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Abstract 

Background:  As a serious clinical disease, ischemic stroke is usually detected through 
magnetic resonance imaging and computed tomography. In this study, a noninvasive, 
non-contact, real-time continuous monitoring system was constructed on the basis of 
magnetic induction phase shift (MIPS) technology. The “thrombin induction method”, 
which conformed to the clinical pathological development process of ischemic stroke, 
was used to construct an acute focal cerebral ischemia model of rabbits. In the MIPS 
measurement, a “symmetric cancellation-type” magnetic induction sensor was used to 
improve the sensitivity and antijamming capability of phase detection.

Methods:  A 24-h MIPS monitoring experiment was carried out on 15 rabbits (10 in the 
experimental group and five in the control group). Brain tissues were taken from seven 
rabbits for the 2% triphenyl tetrazolium chloride staining and verification of the animal 
model.

Results:  The nonparametric independent-sample Wilcoxon rank sum test showed sig‑
nificant differences (p < 0.05) between the experimental group and the control group 
in MIPS. Results showed that the rabbit MIPS presented a declining trend at first and 
then an increasing trend in the experimental group, which may reflect the pathologi‑
cal development process of cerebral ischemic stroke. Moreover, TTC staining results 
showed that the focal cerebral infarction area increased with the development of time

Conclusions:  Our experimental study indicated that the MIPS technology has a 
potential ability of differentiating the development process of cytotoxic edema from 
that of vasogenic edema, both of which are caused by cerebral ischemia.

Keywords:  Cerebral ischemic stroke, Magnetic induction phase shift, Thrombin 
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Background
Most cerebral stroke cases are cerebral infarction caused by temporary or permanent 
cerebrovascular occlusion [1]. Cerebral ischemic stroke is characterized by complex 
pathogenesis and high fatality rate and disability rate, and it tends to attack at the ear-
lier age in recent years. Global stroke burden is mainly concentrated in low-income 
and medium-income countries [2]. Cerebral edema is a common secondary disease of 
cerebral stroke, and evidence showed that cerebral edema is an independent predic-
tive factor for prognosis of patients with stroke [3, 4]. At the initial development stage 
of ischemic brain injury, cytotoxic edema occurs in the ischemic region with the rapid 
development of irreversible injury [5]. Vasogenic edema is also formed because of the 
damage in the blood–brain barrier (BBB), thus leading to tissue swelling [6]. Real-time 
continuous monitoring of cerebral edema is highly important for observing the state of 
disease of patients with cerebral stroke, guiding the treatment, determining the opera-
tion opportunity, and evaluating the prognosis. The commonly used detection methods 
for patients with cerebral ischemic stroke mainly include computed tomography (CT), 
magnetic resonance imaging (MRI), intracranial pressure (ICP) detection, transcranial 
Doppler sonography (TCD), and electrical bioimpedance (EBI) technology. At the early 
stage of ischemia, continuous CT and ICP monitoring results help identify high-risk 
patients with obvious brain swelling [7]. However, as invasive monitoring, ICP results 
in the risk of bleeding and infection. Although CT and MRI do not lead to complica-
tions, the equipment cost is high [8], real-time detection is impossible [9], and they can-
not easily detect early acute cerebral ischemia, which may delay diagnosis [10, 11]. TCD 
could not monitor edema accurately enough [9]. As for EBI technology, the electrode 
contacts the epidermis, and due to high electrical resistivity of the skull, the injection 
current experience attenuations with poor penetrability, which seriously affects the 
measurement accuracy [12]. Therefore, a noninvasive, non-contact, bedside real-time 
monitoring system is urgently and clinically needed.

Magnetic induction phase shift (MIPS) technology is a method that could realize non-
invasive, non-contact, real-time continuous monitoring. It is based on electrical conduc-
tivity and dielectric constant of the measured object. This method has been applied to 
studies on cerebral ischemia, cerebral edema, cerebral hemorrhage, and cerebral trauma 
[8, 13–22]. As for experimental studies on cerebral ischemia, Gonzalez et al. [19] con-
structed an acute focal cerebral ischemia model by combining ligation of the right com-
mon carotid artery (CCA) and electrocoagulation of the middle cerebral artery (MCA) 
in mice after craniotomy. Wei Zhuang et  al. [8] established a whole-brain ischemia 
model through ligation of bilateral CCA and monitored this model for 1 h on the basis 
of MIPS technology. Shuanglin Zhao et al. [23] constructed a rabbit whole-brain edema 
model by using epidural freezing-induced cerebral edema. “Coaxial two-coil” sensors 
were used in all of the above-mentioned experimental studies.

In the present study, an MIPS monitoring system was constructed for noninvasive, 
non-contact, real-time continuous monitoring and an experimental research on 24-h 
monitoring of acute focal cerebral ischemia in rabbits was carried out to investigate 
the feasibility of using MIPS technology to detect acute focal cerebral ischemia. In the 
experimental research, the acute focal cerebral ischemia model in rabbits established 
using the “thrombin induction method” [24] was taken as the research object to reduce 
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cerebral trauma in the animal experiment and make the animal model more agree-
able with the clinical pathological development process of cerebral ischemic stroke. A 
self-made “symmetric cancellation-type” magnetic induction sensor was used in the 
experiment to improve the detection sensitivity and eliminate the disturbances from 
environmental electromagnetic field and normal physiological changes in rabbits.

Results
TTC staining results

Figure 1 shows the 2% TTC staining images of 16–22# rabbits; the rabbit brains were 
taken at 0, 3, 6, 9, 12, 18, and 24 h after modeling, respectively, for staining. Infarction 
did not appear on the rabbit brain sections at 0 h. As the time passed by, the infarcted 
region gradually expanded. At 24  h, swelling could be obviously observed in the left-
brain hemisphere, indicating that the established animal model was successful and effec-
tive. As time went on, the focal cerebral ischemia in the rabbits worsened and the injury 
area enlarged.

MIPS measurement results

Figure 2a, b displays the MIPS measurement results of 2# and 14# rabbits at their char-
acteristic frequency points of 82.02  MHz and 87.71  MHz, respectively. Figure  2a pre-
sents the MIPS variation trend of 2# rabbit in the experimental group within 24  h. It 
first declined to a minimum point of − 14.91 at 7 h and then increased. Figure 2b shows 
the MIPS variation of 14# rabbit in the control group with 24 h. No evident increase nor 
decrease occurred, and the average variation of the MIPS data was − 0.24° ± 0.21° within 
24 h.

Figure  3 displays the variation trends of MIPS mean in the experimental group 
(n = 10) and control group (n = 5) at characteristic frequency points of 84.49 ± 1.48 
and 86.05 ± 2.04  MHz within 24  h. The MIPS mean also first declined to a minimum 
point of − 12.93° ± 5.74° at 8 h and then increased in the experimental group. The MIPS 

Fig. 1.  2% TTC staining results at 0, 3, 6, 9, 12, 18, and 24 h after modeling
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variation trend in the experimental group was ascribed to the first decreasing and 
then increasing trends of electrical conductivity under the occurrence of focal cerebral 
ischemia [19, 25]. The MIPS mean of the control group did not experience any obvious 
increase nor decrease, and its average variation was − 0.11° ± 0.28° within 24 h.

The MIPS variation rate in the experimental group is shown in Fig. 4. The MIPS rap-
idly declined in the first 5 h. This decline slowed down after 5 h, and the MIPS started to 
increase reversely at 9 h. After 16 h, the increase in MIPS tended to be steady. This find-
ing indicated that the brain conductivity declined rapidly in the first 5 h, the declining 
rate was reduced after 5 h, and it started rising at 9 h. In addition, 5 and 16 h were the 
times when the electrical conductivity declined and rapidly increased the most.

Statistical results

Nonparametric two-independent-sample rank sum test was carried out on the MIPS 
data of the experimental group and the control group, and the test results are listed 

Fig. 2  a MIPS variation trend of 2# and b 14# rabbits within 24 h

Fig. 3  Variation trends of MIPS mean ± standard deviation of the experimental group (n = 10) and control 
group (n = 5) within 24 h
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in Table 1. The Z-statistic was − 4.618 (p = 0.000 < 0.05). Thus, the difference was sta-
tistically significant. In addition, a significant difference was found in the MIPS data 
between the experimental group and the control group. This difference was caused 
by focal cerebral ischemia, indicating that this system was feasible and effective when 
used to monitor acute focal cerebral ischemia in rabbits.

The results of the nonparametric two-independent-sample rank sum test of the 
MIPS data at the initial time and those at 1 and 2 h in the experimental group were 
statistically analyzed, as seen in Table  2. At 1  h, p = 0.095 > 0.05 in the experimen-
tal group, indicating that the MIPS data at 1  h did not statistically differ from that 
at the initial time in the experimental group. The p value started to become smaller 
than 0.05 from 2 h, and the difference was statistically significant. This finding sug-
gested that before 1  h, no obvious cerebral ischemia was induced, possibly because 
thrombin did not exert a complete effect in the blood vessels after injection. After 1 h, 
the thrombin-induced thrombus seriously blocked the blood vessels and then caused 
changes in the MIPS data.

Fig. 4  Mean ± standard deviation of MIPS variation rate in the experimental group (n = 10)

Table 1  Nonparametric two-independent-sample rank sum test results 
of the experimental group and control group

Mann–Whitney U Wilcoxon W Z Asymp. Sig. (two-tailed)

74.500 399.500  − 4.618 0.000

Table 2  Nonparametric two-independent-sample rank sum test results of  MIPS data 
in the experimental group at 1 and 2 h and that at initial time

Time Sample Mann–Whitney U Wilcoxon W Z Asymp. Sig. 
(two-tailed)

1 h Experiment 40.000 95.000 − 0.808 0.419

2 h Experiment 20.000 75.000 − 2.423 0.015
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Discussion
In this study, an acute focal cerebral ischemia model in rabbits was constructed using 
the “thrombin induction method” [24]. This model showed a higher success rate 
than the traditional model established through the “intraluminal thread technique”. 
Moreover, it triggered smaller trauma and more conformed to the clinical pathologi-
cal development process of patients with cerebral stroke than the rabbit autologous 
blood-injected cerebral hemorrhage model [26], the bilateral carotid artery ligation-
induced cerebral ischemia model [8], and the epidural freezing-induced cerebral 
edema model [9] previously established. By injecting thrombin in the ICA, the blood 
was naturally coagulated in MCA to form thrombus, which blocks the MCA.

The structure of the “symmetric cancellation-type” magnetic induction sensor 
improved compared with the “symmetric cancellation-type” sensor designed by Jin 
et al. [26]. The object was placed between the excitation coil and the detection coils, 
thereby reducing the disturbance from the primary magnetic field and the environ-
ment. In comparison with the “coaxial two-coil” sensor [8, 9, 19] commonly used in 
MIPS detection technology, this sensor eliminated the disturbance from environmen-
tal magnetic field and the normal physiological changes in rabbits through the natural 
symmetry between the left and right brain hemispheres and the structural symmetry 
between the two detection coils. The phase detection also exhibited high sensitivity 
and strong antijamming capability.

On the basis of the MIPS technology, Gonzalez et  al. [19] realized 24-h monitor-
ing of acute focal cerebral ischemia in mice by using a “coaxial two-coil” sensor. The 
MIPS data first declined and then increased at approximately 10 MHz. With the help 
of the MIPS technology, Li et  al. [9] conducted 24-h monitoring of epidural freez-
ing-induced cerebral edema with a “coaxial two-coil” sensor. In comparison with the 
above mentioned, a “symmetric cancellation-type” magnetic induction sensor was 
used in the present study to realize 24-h monitoring of acute focal cerebral ischemia 
in rabbits on the basis of the MIPS technology. The trauma was smaller, and the ani-
mal model agreed with the clinical pathological development process of cerebral 
ischemic stroke to a greater extent. Data comparison between the experimental group 
and the control group and nonparametric two-independent-sample rank sum test 
results (p < 0.05) showed that the established monitoring system was feasible, with 
potential clinical application values.

The MIPS variation trends in the experimental group shown in Fig. 3 demonstrated 
that the MIPS data presented the firstly declining and then increasing trend, and it 
reached the minimum point at 8  h. In the research of Gonzalez et  al. [19], the MIPS 
data presented a similar variation trend at 10  MHz. The MIPS variation trend in the 
experimental group may be related to the occurrence of cytotoxic edema and vasogenic 
edema after cerebral ischemia. According to the measurement result of Song et al. [27], 
the dielectric property presented a first increasing and then decreasing trend after focal 
cerebral ischemic injury in mice. As pointed out by Schafer et al. [28], the impedance of 
skeletal muscle also first increased and then decreased due to ischemia. According to 
the pathological process analysis of cerebral ischemic stroke, cytotoxic edema and vaso-
genic edema after cerebral ischemia constituted a dynamic variation process, where they 
played a dominant role at the early and later stages, respectively [27, 29].
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Thus, in the present study, the MIPS variation trend in the experimental group 
corresponded to the pathological process of cerebral ischemic stroke. This phenom-
enon could be analyzed from the electrical characteristic changes caused by cytotoxic 
edema and vasogenic edema in the brain tissues. Previous research showed that the 
occurrence of cytotoxic edema is due to the failure of ionic pump or selective acti-
vation of ionic channel, further resulting in loss of steady-state ion gradient. Con-
sequently, extracellular fluid enters the intracellular space [30, 31], which is then 
reduced [32]. The electrical conductivity of the brain tissues is also reduced [27], 
thus leading to a decline of MIPS in the experimental group. With the progression 
of cerebral ischemia, vasogenic edema is gradually developed due to BBB injury. Fur-
thermore, because of perfusion of liquids, such as blood and cerebrospinal fluid, the 
amount of extracellular fluid increases [6], the electrical conductivity is elevated [27], 
and MIPS is increased in the experimental group. At this time, vasogenic edema plays 
a dominant role. The MIPS variation rate in Fig.  4 exhibited that the MIPS decline 
rate was the maximum at 5  h. This finding indicated that the development of cyto-
toxic edema was serious at this time; the subsequent decline rate started to decrease; 
and vasogenic edema started exerting its effect, played a dominant role at 9  h, and 
worsened at 16 h. Therapeutic methods could vary with the type of cerebral edema 
[33]. The above results indicated that the MIPS technology could provide useful infor-
mation for treatment during the cerebral ischemia monitoring process.

Fig. 5  Thrombin injection process in rabbit
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Conclusions
The MIPS technology integrates the merits of noninvasive, non-contact, and real-
time continuous monitoring. The “thrombin induction method”, which conforms to 
the clinical pathological development process of cerebral ischemic stroke, was used 
in this study to establish an acute focal cerebral ischemia model in rabbits. A 24-h 
real-time continuous monitoring of acute focal cerebral ischemia in rabbits was real-
ized through the MIPS technology by using a “symmetric cancellation-type” magnetic 
induction sensor with high phase detection sensitivity and strong antijamming capa-
bility. The experimental results proved that the MIPS technology-based monitoring 
system of acute focal cerebral ischemia in rabbits is feasible, with potential clinical 
application values. During the monitoring process of acute focal cerebral ischemia in 
rabbits, the MIPS technology showed a potential ability of differentiating the devel-
opment process of cytotoxic edema from that of vasogenic edema, both of which are 
caused by cerebral ischemia.

Methods
Experimental animals and grouping

Healthy New Zealand white rabbits (provided by the Laboratory Animal Center of 
Army Medical University) weighing 2.0–2.5 kg were selected in this study. The ran-
dom number table was used to divide the 22 rabbits, which were numbered as 1–22, 
into experimental group (10 rabbits), control group (5), and model verification group 
(7). Preoperative 24-h fasting was conducted with free access to water.

Establishment of animal model

An acute focal cerebral ischemia model was constructed by injecting a thrombin mixture 
into the right CCA of each rabbit. Bovine thrombin (2908 NIH units/mg; Enzyme Research, 
South Bend, Indiana) was diluted to 666.67 NIH units/mL using normal saline, and rab-
bit brain thromboplastin (Neoplastine CI PLUS, Diagnostica Stago, Asnieres, France) was 
diluted to 0.2 mg/mL using normal saline. The diluted bovine thrombin and rabbit brain 
thromboplastin were mixed at 1:10 to prepare the thrombin mixture. A urethane solution 
(SCR, Shanghai, China) with a volume fraction of 25% was used for anesthetization; it was 
intravenously injected through the rabbit ear rim at a dose of 5 mL/kg. Meanwhile, 0.2 mL/
kg of atropine sulfate (0.5 mg/mL; ELIPEX, Shanghai, China) was intramuscularly injected. 
After anesthetization, the hairs on rabbit head and neck were removed. Each rabbit was cut 
off from the middle of the neck, followed by blunt dissection of fascia and muscle. Tracheal 
intubation was conducted first, and then the exposed right CCA was separated. The bifur-
cation between the external carotid artery (ECA) and the internal carotid artery (ICA) was 
found to separate ECA and ICA. Before the thrombin mixture was injected, the ECA and 
ICA were first clipped. Subsequently, the indwelling needle was inserted above the ECA, 
reflexed at the bifurcation between the ICA and the ECA, and finally stretched deeply into 
the ICA. The thrombin mixture was slowly (25 μL/min) injected into the ICA with a syringe 
pump. After the injection was completed, the two ends of the injection point were ligated 
on the ECA, followed by wound suturing. Thrombin injection process in rabbit is shown in 
Fig. 5.
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Detection principle

The detection object was placed between the excitation coil and the detection coil, where 
the excitation coil was driven by an alternating current of a certain frequency to generate 
sinusoidal alternating primary magnetic field (B), which acted upon the object to generate 
eddy current and then form induced magnetic field (∆B), as shown in Fig. 6. If the excita-
tion is conducted using sinusoidal alternating signal with angular frequency of ω , the skin 
depth in the detection object is δ = ( 2

ωµ0µrσ
)
1/2 , where σ and µr represent the electrical 

conductivity and the relative permeability of the detection object, respectively, and µ0 is 
the dielectric constant of free space. According to the research of Griffiths et al. [34], if the 
skin depth δ of the electromagnetic field is much greater than the thickness of the detection 
object, ∆B and B present the following relationship:

where εr is the relative dielectric constant of the detection object, ε0 is the dielectric con-
stant of free space, and Q and R are geometric constants. Therefore, the induced current 
generated by the detection object generates an imaginary-part and negative component, 
that is, �B , which is in direct proportion to frequency and electrical conductivity. As the 
�B value generated by biological tissues is much smaller than the B value and is usually 
determined by electrical conductivity, the following relationship exists:

Thus, the deflection angle ϕ between the superposed magnetic field detected by the 
detection coil and the primary magnetic field is approximately in direct proportion to ω 
and σ.

Experimental system
The real-time monitoring system of acute focal cerebral ischemia in rabbits mainly 
included three parts: magnetic induction brain monitor, “symmetric cancellation-type” 
magnetic induction sensor, and animal ventilator (Fig. 7).

(1)
�B

B
= Qωµ0(ωε0εr − iσ)+ R(µr − 1),

(2)ϕ ≈

∣

∣

∣

∣

�B

B

∣

∣

∣

∣

∝ ωσ .

Fig. 6  Vector graph of detection principle
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“Symmetric cancellation‑type” magnetic induction sensor

The structure of the “symmetric cancellation-type” magnetic induction sensor, which 
consisted of one excitation coil and two detection coils, is shown in Fig. 8a. The rabbit 
was placed between the excitation coil and the detection coils. As the two brain hemi-
spheres are relatively independent, one detection coil was placed above the normal brain 
hemisphere and the other one above the ischemic hemisphere. The two detection coils 
detected the primary magnetic field and induced the magnetic fields generated by both 
hemispheres. The primary magnetic fields detected by the two coils were the same, and 
the ischemic state was reflected by the phase difference between the induced magnetic 
field signals detected from both hemispheres. By virtue of natural symmetry of the left 

Fig. 7.  24-h monitoring system of acute focal cerebral ischemia in rabbits

Fig. 8  a “Symmetric cancellation-type” magnetic induction sensor and b relative positions of rabbit brain and 
sensor
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and right brain hemispheres and the structural symmetry of the two detection coils, this 
sensor could eliminate the disturbance from the normal physiological changes in rabbits 
and the environmental electromagnetic field and improve the detection sensitivity of the 
phase difference between magnetic induction signals in the left and right hemispheres.

The excitation coil was winded on an acrylic cylinder (diameter: 6.5  cm) with var-
nished wire (diameter: 0.8  mm), and the number of turns of the wire was 10. The 
detection coils were winded for 16 circles with a wire (diameter: 0.4  mm) to form a 
middle-hollow square with external side length of 29.2 mm and internal side length of 
17.2 mm. The excitation coil and detection coils were fixed into a cube (length: 13.5 cm, 
width: 6 cm, and height: 11 cm) fitting the rabbit brain through the acrylic. The lower 
excitation coil could flexibly slide left or right for fine adjustment of geometric structural 
symmetry of the coil and reduce the difference of the primary magnetic field excited by 
the excitation coil between the two detection coils. Meanwhile, a sagittal suture of the 
rabbit brain was placed at the middle of the rectangular mouth (length: 29.2 mm, width: 
0.3 mm) between the two detection coils, and the “cross stitch” of the rabbit brain was 
located at point P, as shown in Fig. 8b.

Magnetic induction brain monitor

The magnetic induction brain monitor (TD1639C; TIANDA, Chengdu China) has vari-
ous functions, such as output of excitation signal, phase detection, and data acquisition. 
As shown in Fig. 9, the signal source of the magnetic induction brain monitor outputted 
a signal, which was then divided by a power divider into excitation signal and reference 
signal. The excitation signal was outputted to the excitation coil via port 1 to generate 
the primary magnetic field. Then, it generated an induced magnetic field in the rabbit 
brain. The two detection coils received induced magnetic field and primary magnetic 
field from the left and right brain hemispheres, respectively, and the generated signals 

Fig. 9  Flowchart of the experimental system
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were acquired via port 2 and port 3. The detection signal of the two detection coils and 
reference signal passed two phase detectors, and the phase differences between detec-
tion signal and reference signal in the two coils were acquired, and referred to as ϕ1 and 
ϕ2 . Therefore, the MIPS caused by focal cerebral ischemia is as below:

Animal ventilator

The animal ventilator (DW-3000A/B; BRWL, Beijing, China) played an important role in 
this experiment. The respiratory frequency, tidal volume, and respiratory rate were set 
as 40 times/min, 20 mL, and 1:2, respectively, and tracheal cannula was connected for 
continuous ventilation. With the ventilator, the rabbit could be under normal cardiopul-
monary functional state to increase the experimental success rate.

Experimental method
Model verification experiment

The brains of seven rabbits were taken at 0, 3, 6, 9, 12, 18, and 24 h after modeling, and 
2% 2,3,5-triphenyltetrazolium chloride (TTC, Solarbio, Beijing, China) was used for 
staining. As a lipid-soluble photosensitive compound, TTC reacts with succinate hydro-
genase to generate red formazan, but the dehydrogenase activity in ischemic tissues is 
degraded, thus failing to react with TTC. In addition, no change is generated and it pre-
sents a pale white color. Therefore, the cerebral infarction in rabbits could be reflected by 
color change.

Experimental group

An acute focal cerebral ischemia model was first established for the rabbits in the 
experimental group, and the method was mentioned in Sect. 2.2. After the modeling 
ended, it was immediately placed in the magnetic induction brain monitor. The fre-
quency band range, intermediate frequency bandwidth, and exciting power of this 
magnetic induction brain monitor were set as 100  kHz–100  MHz, 10  kHz, and 10 
dbm, respectively. Afterward, the frequency point with the maximum transmission 
power was determined as the characteristic frequency point within the frequency 
band range. A 24-h real-time continuous monitoring was performed after parameter 
setting.

Control group

The other steps conducted for the rabbits in the control group (n = 5) were the same 
as those conducted in the experimental group, except that thrombin mixture was not 
injected.

(3)MIPS = �ϕ = ϕ1 − ϕ2.
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Statistical approach
The means of all numerical values were expressed in the form of mean ± standard 
deviation. The differences between the experimental group and the control group 
were analyzed through nonparametric two-independent-sample rank sum test, and 
the feasibility of the monitoring system was verified from the statistical results. The 
nonparametric two-independent-sample rank sum test was performed to test the dif-
ferences of MIPS data at initial time from those at 1 h and 2 h in the experimental 
group, so as to judge the time when thrombin exerted its function to induce cerebral 
ischemia. SPSS statistics software was used to conduct nonparametric two-independ-
ent-sample rank sum test, Mann–Whitney was selected for the test type. Finally, the 
Mann–Whitney U and Wilcoxon rank sum, Z-statistic and asymptotical significance 
(P) were output.
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