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Background
Beam orientation optimization has been used in X-ray procedures, including intensity-
modulated radiation therapy for cancer patients and C-arm imaging. Beam angle opti-
mization and intensity optimization techniques are implemented in intensity-modulated 
radiation therapy to ensure sufficient radiation doses are delivered to the target volume, 
while minimizing unnecessary radiation exposure to critical radiosensitive structures. 
Pose optimization is used for C-arm imaging devices to reduce radiation exposure to 
patients and staff while maintaining sufficient quality in the acquired images [1]. Beam 
orientation for small-angle, X-ray scattering (SAXS) in the human head would be advan-
tageous because of its potential applications in detection of amyloid plaques in the brain 
as an aid in the early diagnosis of neurodegenerative diseases such as Alzheimer’s disease 
(AD). Traditionally, SAXS is used for small targets, but recent studies have proposed 
using SAXS to interrogate deep targets in large objects [2]. We assess the feasibility of 
optimizing beam orientation to obtain useful SAXS signals from regions of preclinical 
amyloid deposition in the human brain.

Many studies agree that high amyloid deposition occurs in the frontal, temporal, and 
parietal lobes. The areas of the frontal cortex mainly involved in preclinical deposition 
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are the orbitofrontal [3–5] and inferior frontal regions, as well as the middle frontal and 
superior frontal regions [4]. Deposition in the temporal cortex mainly occurs in the infe-
rior temporal gyri [4–7], middle temporal gyri [4, 6], and perirhinal cortex (in medial 
temporal lobe) [8, 9]. Deposition in the parietal cortex occurs in the precuneus (part 
of the superior parietal region) [3, 5, 10] as well as the parietal operculum (part of the 
inferior parietal region) [7]. Evidence is also found of preclinical amyloid deposition in 
the anterior [7] and posterior [3, 5] cingulate gyrus [11]. Some studies disagree about 
the areas of the earliest amyloid deposition, and one in particular appears to suggest 
that there is earlier subcortical amyloid deposition rather than cortical, which contra-
dicts previous literature. The study proposed high deposition in some cortical regions 
(cingulate), but also high amyloid deposition in subcortical regions (pallidum, putamen, 
and thalamus). One limitation and potential reason for discrepancy in this study was the 
segmentation software’s decreased accuracy in delineating regions of interest in subcor-
tical regions. In addition, while the study proposed a cutoff value of SUVR for amyloid 
positivity in cortical regions, it did not define a cutoff value for subcortical regions. [11]

Additional reasons for discrepancies concerning the regions of earliest amyloid depo-
sition include different analytical techniques in each of the studies. Studies differed in 
their definition of amyloid positivity, with some defining it based on the proportion of 
regions that exhibited a suprathreshold SUVR signal, while others did not propose cutoff 
values for SUVR. Some studies estimated AD stage based on the proportion of partici-
pants exhibiting amyloid pathology in a given region, implying that the amount of amy-
loid deposition corresponds to the amount of accumulation time, while other studies 
based AD stage mainly on the amount of biomarkers for a given participant. Overall, 
it appears that some of the earliest amyloid deposition in preclinical AD occurs in the 
basal portions of the frontal and temporal lobes.

In this work, we describe a model of SAXS signals for the optimization of beam orien-
tation in detecting amyloid plaques found in regions of early amyloid deposition, such as 
the frontal and temporal lobes. To investigate the use of SAXS in large objects such as 
the human head, we developed a model to predict the X-ray scattering profiles of spheri-
cal, ellipsoidal, and arbitrarily shaped 2D targets of varying size for different locations 
within the object and X-ray incidence angle. To determine the effectiveness of each ori-
entation and allow for patient-specific beam optimization, we considered radiation dose, 
peak relative scattering intensity, scattering vector smearing, and total relative scattering 
intensity for each scattering profile.

Results
Spherical target

We modeled the scattering signal of a spherical target embedded in a spherical object, 
representing an amyloid target region embedded in a human brain. This model assumes 
the attenuation coefficient of the brain is the same as that of the amyloid target, and that 
the density of amyloid in the rest of the brain is negligible.

Figure  1 shows scattering signals with diminished intensity due to attenuation 
effects from the size of the brain (object). While it is clear that the scattering signal 
has been reduced, this model shows that a signal is still detectable when the target 
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is embedded within a larger object. It also demonstrates that a smaller object size 
yields greater relative intensity.

When the target is placed at different locations along the path of the X-ray without 
changing the X-ray incidence angle, there is a small change in intensity due to dif-
ferences in path length, as shown in Fig. 2, but since scattering angles are small, this 
difference is also small. The uncertainty in the scattering vector is affected by target 
location: when the target is closer to the detector, there is more uncertainty in the 
scattering vector.

The ability to interrogate a deep target from different X-ray incidence angles can 
sometimes allow for a reduction in attenuation from object size provided the target 
is not located at the center of the object. The path length through a sphere can be 
calculated using the chord length formula for a circle, d = 2Rosin(C/2) , where d is 
the path length, Ro is the radius of the object, and C is the angle subtended at the 
center of the sphere by the entry and exit points of the X-ray beam.

This model shows that when the X-ray incidence angle is altered, the scattering 
signal changes. Figure  3 shows that when the incidence angle results in a smaller 
path length, the relative intensity of the scattering signal increases.

Fig. 1  Scattering pattern for a target region embedded within a human head of varying size. Object size Ro 
varies from 4 to 10 cm, target size rt is 2 cm, and mean target-to-detector distance L0 is 20 cm

Fig. 2  Scattering patterns for a deep target based on target location within an object. The right graph shows 
maximum relative deviation in q in terms of target-to-detector distance to explain the change in smearing 
based on target location. Object size Ro is 10 cm, target size rt is 2 cm, and mean target-to-detector distance 
L0 varies from 18 to 22 cm
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Non‑spherical target

The frontal and temporal lobe regions can be approximated using ellipsoids. The polar 
form of an ellipse equation, r2e = (ab)2/[b2cos(φ)2 + a2sin(φ)2] , shows how the radius 
of the ellipse changes depending on the angle of incidence φ and the ellipse axes a and 
b. Figure 4 demonstrates the change in the uncertainty of the scattering vector based on 
target shape and X-ray incidence angle. The relative intensity is not affected, since the 
attenuation through the centered, spherical object is the same at all incidence angles. 
The uncertainty of the scattering vector is affected based on incidence angle, since the 
target radius changes, with a larger target radius resulting in more uncertainty in the 
scattering vector.

Segmented 2D target

We modeled the scattering profile of a segmented 2D brain region for Cartesian grid 
angle X-ray incidences. 2D image segmentation was performed using the MATLAB 

Fig. 3  Scattering patterns for a deep target based on the incident angle of the incoming X-ray beam. Object 
size Ro is 10 cm, target size rt is 2 cm, and mean target-to-detector distance L0 is 20 cm

Fig. 4  Scattering patterns of an elliptical deep target (minor axis a = 1 cm and major axis b = 3 cm) has 
been modeled for different angles of incidence. Object size Ro is 10 cm and mean target-to-detector distance 
L0 is 20 cm
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Image Segmenter App. Regions of interest were segmented manually to create a 
binary mask with pixels assigned to be either “target” pixels or “object” pixels using 
visual guidance from a human brain atlas [12]. Temporal and frontal lobe regions 
were segmented using this method, with lobe pixels assigned the “target” value and 
pixels of the surrounding brain and skull regions assigned the “object” value. This 
manual segmentation technique was sufficient for providing a first proof-of-concept 
demonstration of the model for an arbitrarily shaped deep target. A selection of the 
scattering signals for the temporal and frontal lobes is shown in Fig. 5. A measure-
ment for the path length through the object was obtained by counting the number of 
assigned object pixels within the beam path and converting that to a distance. Simi-
larly, the measurement for the target radius was related to the number of assigned 
target pixels. Calculations assumed that the location of the target is known, and that 
target-to-detector distance does not change. The measure of X-ray beam angle effec-
tiveness, � , through the temporal target region varied by up to an order of magnitude, 
and beam effectiveness through the frontal region varied by up to 2 orders of magni-
tude, as shown in Table 1.

In a human brain, the variation in brain tissue would provide additional scatter-
ing and different linear attenuation coefficients. The additional scattering from brain 
tissues outside the target region should not affect the results of this model, since the 
background signal from the tissue outside the target is subtracted from the original 
scattering signal and therefore only represents the scattering signal from the target 
region. Additionally, scattering from the brain tissue would occur in a range outside 
that of amyloid scattering (see Ref.  [13]). If the differences in linear attenuation are 
small, there should be no effect on optimization results, but if the differences are 
more drastic, optimization results may be affected. The differences in radiosensitivity 
between bone and neuronal tissues are relatively small, so the assumption that radia-
tion dose is directly related to path length should not affect optimization results, as 
long as areas with high radiosensitivity are not included as options for optimal beam 
orientation.

Fig. 5  Scattering signals for X-ray paths through a segmented region from a 2D scout image of the temporal 
(left) and frontal (right) lobe, showing a selection of A horizontal and B vertical paths through target
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Discussion
The method described in this work demonstrates the importance of beam orientation 
optimization for small-angle X-ray scattering and provides an initial approximation to 
the optimal solution for reducing radiation exposure and increasing SAXS signal con-
spicuity. It considers absorbed radiation dose in order to reduce unnecessary radiation 
exposure, which can have harmful side effects. Since high total intensity, high peak rel-
ative intensity, and less smearing of the scattering vector result in more easily distin-
guishable peaks, this beam orientation optimization method should result in a greater 
likelihood of accurately deciphering SAXS signals to detect amyloid plaques, leading to 
more accurate diagnoses.

This model accounts for radiosensitive tissues by avoiding sensitive areas and assum-
ing all other regions of the brain have similarly low radiosensitivities. It does not auto-
matically discard paths that intersect sensitive regions. Automation of this process could 
be achieved by assigning radiosensitivity values for each pixel (or voxel) based on seg-
mented regions and incorporating these values into the figure of merit to determine 
effective radiation dose.

The assumption of one linear attenuation coefficient for the entire head could skew 
optimization results, as linear attenuation coefficients vary among regions of the human 
head and linear attenuation coefficients influence relative scattering intensity. If the 
differences in linear attenuation coefficients and path lengths through each region are 
drastic enough, beam orientation optimization results could be affected. A more accu-
rate model of attenuation effects can be developed by segmenting regions with drasti-
cally different linear attenuation coefficients, such as the skull, determining the X-ray 
path length through each segmented region, and incorporating these values into relative 
intensity calculations.

In this model, amyloid plaques were assumed to be evenly distributed throughout tar-
get regions. In reality, there would likely be variable amyloid plaque distribution within 
a target region. Since relative scattering intensity is modeled as a function of the amy-
loid density at each point along the target, a non-uniform density can be modeled by 

Table 1  Peak relative intensity, � q, and It values for a selection of paths through a segmented 
region, corresponding to paths in Fig. 5

Path Ip It ( nm−1) � q ( nm−1) � �

�max

Row 100 1.2 e−18 5.3 e−19 0.3 2.7 e−37 0.36

Row 125 1.0 e−18 1.1 e−18 0.8 1.8 e−37 0.23

Row 150 1.1 e−18 1.7 e−18 1.1 2.1 e−37 0.27

Column 60 1.8 e−18 5.9 e−18 2.2 7.7 e−37 1

Column 70 9.7 e−19 5.4 e−18 3.8 1.7 e−37 0.22

Column 80 6.8 e−19 2.5 e−18 2.5 7.6 e−38 0.10

Row 45 2.8 e−18 1.4 e−17 3.4 2.1 e−36 1

Row 60 2.0 e−18 1.2 e−17 4.1 9.4 e−37 0.44

Row 75 1.5 e−18 9.4 e−18 4.1 5.0 e−37 0.24

Column 90 5.0 e−19 1.8 e−18 2.5 3.8 e−38 0.02

Column 120 4.0 e−19 1.5 e−18 2.6 2.2 e−38 0.01

Column 150 4.5 e−19 1.7 e−18 2.6 3.1 e−38 0.01
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segmenting subregions of similar amyloid density and assigning density values to each 
pixel (or voxel) to calculate the relative scattering intensity at each pixel (or voxel) along 
the X-ray path. High-density regions within the target would result in a scattering pro-
file with higher intensity values, while low-density regions would result in lower inten-
sity values. Regions of the target that are closer to the detector will affect the scattering 
profile by altering the intensity corresponding to smaller scattering vector values, while 
target regions that are further from the detector will alter the intensity values corre-
sponding to larger scattering vector values. The uncertainty in the scattering vector is 
not affected by density. Once the scattering profile has been obtained by running the 
model for each subregion, the process and figure of merit for determining the optimal 
path for a target of uniform density can be applied to the non-uniform target case.

Beam orientation optimization can be performed at all angles for well-defined shapes 
such as spheres and ellipsoids, but segmentation of arbitrary shapes make assigning pix-
els to non-Cartesian grid angles more complicated. A method for assigning pixels along 
a path based on angle and location should be established.

Within a clinical application of beam orientation optimization, targets would be 
examined using 3D imaging rather than only 2D scout images, necessitating that this 
beam orientation optimization technique be translated to segmented 3D brain volumes 
of interest. This requires the use of a segmented 3D scout image and involves assign-
ing values to voxels rather than pixels. While 2D images in this work were segmented 
using a MATLAB Image Segmenter App, 3D regions of interest can similarly be seg-
mented using the MATLAB Volume Segmenter App and assigning voxel values. Other 
image processing software including ImageJ in combination with 3D segmentation algo-
rithms could also be used. Due to the time-consuming nature of manually segmenting 
3D regions of interest, more advanced 3D segmentation techniques should be used in 
a clinical implementation. A variety of methodologies and models have been developed 
for automatic segmentation of specific brain regions (see, for instance, Ref. [14]). Mod-
eling the scattering signal of temporal and frontal target regions in a 2D scout image 
resulted in beam effectiveness that varied significantly, up to 2 orders of magnitude. This 
substantial variation in beam effectiveness highlights the importance of beam orienta-
tion optimization.

One limitation of the proposed model is the assumption of a single scattering event. 
While a simple model that does not incorporate multiple scattering phenomena allows 
us to demonstrate the relevance of beam orientation optimization, multiple scattering 
might have a significant effect in large objects, so it would likely have some effect on 
optimization results. Future refinements of the model should incorporate a model of the 
multiple scattering contributions.

The process of modeling smearing due to detector inaccuracies using convolution of 
a triangular function roughly demonstrates that the scattering signal will not be a step 
function, but the amount of smearing was not directly calculated in relation to actual 
values seen in current detectors. While this does not affect optimization results where 
a single detector with consistent pixel size and a single energy resolution is used, model 
improvements could include calculations of additional smearing from detector compo-
nents such as energy resolution and pixel size to provide a more accurate representation 
of the extent of expected smearing.
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Additional validation of this model will involve computer simulation and experimen-
tal work. Experimental work regarding the effects of target location and object thick-
ness on SAXS scattering signal has been previously performed by Dahal et al. [15]. This 
work involved the use of phantoms of various thickness with targets placed at 3 locations 
within the phantom. PMMA phantoms with thicknesses of 1, 3 and 5 cm were used. 
Amyloid targets were placed at the front, middle, and back of the PMMA phantoms, and 
SAXS data was acquired for each case. The results of this work provide a guideline for 
the experimental work that will provide further validation of the model. Larger objects 
could also be used to test the validity of certain assumptions of the model, including the 
neglecting of multiple scattering events.

More advanced phantom validation methods could involve an anthropomorphic head 
phantom with embedded amyloid targets of different sizes and at various locations to 
validate the effect of location on scattering profile. Challenges associated with these 
experiments include the need for external validation techniques, particularly when con-
firming the uniform density of amyloid within target regions.

We plan to utilize a variety of Monte Carlo simulation tools [16] to generate more 
accurate descriptions of the X-ray transport to further study and validate the beam 
orientation optimization methods described here. Simulations can be performed on 
3D models of small-animal and human heads with amyloid targets at various locations 
within the objects. Comparison of simulation results to the results obtained with the 
described model will aid in the validation of the method as well as in providing a more 
accurate description of the radiation dose distribution in the different irradiated regions.

Conclusion
Our findings support the relevance of beam orientation optimization for coherent X-ray 
scattering and provide a first-approximation estimate for selecting a strategy based on 
geometry and physics. Beam orientation optimization for coherent X-ray scattering will 
allow for determination of the optimal location and angular incidence to irradiate a tar-
get using an X-ray pencil beam.

Methods
Model assumptions

To interrogate deep targets in large objects, SAXS systems would benefit from using a 
medical-grade polyenergetic X-ray tube. However, for simplicity, this model assumes the 
use of a monoenergetic X-ray beam.

Multiple scattering occurs when photons are scattered more than once. The effect could 
remove quanta that suffered a small-angle coherent scattering event from the direction of 
interest or add spurious scattering signal coming from other areas within the object. This 
phenomenon occurs more frequently in larger objects since there are more opportunities 
for additional scattering events, and while typically ignored in small-sample SAXS meas-
urements, could become more significant for larger objects. This model does not take into 
account multiple scattering phenomena that may occur and assumes a single scattering 
event in the path from source to detector. While a model that incorporates multiple scatter-
ing phenomena would be more accurate, our proposed model should effectively and rather 
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simply demonstrate the importance of beam orientation optimization and provide a first 
approximation to the optimal solution.

Current X-ray detectors have limitations as they cannot locate and count photons with 
perfect accuracy at a rapid pace [17] resulting in a degradation of the signal and a spreading 
of the scattering angular data. A non-uniform density of amyloid scatterers can be mod-
eled by setting the intensity of the scattering to be proportional to the density at each point 
within the target. For simplicity, this model is presented using a uniform density of scatter-
ers throughout the target, since a uniform density sufficiently demonstrates the effective-
ness of this model for beam orientation optimization. The density of scatterers outside the 
target is assumed to be zero. Linear attenuation coefficients vary within the human head, 
but for simplicity, the model assumes a uniform linear attenuation coefficient. Both the tar-
get and the object are assumed to have the same linear attenuation coefficient. If the differ-
ences in linear attenuation coefficient in the brain are drastic enough, optimization results 
could be affected, but in general, the assumption of one linear attenuation coefficient should 
effectively demonstrate beam orientation optimization. The probability of photon scatter is 
assumed to be the same at each point along the target diameter.

Solid angle effects were not included in the model as changes in solid angle are not sig-
nificantly affected about a small scattering vector angular range. For each beam orientation 
optimization setup, we assumed a single type of detector would be used. Therefore, factors 
such as detector pixel size and energy resolution would be similar within each optimiza-
tion problem and do not need to be included in the model under the assumption of a single 
detector with consistent pixel size and energy resolution.

Geometrical considerations

The scattering vector q is defined as q = 4πsinθ/� , where 2 θ is the scattering angle and � is 
the wavelength. The relative uncertainty in q can be calculated using geometry [18], dem-
onstrating the spread of q values based on target size, where θ is half the scattering angle, L0 
is the mean sample-to-detector distance, and rt is the target radius, as follows:

X‑ray physics

The relative intensity of scattering is related to the the density of scatterers along the X-ray 
path, attenuation due to the size of the object, and the total scattering cross-section. This 
can be expressed as follows:

where II0 is the relative intensity, µ is the linear attenuation coefficient for gray/white mat-
ter, ρt is the volumetric amyloid number density of the target, l is the total path length 
of the X-ray beam through the target, and σ is the differential scattering cross-section. 

(1)
�q

q
= 2−

2

sinθ

√

(

L0+rt
L0tanθ

)2

+ 1

.

(2)
I

I0
=

+RO
∫

−RO

σdxρt(x)e
−µl

,
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Figure 6 (middle) demonstrates how different values of scattering cross-section, amyloid 
density, and linear attenuation coefficient affect scattering signal.

The target and the object have the same linear attenuation coefficient, which is esti-
mated using values for grey/white matter from ICRU report 44 [19] as referenced in the 
NIST X-ray attenuation databases.

There is a constant probability of scatter, as represented by the differential scattering 
cross-section, which was estimated using the scattering angle corresponding to amyloid, 
and coherent scattering molecular form factors in the range of 5–40 [20].

Path length was calculated by combining the length of incoming and scattered rays. In 
a spherical target, the length of the incoming ray was the distance traveled into the sam-
ple before scattering, and the scattered ray length was calculated using the law of sines. 
The relationship between scattering location and path length is shown in Fig. 7. Based 
on the results, we concluded that scatter event location does not have a significant effect 
on the total path length through the object, since the scattering angle 2θ is small. Thus, 
path length can be estimated using the path of the non-scattered X-ray beam.

When using SAXS to achieve a scattering signal from a target, the scattering sig-
nal from background objects is subtracted from the original scattering signal to iso-
late the scattering signal of scatterers in the target region. This ensures that the 

Fig. 6  Relative scattering intensity is affected by the scattering cross-section, density of scatterers, and 
linear attenuation coefficient. Except when that variable is being manipulated, the value of the scattering 
cross-section for each plot is 5 ∗ 10−23 cm2 , the amyloid density is 5.5 ∗ 105 cm−3 , and the linear attenuation 
coefficient is 0.30 cm−1 . The spherical target size rt is 0.5 cm and target-to-detector distance L0 is 20 cm

Fig. 7  Path length of an X-ray pencil beam through a spherical samples changes based on the location of a 
scattering event. Path length is equal to the total distance traveled through the sample by the incoming ray 
and scattered ray
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background-subtracted scattering signal is due to scatterers in the target region. This 
model represents a background-subtracted scattering signal, where all scattering origi-
nates from scatterers in the target region.

Additionally, scattering from brain matter generally does not occur in the same scat-
tering vector range as amyloid scattering. There is minimal overlap with the scattering 
signal from the lipid content of brain matter [13].

The scattering profile described by Eq.  1 and Eq.  2 results in a step function with a 
height based on the relative intensity and width based on the uncertainty in q, and it 
represents the scattering profile obtained using an ideal photon counting detector. In 
order to more accurately model scattering behavior of an X-ray pencil beam captured 
by a photon counting detector, we must address the noise introduced into the system by 
degradations in the detector signal. The original scattering profile underwent convolu-
tion with a triangular function, � , with unit area and a width 0.35 times the spread of q.

Figure  8 demonstrates the scattering signal modeled for spherical targets of differ-
ent radii. The model determines the spread of the scattering vector using Eq. 1 and the 
relative scattering intensity based on Eq. 2. The blurring of the scattering profile repre-
senting the noise introduced by the detector has been introduced into the model using 
a convolution with a triangular function. This model demonstrates that as the target 
radius increases, peak relative intensity decreases, and uncertainty in q increases.

Figure of merit

A figure of merit is developed to characterize the effectiveness of an X-ray path through 
a target for the purposes of our technique. Since scattering peaks are more easily distin-
guishable when they have higher scattering intensity, large numbers of photon counts, 
and less smearing of the scattering vector q, the figure of merit ( � ) is described by

where Ip is the peak relative intensity of the scattering profile, It is the total relative inten-
sity determined by the area under the scattering profile curve, �q is spread of q given by 
the half-width-at-half-maximum, and l is path length through the object.

(3)� =
IpIt

l�q
,

Fig. 8  Target size affects scattering patterns for differing target sizes. Target size rt varies from 0.5 to 3 cm and 
mean target-to-detector distance L0 is 20 cm
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Radiation dose is an important factor to consider when determining the optimal 
X-ray beam path for a patient, since excessive radiation can cause damage to radi-
osensitive areas. Radiation dose is related to path length and tissue radiosensitivity. 
Since the cornea, optic lens, and oral cavity have high radiosensitivities, the optimal 
X-ray beam path should not intersect any of these areas, so beam orientations that 
intersect the cornea, optic lens, or oral cavity are not considered. Bone and neuronal 
tissue have similar and fairly low radiosensitivities, so further differences in radio-
sensitivity are not considered, and radiation dose is assumed to be proportional to l. 
Radiation dose was incorporated into the figure of merit by including path length l.
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