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Abstract 

Background:  Minimally invasive spine surgery is dependent on accurate navigation. 
Computer-assisted navigation is increasingly used in minimally invasive surgery (MIS), 
but current solutions require the use of reference markers in the surgical field for both 
patient and instruments tracking.

Purpose:  To improve reliability and facilitate clinical workflow, this study proposes a 
new marker-free tracking framework based on skin feature recognition.

Methods:  Maximally Stable Extremal Regions (MSER) and Speeded Up Robust Fea‑
ture (SURF) algorithms are applied for skin feature detection. The proposed tracking 
framework is based on a multi-camera setup for obtaining multi-view acquisitions of 
the surgical area. Features can then be accurately detected using MSER and SURF and 
afterward localized by triangulation. The triangulation error is used for assessing the 
localization quality in 3D.

Results:  The framework was tested on a cadaver dataset and in eight clinical cases. 
The detected features for the entire patient datasets were found to have an overall 
triangulation error of 0.207 mm for MSER and 0.204 mm for SURF. The localization 
accuracy was compared to a system with conventional markers, serving as a ground 
truth. An average accuracy of 0.627 and 0.622 mm was achieved for MSER and SURF, 
respectively.

Conclusions:  This study demonstrates that skin feature localization for patient track‑
ing in a surgical setting is feasible. The technology shows promising results in terms 
of detected features and localization accuracy. In the future, the framework may be 
further improved by exploiting extended feature processing using modern optical 
imaging techniques for clinical applications where patient tracking is crucial.

Keywords:  Patient tracking, Spinal surgery, Skin tracking, Surgical guidance, Feature 
localization
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Background
The insertion of pedicle screws is a critical step in spine fixation surgery. Conventional 
open surgery is performed through a mid-line incision where the posterior aspect of the 
spine is exposed. However, there is a trend toward increased use of minimally invasive 
surgical techniques, due to reductions in blood loss, length of hospital stay, and surgi-
cal site infections [1]. Minimally invasive surgery (MIS) is performed through small skin 
incisions where the vertebrae are reached by use of tubular retractors [2]. Due to the 
reduced visibility during MIS procedures, intraoperative imaging such as fluoroscopy is 
frequently used. However, to reduce radiation exposure and increase accuracy, a num-
ber of computer-assisted navigation solutions have been devised [3–6]. Clinical studies 
have shown that the use of intraoperative three-dimensional (3D) imaging coupled to a 
navigation system leads to higher accuracies than competing technologies [7]. All navi-
gation technologies require co-registration of the patient and the pre- or intraoperative 
images to allow tracking of both patient and surgical instruments relative to the medi-
cal images. Conventional navigation solutions typically include infra-red camera systems 
tracking a dynamic reference frame attached to a vertebra [8]. Efforts have been made to 
design patient tracking methods based on unobtrusive markers or no markers at all. One 
such system using non-invasive optical markers has been described by Malham et al. [9, 
10] (SpineMask, Stryker, Kalamazoo, Michigan, USA). The system enables high accuracy 
placement of minimally invasive lumbar pedicle screws. Markerless tracking solutions 
have been used experimentally on phantoms in other surgical fields. However, studies on 
spine surgery are lacking [11, 12]. A robot system using light to track the bony anatomy 
and performing pedicle screw placements was recently presented. The device was vali-
dated on cervical vertebrae phantoms, reaching a mean positional error of 0.28 ± 0.16 
mm [13]. The Microsoft Hololens uses surface matching for tracking and has been used 
experimentally in non-medical phantoms with an accuracy ranging from 9  to  45 mm 
[14], while in a spine phantom study, an accuracy of roughly 5 mm was achieved [15]. 
The navigation technology used in this study is an augmented-reality surgical navigation 
(ARSN) system relying on adhesive optical skin markers for motion tracking and com-
pensation [16, 17]. Four high-resolution optical cameras are integrated in the flat detec-
tor of a C-arm with cone-beam computed tomography (CBCT) capability. The markers 
are recognized by the cameras and their relative positions in space are used to create 
a virtual reference grid, which is co-registered to the patient during CBCT acquisition. 
Optical markers attached to the patient’s skin have been used for respiratory motion 
tracking [18] and for medical imaging applications [19]. The use of optical markers for 
motion tracking is combined with digital image correlation and tracking techniques 
[20–23]. Recently, Xue et al. [24] demonstrated that ink dots on the skin could be video 
tracked with high precision and that the post-processing retrieved more detailed infor-
mation compared to marker-based methods. Similarly, direct tracking of spine features 
and tracking of skin features using hyperspectral cameras for spine surgery have recently 
been proven feasible.

In this study, a new markerless tracking technology using grey-scale video cameras 
based on skin feature detection was evaluated. Image analysis techniques were applied to 
detect and track natural features of the skin. There are several advantages when refrain-
ing from using optical markers for motion tracking. First, the workflow of the procedure 
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can be improved by simplifying the protocol for patient preparation and by increasing 
the reliability of tracking during the surgical procedure. Second, the risk of losing sight 
of the markers can be abolished when skin features can be used as a reference. The well-
known feature detection algorithms, Maximally Stable Extremal Regions (MSER), and 
Speeded Up Robust Features (SURF) were applied to detect and extract skin features 
such as moles and pigment spots. These methods were chosen, since they offer a good 
reproducibility under different image views, being invariant to rotation, scaling, and 
affine transformation [25–28]. The proposed 3D-localization framework, used multi-
view geometry principles to perform image rectification, enhance feature detectabil-
ity, improve feature matching, and calculate and assess each triangulated feature. The 
sum of squared differences (SSD) was used as a feature matching metric on scan lines 
between multiple-view acquisitions. To remove 3D outliers, a second feature selection 
step was applied, specifically performed for the z-coordinate mismatch after the triangu-
lation of all pairs of matched features. The final inliers were evaluated by computing the 
overall mean triangulation error. In summary, the contribution of this paper is an alter-
native to marker-based tracking. We hypothesize that the camera feed provides enough 
details for skin feature detection and tracking. The sub-millimeter localization accuracy 
achieved was sufficient for surgical navigation. The framework included 3D reconstruc-
tion and feature localization over multiple-view acquisitions. It was validated on eight 
clinical spinal surgery cases performed in an academic tertiary medical center. This 
paper concentrates on the application of skin feature detection techniques to achieve 
accurate markerless tracking in spinal surgery. In the development of tracking systems, 
feature detectors and descriptors are widely investigated, since they demand the highest 
percentage of the processing time. The former is dependent on available image informa-
tion, while the latter defines the encoding [29]. Aspects such as adaptability to image 
transformation and mismatched features need to be evaluated, as they can potentially 
affect tracking [30].

In this paper, we evaluate different feature detectors and extractors (SURF and MSER), 
for studying the number of inliers and the overall localization error on multi-view 
images from several spine patients, subjected to different illumination conditions. In 
addition, to strengthen the stability in tracking by eliminating the mismatched multi-
view keypoints and improve image matching, we proposed a 3D outlier removal step, 
imposing the matching to the keypoint relying on the same epipolar line. The 3D tri-
angulations were obtained only from the matches relying on the epipolar constraint. 
The contributions are: (1) building a computer vision framework for preprocessing opti-
cal skin images, detecting and matching local invariant image regions for two different 
image views; (2) assessing the most stable feature detection approach for reliability and 
accuracy; (3) improving the image matching by introducing a 3D epipolar constraint; 
(4) validating the methodology on optical images acquired in eight patients to assess the 
3D-localization error for the matched features.

Results
Optical data for assessing the 3D localization were collected from two sources: a cadaver 
study and a prospective clinical observational study. The cadaver study was performed 
according to all applicable laws and directives. The clinical study was approved by the 
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local ethics committee and all enrolled patients signed informed consent. The data that 
support the findings of this study are generated by Philips Electronics B.V., Best, The 
Netherlands and Karolinska University Hospital, Stockholm, Sweden. All images of the 
datasets were acquired at the same UHD resolution of 2592 pixels by 1920 lines. The 
first dataset consisted of one multi-view acquisition, thus four images, of a cadaver. 
MSER and SURF were applied to several selected regions to perform the first multi-view 
experiment for skin localization. The second dataset consisted of image data from eight 
patients included in a spine navigation study and taken during the surgical procedures. 
The data were used to perform two different experiments, first a skin feature localization 
and later an optical marker localization and the ground-truth comparison. In Table 1, 
the total number of analyzed frames during the acquisitions and the corresponding 
acquisition times are reported.All patients were classified by the physicians regarding 
Fitzpatrick Skin Type I, II, or III. The first feasibility study was performed by analyzing 
the skin of the cadaver. The localization system was used for four flat selected regions 
with the c1|c3 camera pair. The features detected for this dataset were triangulated with 
a mean triangulation error of 0.239 mm for MSER and 0.218 mm for SURF. Due to its 
intrinsic functional operation, the MSER algorithm detects multiple blobs located at the 
same coordinates. This explains why MSER seems to have the capability to detect more 
features than SURF. The discarded-feature ratio of the matched features to the selected 
inliers was 3.96 ± 0.80 and 2.93 ± 0.45 for MSER and SURF, respectively. The clinical 
dataset involved patients undergoing open surgical procedures via mid-line incisions 
along the spine. Several plane regions were carefully selected for some patients (2nd, 4th, 
and 7th), where the skin was partially covered by blood. The performance results of the 
localization framework for all the eight patients in the study are shown in Tables 2 and 3. 
Descriptive statistics for triangulation error for each detection method are reported in 
Tables 2 and 3. Figure 1 shows two examples of MSER and SURF feature detection and 
corresponding matches at the same location for an image pair.

On a total amount of 4934 (MSER) and 1727 (SURF) features, mean triangula-
tion errors of 0.207 and 0.204  mm were reached for MSER and SURF, respectively. 
An important observation was that 75% of the detected features had a triangulation 
error within 0.3 mm (Fig. 2), appropriate for spinal surgery applications. The discard-
ing ratio of the matched features to the selected inliers in this case was 3.73 ± 2.69 
and 2.61 ± 1.70 for MSER and SURF, respectively. The median errors show a similar 

Table 1  Patient data acquisitions

Patient no. Acquired images Acquisition time 
(hh:mm)

Starting time Ending time

1 188 3:21 12:20 15:41

2 424 4:41 10:32 15:13

3 204 2:20 10:55 13:15

4 112 3:18 10:20 13:38

5 132 5:22 9:46 15:08

6 160 4:35 11:20 15:55

7 284 3:40 10:55 14:35

8 12 0:03 13:07 13:10
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variability in the triangulation error when SURF and MSER are used, respectively 
(Fig. 3a, b). The variability and the outliers may be caused by lighting differences or 
limited visibility of the skin area [31]. The triangulation error using SURF and MSER 
for each individual case is depicted in Fig. 4.

Two-sample t tests were used to assess differences when using MSER and SURF. A 
p value of less than 0.05 was considered statistically significant. No statistically sig-
nificant differences between the two methods were found (p > 0.05). A two-sample t 
test was also performed to assess the accuracy of the markerless approach, which was 
found to be superior (p < 0.05) compared to the ground truth (marker-based detec-
tion). A significant statistical difference was also found when detecting skin features 
among different patients (p  <  0.001). This can reflect differences in the number of 
analyzed frames per patient, illumination conditions, number of detected features, 

Table 2  Triangulation error  analysis—MSER

MSER

Patient no. 1 2 3 4 5 6 7 8 TOT

Analyzed regions 1 1 1 7 11 3 7 3 ALL

Area [ cm2] 57.8 18.6 27.6 183.9 232.8 75.5 80.0 29.5 705.6

Number of features 366 125 60 1372 1511 264 1083 153 4934

Mean [mm] 0.167 0.162 0.176 0.191 0.269 0.164 0.170 0.214 0.207

Std deviation [mm] 0.110 0.088 0.099 0.122 0.159 0.109 0.123 0.128 0.139

Features/cm2 6.3 6.7 2.2 7.5 6.5 3.5 13.5 5.2 7.0

Rms [mm] 0.200 0.184 0.202 0.226 0.313 0.197 0.210 0.249 0.249

Min [m] 0.377 3.712 1.252 0.328 0.009 0.251 0.008 5.230 0.008

Quartile 1 [mm] 0.068 0.106 0.103 0.091 0.136 0.066 0.068 0.108 0.091

Median [mm] 0.164 0.160 0.188 0.181 0.267 0.150 0.149 0.190 0.190

Quartile 3 [mm] 0.244 0.218 0.241 0.276 0.389 0.242 0.247 0.314 0.303

Max [mm] 0.448 0.373 0.427 0.537 0.649 0.422 0.593 0.518 0.649

Table 3  Triangulation error analysis—SURF

SURF

Patient no. 1 2 3 4 5 6 7 8 TOT

Analyzed regions 1 1 1 7 11 3 7 3 ALL

Area [ cm2] 45.2 18.9 29.1 145.5 157.4 48.0 49.8 20.7 514.7

Number of features 130 78 42 577 457 83 299 61 1727

Mean [mm] 0.184 0.148 0.126 0.199 0.268 0.172 0.160 0.195 0.204

Std deviation [mm] 0.113 0.091 0.103 0.125 0.148 0.110 0.120 0.117 0.134

Features/cm2 2.9 4.1 1.4 4.0 2.9 1.7 6.0 2.9 3.4

Rms [mm] 0.216 0.174 0.163 0.235 0.306 0.204 0.200 0.228 0.244

Min [m] 1.644 1.944 1.235 0.658 1.782 1.153 0.075 2.542 0.075

Quartile 1 [mm] 0.091 0.066 0.037 0.102 0.151 0.073 0.060 0.109 0.090

Median [mm] 0.193 0.150 0.121 0.194 0.272 0.178 0.140 0.174 0.195

Quartile 3 [mm] 0.270 0.219 0.185 0.286 0.376 0.245 0.237 0.265 0.300

Max [mm] 0.427 0.340 0.399 0.543 0.620 0.433 0.575 0.486 0.620
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Fig. 1  Two examples of MSER and SURF feature detections (a, b) and corresponding matches (c, d) at the 
same location for an image pair

Fig. 2  Triangulation error distribution (MSER and SURF)—patient data

Fig. 3  Boxplots for the mean triangulation error in eight patients. The red line represents the median. Upper 
and lower limits depict the 75th and 25th percentiles, respectively. The min and max values are visualized 
with whiskers, and the outliers are shown with ’+’ symbol
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and skin type. In this case, the f test rejects the null hypothesis at the default 5% sig-
nificance level and suggests that the true variance is greater than 25%.

The computation time for the skin feature detection was on average 0.19 and 1.86 s per 
frame when SURF and MSER were used respectively. Per-patient results are visualized 
in Fig. 5a. With a mean of 5 fps, SURF is most suitable for a future real-time implemen-
tation. The preprocessing step reached a computation time of 1.14 s. Notably, for real-
time navigation, shortened preprocessing times may be achieved with improved lighting 
conditions.

Marker localization and ground‑truth comparison

The marker detection and ground-truth comparisons were performed by applying both 
MSER and SURF feature detection algorithms, to detect the optical markers positioned 
on the patient. The mean triangulation error of the tracked markers was 0.290 mm for 
MSER and 0.303 mm for SURF, as shown in Table 4. Table 4 portrays that an average 
Euclidean distance of 0.627 mm for MSER and that of 0.622 mm for SURF are reached, 
in relation to the ground truth. Descriptive statistics for triangulation error and Euclid-
ean distance when the detection methods are applied to the optical markers are reported 
in Table 4. Figure  6a, b, shows the frequency distributions of triangulation errors and 

Fig. 4  Bar plot visualizing the triangulation error (MSER and SURF)

Fig. 5  Computation time for the preprocessing and skin feature detection
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Euclidean distances for MSER and SURF detection methods. Notably, the threshold-
ing performed for segmenting the optical markers prior to applying the feature detec-
tion can cause a non-ideal identification of the markers and decrease the triangulation 
accuracy. This is the main reason why the coordinates of the triangulated markers dif-
fer slightly with respect to the ground truth. However, all markers are triangulated with 
a sub-millimeter accuracy, resulting in a triangulation error comparable to the one 
obtained with the skin features.

Discussion
This feasibility study proposes a new innovative, accurate, and unobtrusive alternative 
approach for skin feature localization which can be used for patient tracking in surgical 
navigation. This result was achieved with the direct detection of features on the patient’s 
skin using high-resolution grey-scale cameras and the subsequent analysis of the cap-
tured multi-view images. The framework is based on MSER and SURF feature detection 
algorithms to localize the visual skin features.

The accuracy, of roughly 0.6 mm at skin level, achieved with the current framework 
should be seen in light of previous results obtained by the ARSN system relying on 
adhesive skin markers. In a recent study using ARSN, Burström et al. [32] demonstrated 

Table 4  Optical marker comparison, triangulation error, and Euclidian distance

Optical marker detection Triangulation error Euclidean distance

Method MSER SURF MSER SURF

Markers amount 52 43 52 43

Mean [mm] 0.290 0.303 0.627 0.622

Standard deviation [mm] 0.124 0.133 0.101 0.107

Rms [mm] 0.315 0.331 0.635 0.631

Min [mm] 0.018 0.028 0.232 0.223

Quartile 1 [mm] 0.207 0.202 0.579 0.567

Median [mm] 0.279 0.313 0.621 0.624

Quartile 3 [mm] 0.390 0.399 0.685 0.684

Max [mm] 0.557 0.595 0.840 0.823

Fig. 6  a Triangulation error and b Euclidean distance of detected optical markers for ground-truth 
comparison
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a technical accuracy of 0.94 ±  0.59 mm and 1.97 ±  1.33 mm, respectively, for cadav-
eric and clinical cases of pedicle screw placement. The difference in accuracy, could be 
attributed to the actual placement of pedicle screws in a clinical situation. Studies on 
markerless tracking in surgery are scarce. In the early 2000, a series of articles regarding 
augmented reality for surgical planning using video projectors were published [33–38]. 
An off the shelf video camera and a 3D surface scanner were used to create a repre-
sentation of the surface of the patient. Previously segmented structures could then be 
projected back on the patient. This system made dynamic tracking of the patient pos-
sible and reached a high accuracy of 1.5 mm. It has been used for radiotherapy and in 
craniofacial surgery, but no use in spine has ever been published [39]. Microsoft Holo-
lens has recently been used in many applications. The obtained accuracies range from 9 
to 45 mm in non-medical to roughly 5 mm in a spine phantom study [14, 15]. A recent 
robotic study using a structured light camera for markerless tracking of the bony anat-
omy reached a precision of 0.28 ± 0.16 mm [13]. A study using a similar approach as 
used here for spine feature tracking reached an accuracy of 0.5 mm [31]. When explor-
ing the use of HSI to detect skin features in 2D on healthy volunteers, an accuracy better 
than 0.25 mm was achieved [40]. In the current study, the feasibility of 3D-localization of 
skin features in patients undergoing spine surgery was demonstrated, employing a pre-
existing surgical navigation system using optical cameras. The use of grey-scale cameras 
rather than HSI is motivated by several factors. First, HSI is highly dependent on proper 
lighting conditions. Surgical lights illuminating the skin surface can interfere with the 
image acquisition process [40]. Second, the HSI system did not reach deeper than 1 mm 
in the skin, limiting its added value. Third, the integration of two or more HS cameras in 
the navigation system, to enable stereo-vision, would come at a considerable cost. In this 
scenario, the use of grey-scale cameras represents a good comprise.

The results obtained by the proposed framework, using grey-scale cameras, are thus 
well in line with these previous results. A markerless tracking framework has the advan-
tage of building a virtual reference grid that cannot be dislodged or completely obscured 
during surgery. Furthermore, compared to conventional dynamic reference frames that 
track a single vertebra, a markerless framework can track the entire spine and compen-
sate for inherent movements within the spinal column during surgery. In this study, 
several datasets were used for validation. MSER showed a better capability of detecting 
features of observable anatomical skin details. It was visually verified that MSER pro-
vided a higher number of detected features contributing to a better plane selection in the 
3D outlier removal step. The multi-camera system enabled triangulation of each feature, 
to obtain an accurate 3D triangulation performance. This performance can be poten-
tially evaluated by automatically computing the triangulation error continuously and in 
real time within a software function for navigation. The proposed framework may sim-
plify the existing patient preparation procedure and improve the reliability of the track-
ing process by relying on skin features instead of optical markers or reference frames.

Limitations
The limitation of this study is the small sample size and the retrospective setup. 
The results were validated on eight clinical cases. The addition of more cases would 
strengthen the conclusions. A prospective study comparing different modes of patient 
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tracking (different types of optical markers versus different frameworks for feature track-
ing) is warranted. Another important issue is to reach enough computational power for 
real-time tracking of movements and surgical navigation.

Conclusion
This study demonstrates the feasibility of skin feature localization by exploiting an opti-
cal multi-view, grey-scale, camera system combined with image analysis and tracking 
techniques. The system has been tested on several patients undergoing spinal surgery 
with sub-millimeter accuracy. This study can be the basis for future surgical applications 
where optical patient tracking is required.

Methods
Image preprocessing

The principles of multi-view geometry [41] are based on assuming a pinhole camera 
model, applied for correction of camera images with respect to intrinsic parameters. A 
preprocessing step, the Contrast-Limited Adaptive Histogram Equalization (CLAHE) 
algorithm, was used to maximize the detection of skin features and reduce the noise 
during the acquisition [42]. The simple computation of the fundamental matrix F with 
the normalized eight-point algorithm was used for image rectification [43]. The funda-
mental matrix F was defined as:

For any pair of matching points x′ and x, there are two images in the same coordinate 
system. The obtained pixel points were imposed on the corrected input images, to ena-
ble feature detection.

Feature detection, extraction, and matching

Let us consider an image pair captured with different cameras ci and cj , from different 
views: Ici and Icj . For both images, a corresponding set of n(ci) and n(cj) features, respec-
tively, were extracted and saved in a dedicated object ensemble Fci and Fcj , to capture all 
information of the detected features f(c, n):

MSER and SURF algorithms were applied for blob-similar feature design and feature 
detection. Afterward, the SURF feature descriptor was applied for feature extraction. 
The regions of interest (ROIs) on the skin were selected manually and saved as bound-
ing-box coordinates for future iterations. A manual selection was performed, because 
the regions of the same subject were located within different views. Unfortunately, it 
was not possible to manually select precisely the same region boundary within multiple 
views. For this reason, the matching process contained some outliers, which were fil-
tered out at a later step of the processing. Attention was paid to select regions where the 
skin was as flat as possible. The chosen skin area was located around the optical markers 

(1)(x′)T · F · x = 0.

(2)Fci =f (ci, 1), f (ci, 2), ..., f (ci, n(ci)),

(3)Fcj =f (cj , 1), f (cj , 2), ..., f (cj , n(cj)).
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(used as ground truth), so that both the markers and skin area had the same illumination 
conditions. This manual extraction may represent a limitation for a real-time applica-
tion. For every detected feature, it was necessary to extract a feature vector, known as 
descriptor that provided information about the feature, in this case the pixels surround-
ing the center of the blob. For this purpose, the SURF algorithm was used to extract the 
feature vector [27]. This method was adopted, since it offers high reproducibility, even 
under different viewing conditions. The descriptor vectors were then saved in the fol-
lowing set of dedicated descriptor vectors:

Where every descriptor δ(c, n) consisted of an SURF descriptor vector and the y-coor-
dinate of a specific feature n from a generic camera c. Using the previous dedicated 
descriptor vectors �ci and �cj , the feature matching step performed a matching between 
the (ci) feature detected in one view with respect to the n(cj) feature from another view 
and provided an index of correspondences between the two dedicated descriptor vectors 
�ci and �cj , and the feature vectors Fcj and Fcj . These correspondences were achieved by 
computing the SSD between the SURF descriptor vectors of those features lying within 
the scan lines of interest. At this point, fusing the epipolar constraint was crucial, since it 
leads the matching process between features that were shifted along an epipolar line for 
a specific range. Thanks to this top–bottom scan-line stereo matching, matches between 
features that lie on different epipolar lines were omitted, to reduce the computational 
cost and maximize the chance of a good match. This step returned two vectors with the 
indexes related to the matched features. Using these indexes, it was possible to build two 
new dedicated object ensembles Mci and Mcj of equal size, with matched features.

Feature triangulation and outlier removal

In computer vision, triangulation allows determination of the 3D position of a point, given 
that the positions of the same points are matched in at least two alternative views [41]. This 
was achieved with two or more lines projected from each camera center to the respective 
point on the camera plane. Consequently, the projected lines did not always intersect in 
the same 3D point. It was important to evaluate and quantify the accuracy of this method. 
In this feasibility study, the triangulation error was used as evaluation metric to obtain an 
index of the triangulation accuracy, and then, the 3D point locations were used to perform 
a benchmark against an existing tracking system. The triangulation error was computed by 
calculating the location of the shortest distance between the two projected lines. The center 
of the line segment was the triangulated point, and the length of the line segment is the tri-
angulation error, expressed in millimeters (or in micrometers). The triangulation function 
of the ARSN system returns the 3D Cartesian coordinates of the triangulated point and the 
corresponding triangulation error through the projections from the camera centers, result-
ing in:

(4)�ci =δ(ci, 1), δ(ci, 2), ..., δ(ci, n(ci)),

(5)�cj =δ(cj , 1), δ(cj , 2), ..., δ(cj , n(cj)).

(6)�(ci|cj , n) = x((ci|cj), n), y(ci|cj , n), z(ci|cj , n), e(ci|cj , n)),
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where ci|cj denotes the pair of cameras used for the triangulation, x(ci|cj , n) , y(ci|cj , n) , 
z(ci|cj , n) are the 3D Cartesian coordinates of the triangulated feature n, and e(ci|cj , n) is 
the triangulation error of the triangulated feature n with cameras ci|cj . These 3D coor-
dinates were stored in a dedicated object vector �ci|cj for further analysis. The trian-
gulation was achievable between at least two camera pairs. In fact, it was possible to 
obtain the rectification for the six camera pairs: ci|cj = c1|c2 , c1|c3 , c1|c4 , c2|c3 , c2|c4 , and 
c3|c4 , and then detect, match, and triangulate the features with at least one of these pairs, 
mainly determined by choosing a more favorable line-of-sight that avoids occlusion of 
the analyzed regions. The overall mean triangulation error was computed by averaging 
the triangulation errors of all the features detected over multiple regions. At this point, 
most of the matches were obtained by only relying on the epipolar constraint. Using the 
outlier removal step a 3D constraint was imposed, by approximating the skin surface to 
a simple planar representation, in which all the detected features were situated. Now, 
M-estimator SAmple and Consensus (MSAC) [44] was used to fit a plane to the 3D point 
cloud and remove triangulated points that lie below or above a certain maximum dis-
tance from the plane model (expressed in mm). The reference orientation constraint was 
inferred from the mechanical parameters of the C-arm once the position of the multi-
view camera system with respect to the skin surface was obtained. It was important to 
quantify the considered region of interest for algorithm comparison and the applicability 
of the approach. For this purpose, a simple method for skin-area estimation was applied 
by considering the triangulated features included in the approximated skin-model plane. 
A flat mesh plot was created from the coordinates obtained by intersecting the normal 
projections of the features onto the model plane. The overall area was computed as the 
sum of all the Delaunay triangulation areas included within the boundaries of the region 
[45]. The size of the analyzed region was then expressed in square centimeters. Figure 7 
shows the 3D point cloud that represents the inliers (in blue), and the 3D point cloud 
depicting the outliers (in red), which are the discarded features. Both are reconstructed 
from the four high-resolution optical cameras illustrated on top.

Fig. 7  3D outlier removal: the 3D point cloud in blue represents the inliers, while in red, the 3D point cloud 
depicts the outliers which are the discarded keypoints. On the top, the numerated cameras
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Marker localization and ground‑truth comparison

The accuracy of the proposed framework was evaluated by detection 3D triangulation of 
the optical markers, which were considered as ground truth. The detection and match-
ing of the optical markers were performed in two different views of the patients. For this 
purpose, a preprocessing step consisting of a segmentation mask and a simple binari-
zation thresholding was applied. At the end, the MSER and SURF methods were used 
to perform the feature detection of the bright circular region of every optical marker. 
The final matching process for a pair of images is shown in Fig.  8. When the marker 
matching was performed, their triangulation was computed, and their 3D location was 
obtained. The benchmarking was performed with respect to the ground truth of each 
optical marker provided by the ARSN system. The Euclidean distances in 3D between 
the detected marker and the corresponding ground-truth marker coordinates were com-
puted to assess the accuracy of the localization.
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