. Multiscale X-ray phase contrast imaging of human cartilage for investigating osteoarthritis formation. J Biomed Sci. 2021;28(1):42.
Article
Google Scholar
Pfeiffer F, Weitkamp T, Bunk O, David C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys. 2006;2(4):258–61.
Article
Google Scholar
Pfeiffer F, Kottler C, Bunk O, David C. Hard x-ray phase tomography with low-brilliance sources. Phys Rev Lett. 2007;98(10): 108105.
Article
Google Scholar
Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry EF, Bronnimann C, Grunzweig C, David C. Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater. 2008;7(2):134–7.
Article
Google Scholar
Huang Z-F, Kang K-J, Zhang L, Chen Z-Q, Ding F, Wang Z-T, Fang Q-G. Alternative method for differential phase-contrast imaging with weakly coherent hard x rays. Phys Rev A. 2009;79(1): 013815.
Article
Google Scholar
Bevins N, Zambelli J, Li K, Qi Z, Chen GH. Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping. Med Phys. 2012;39(1):424–8.
Article
Google Scholar
Miao H, Chen L, Bennett EE, Adamo NM, Gomella AA, DeLuca AM, Patel A, Morgan NY, Wen H. Motionless phase stepping in X-ray phase contrast imaging with a compact source. Proc Natl Acad Sci U S A. 2013;110(48):19268–72.
Article
Google Scholar
Du Y, Liu X, Huang J, Lei Y, Zhao Z, Lin D, Guo J, Li J, Niu H. Sampling grating approach for X-ray differential phase contrast imaging. Opt Express. 2015;23(10):12712–9.
Article
Google Scholar
Ge Y, Li K, Garrett J, Chen GH. Grating based x-ray differential phase contrast imaging without mechanical phase stepping. Opt Express. 2014;22(12):14246–52.
Article
Google Scholar
Wen H, Bennett EE, Hegedus MM, Carroll SC. Spatial harmonic imaging of X-ray scattering–initial results. IEEE Trans Med Imaging. 2008;27(8):997–1002.
Article
Google Scholar
Wen H, Bennett EE, Hegedus MM, Rapacchi S. Fourier X-ray scattering radiography yields bone structural information. Radiology. 2009;251(3):910–8.
Article
Google Scholar
Lee HW, Lim HW, Jeon DH, Park CK, Lee DY, Cho HS, Seo CW, Kim KS, Kim GA, Park SY, et al. Eliminating artifacts in single-grid phase-contrast x-ray imaging for improving image quality. Comput Biol Med. 2018;97:74–82.
Article
Google Scholar
Massimi L, Savvidis S, Endrizzi M, Olivo A. Improved visualization of X-ray phase contrast volumetric data through artifact-free integrated differential images. Phys Med. 2021;84:80–4.
Article
Google Scholar
Li Y, Zhao Y, Ji D, Lv W, Xin X, Zhao X, Liu D, Ouyang Z, Hu C. Sparse-domain regularized stripe decomposition combined with guided-image filtering for ring artifact removal in propagation-based x-ray phase-contrast CT. Phys Med Biol. 2021;66:10.
Article
Google Scholar
Treece G. Morphology-based Noise Reduction: Structural Variation and Thresholding in the Bitonic Filter. IEEE Trans Image Process. 2019;89:6.
MathSciNet
Google Scholar
Filter (signal processing), https://en.wikipedia.org/wiki/Filter_(signal_processing).
Gromann LB, Beque D, Scherer K, Willer K, Birnbacher L, Willner M, Herzen J, Grandl S, Hellerhoff K, Sperl JI, et al. Low-dose, phase-contrast mammography with high signal-to-noise ratio. Biomed Opt Express. 2016;7(2):381–91.
Article
Google Scholar
Lim H, Park Y, Cho H, Je U, Hong D, Park C, Woo T, Lee M, Kim J, Chung N. Experimental setup and the system performance for single-grid-based phase-contrast x-ray imaging (PCXI) with a microfocus x-ray tube. Optics Communications. 2015;348:85–9.
Article
Google Scholar
Zhao Y, Brun E, Coan P, Huang Z, Sztrokay A, Diemoz PC, Liebhardt S, Mittone A, Gasilov S, Miao J, Bravin A. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. Proc Natl Acad Sci U S A. 2012;109(45):18290–4.
Article
Google Scholar
Diemoz PC, Bravin A, Sztrokay-Gaul A, Ruat M, Grandl S, Mayr D, Auweter S, Mittone A, Brun E, Ponchut C, et al. A method for high-energy, low-dose mammography using edge illumination x-ray phase-contrast imaging. Phys Med Biol. 2016;61(24):8750–61.
Article
Google Scholar
Baran P, Pacile S, Nesterets YI, Mayo SC, Dullin C, Dreossi D, Arfelli F, Thompson D, Lockie D, McCormack M, et al. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging. Phys Med Biol. 2017;62(6):2315–32.
Article
Google Scholar
Krejci F, Jakubek J, Kroupa M. Single grating method for low dose 1-D and 2-D phase contrast X-ray imaging. J Instrum. 2011;6(01):C01073.
Article
Google Scholar
Du Y, Liu X, Lei Y, Guo J, Niu H. Non-absorption grating approach for X-ray phase contrast imaging. Opt Express. 2011;19(23):22669–74.
Article
Google Scholar
Sato G, Kondoh T, Itoh H, Handa S, Yamaguchi K, Nakamura T, Nagai K, Ouchi C, Teshima T, Setomoto Y, Den T. Two-dimensional gratings-based phase-contrast imaging using a conventional x-ray tube. Opt Lett. 2011;36(18):3551–3.
Article
Google Scholar
Pfeiffer F, Bech M, Bunk O, Donath T, Henrich B, Kraft P, David C. X-ray dark-field and phase-contrast imaging using a grating interferometer. J Appl Phys. 2009;105(10): 102006.
Article
Google Scholar
Hahn D, Thibault P, Bech M, Stockmar M, Schleede S, Zanette I, Rack A, Weitkamp T, Sztrokay A, Schlossbauer T, et al. Numerical comparison of X-ray differential phase contrast and attenuation contrast. Biomed Opt Express. 2012;3(6):1141–8.
Article
Google Scholar
Wang H, Kashyap Y, Sawhney K. Speckle based X-ray wavefront sensing with nanoradian angular sensitivity. Opt Express. 2015;23(18):23310–7.
Article
Google Scholar
Guo B, Zhang X, Zhang J, Hua J, Pai CH, Zhang C, Chu HH, Mori W, Joshi C, Wang J, Lu W. High-resolution phase-contrast imaging of biological specimens using a stable betatron X-ray source in the multiple-exposure mode. Sci Rep. 2019;9(1):7796.
Article
Google Scholar
Kneip S, McGuffey C, Dollar F, Bloom M, Chvykov V, Kalintchenko G, Krushelnick K, Maksimchuk A, Mangles S, Matsuoka T. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl Phys Lett. 2011;99(9): 093701.
Article
Google Scholar
Batson J, Royer L. Noise2self: Blind denoising by self-supervision. In: International Conference on Machine Learning. PMLR; 2019. p. 524–33.
Krull A, Buchholz T-O, Jug F. Noise2void-learning denoising from single noisy images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. p. 2129–2137.
Moran N, Schmidt D, Zhong Y, Coady P. Noisier2noise: Learning to denoise from unpaired noisy data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. p. 12064–12072.
Xu J, Huang Y, Cheng M-M, Liu L, Zhu F, Xu Z, Shao L. Noisy-as-clean: Learning self-supervised denoising from corrupted image. IEEE Trans Image Process. 2020;29:9316–29.
Article
MATH
Google Scholar
Varghese J, Subhash S, Subramaniam K, Sridhar KP. Adaptive Gaussian notch filter for removing periodic noise from digital images. IET Image Proc. 2020;14(8):1529–38.
Article
Google Scholar
TV-L1 Image Denoising Algorithm. https://www.mathworks.com/matlabcentral/fileexchange/57604-tv-l1-image-denoising-algorithm.
Unwrap (Matlab 1D phase unwrapping function). https://kr.mathworks.com/help/matlab/ref/unwrap.html.
Jia L. Instantaneous frequency calculation with Hilbert Transform. https://www.mathworks.com/matlabcentral/fileexchange/69218-instantaneous-frequency-calculation-with-hilbert-transform.
Tahir S, Bashir S, MacDonald C, Petruccelli JC. Mesh-based phase contrast Fourier transform imaging. Optics Communications. 2017;389:103–9.
Article
Google Scholar
Stein AF, Ilavsky J, Kopace R, Bennett EE, Wen H. Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique. Opt Express. 2010;18(12):13271–8.
Article
Google Scholar
Mane V, Agashe A. An adaptive notch filter for noise reduction and signal decomposition. Int J Computer Sci Issues (IJCSI). 2011;8(5):360.
Google Scholar
Moallem P, Masoumzadeh M, Habibi M. A novel adaptive Gaussian restoration filter for reducing periodic noises in digital image. SIViP. 2015;9(5):1179–91.
Article
Google Scholar
Chakraborty D, Chakraborty A, Banerjee A, Bhadra Chaudhuri SR. Automated spectral domain approach of quasi-periodic denoising in natural images using notch filtration with exact noise profile. IET Image Proc. 2018;12(7):1150–63.
Article
Google Scholar
Alibabaie N, Latif A. Adaptive periodic noise reduction in digital images using fuzzy transform. J Math Imaging Vision. 2021;63(4):503–27.
Article
MathSciNet
MATH
Google Scholar
Treece G. The bitonic filter: linear filtering in an edge-preserving morphological framework. IEEE Trans Image Process. 2016;25(11):5199–211.
Article
MathSciNet
MATH
Google Scholar
Goyal B, Dogra A, Agrawal S, Sohi BS. Two-dimensional gray scale image denoising via morphological operations in NSST domain & bitonic filtering. Futur Gener Comput Syst. 2018;82:158–75.
Article
Google Scholar
McCollough C. TU-FG-207A-04: overview of the low dose CT grand challenge. Med Phys. 2016;43(35):3759–60.
Google Scholar