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Abstract

Background: Temporomandibular disorders (TMDs) are pathological conditions
affecting the temporomandibular joint and/or masticatory muscles. The current diag-
nosis of TMDs is complex and multi-factorial, including questionnaires, medical testing
and the use of diagnostic methods, such as computed tomography and magnetic
resonance imaging. The evaluation, like the mandibular range of motion, needs the
experience of the professional in the field and as such, there is a probability of human
error when diagnosing TMD. The aim of this study is therefore to develop a method
with infrared cameras, using the maximum range of motion of the jaw and four types
of classifiers to help professionals to classify the pathologies of the temporomandibular
joint (TMJ) and related muscles in a quantitative way, thus helping to diagnose and
follow up on TMD.

Methods: Forty individuals were evaluated and diagnosed using the diagnostic crite-
ria for temporomandibular disorders (DC/TMD) scale, and divided into three groups: 20
healthy individuals (control group CG), 10 individuals with myopathies (MG), 10 indi-
viduals with arthropathies (AG). A quantitative assessment was carried out by motion
capture. The TMJ movement was captured with camera tracking markers mounted on
the face and jaw of each individual. Data was exported and analyzed using a custom-
made software. The data was used to identify and place each participant into one of
three classes using the K-nearest neighbor (KNN), Random Forest, Naive Bayes and
Support Vector Machine algorithms.

Results: Significant precision and accuracy (over 90%) was reached by KNN when clas-
sifying the three groups. The other methods tested presented lower values of sensitiv-
ity and specificity.

Conclusion: The quantitative TMD classification method proposed herein has signifi-
cant precision and accuracy over the DC/TMD standards. However, this should not be
used as a standalone tool but as an auxiliary method for diagnostic TMDs.
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Background

Pain in the orofacial region is the major cause of temporomandibular disorder (TMD).
A person with TMD has certain limitations, since the temporomandibular joint (TM])
and its association with the masticatory muscles are responsible for performing complex
tasks, such as speech and chewing. The main symptoms of TMD include joint cracking
sounds, muscle fatigue, and changes in mandibular pattern movements. Increased mus-
cle strain and internal disturbances of the TM]Js may affect the range of feasible man-
dibular movements [1].

The etiology of TMD is still under discussion, however, it is known to be complex and
multi-factorial, involving anatomical, occlusal, muscular and psychological factors [2—4].
The hereditary etiological causes include the idiopathic, systemic psychosomatic and
psychosocial aspects of TMD. Exogenous etiological factors include trauma and occlusal
disorders [5]. Masticatory muscle conditions are defined as myofascial pain with or
without minimal opening by the Diagnostic Criteria for TMD (DC/TMD). TM]J disor-
ders are subdivided by DC/TMD into reduced disk joint displacement, disk displace-
ment with limited opening and without limited opening, arthralgia, osteoarthritis and
TM] osteoarthritis [6].

The prevalence of TMD related to pure arthropathy is relatively low (1.61%), when
compared to a pure muscular etiology (11.32%) [7]. The low prevalence of arthropathy
makes diagnosis even more difficult. The correct diagnosis of the cause of TMD is rele-
vant to the appropriate treatment. Thus, the use of objective tools to measure the move-
ments of the mouth and to discriminate individuals with muscular TMD from those
with arthropathic TMD can help in making the correct diagnosis.

The diagnosis of TMD is mainly descriptive and analytical, including the use of ques-
tionnaires, surgical and medical measures such as radiography, computed tomography
(CT) and magnetic resonance imaging (MRI) [8]. The DC/TMD protocol is the most
widely used for diagnosing TMD, as it is considered valid for the detection of any TMD
related to pain [6], but this protocol has the need of an experienced professional in order
to determine the underlying cause of TMD [8].

To avoid the need for experienced professionals in the diagnosis of TMD, the use of
instruments and methods for quantitatively measuring mandibular movement has seen
an increase concerning medical procedures, with the goal of providing an additional
base for the assessment of musculoskeletal disorders of the stomatognathic system, as
well as for monitoring the success of active treatment approaches [9]. A majority of cur-
rently available methods for classifying people with TMDs are based on electromyogra-
phy [10], imaging processing techniques [11, 12] and temporomandibular sounds [13].

In this sense, Santana-Mora et al. [14] compared surface electromyography (EMG)
recorded from the right and left masseter, and temporalis muscles of chronic TMD
patients and healthy individuals during resting and clenching. The maximum accuracy,
sensitivity and specificity were, respectively, 67%, 69.8% and 84.2%. Haghnegahdar et al.
[12] proposed the detection of TMD using image-processing techniques, based on the
fact that TMD can manifest itself through changes in bone structure.

Another method used is the active range of motion (AROM) test. This test meas-
ures the maximum opening of the mouth, the maximum left and right laterality and
the maximum protrusion using a Boley meter or the TheraBite range of motion scale.
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In this method, the mouth opening is usually measured as the distance between the
incisors [15].

Although quantitative methods have some advantages over qualitative methods,
these methods have some limitations. The method using surface EMG, presented
by Santana-Mora et al. [14], has a low sensitivity and specificity. Diagnostic imaging
techniques (radiography, CT and MRI) are often limited by the anatomy of the region
and by distortions [16]. Regarding the AROM method, a dentist should interpret all
measurements in order to avoid error when interpreting the data. In addition, devia-
tions in mandibular functional movements may be a sign of pathology in the orofa-
cial region. Variables such as the maximum opening capacity of the mouth, however,
do not allow for the discrimination of the underlying cause of TMD [17]. Although
these methods are used in research that aims to distinguish patients with TMD from
healthy individuals, there is a lack of research about differentiating muscular from
arthropathic TMD.

To fill the existing gap in research to identify TMD (muscular or arthropathic), the
analysis of biomechanical features is a good candidate, as mandibular biomechanical
behavior changes with TMD [18]. In addition, animal studies have indicated that TM]
can adapt to changes in biomechanical stress, allowing the joint to maintain an efficient
function in the presence of TMD [19]. The detection of these biomechanical changes
in mandibular movement can lead to an understanding as to which effects these fac-
tors have on TMD. Thus, TMD and its variations (myopathy and arthropathy) can be
manifested and detected through changes and adaptations of biomechanical features in
mandibular movement.

For the analysis of biomechanical features, in addition to those used by AROM test, it
is necessary to track the mandibular movement. Optoelectronic systems for the record-
ing of jaw movements are most frequently used as these are less invasive, while provid-
ing accurate and reliable records of mandibular motion, within the linear error margin,
which ranges from 0.1 to 1.0 mm [20-22]. The advantage of optoelectronic systems
resides in the fact that the markers can be placed at specific points on the head and man-
dible, allowing for a three-dimensional reconstruction of jaw movement from the mark-
ers, including linear trajectory, velocity and acceleration, along with maximum distance.

From movement tracking, it is possible to extract the biomechanical features that
will be used for the classification of TMD. The use of predictors such as Random Forest
(RF) [23], support vector machine (SVM) [24], Naive Bayes (NB) [25] and the k-nearest
neighbor [26], has helped to classify TMDs. Research by Haghnegahdar et al. [12] used
these classifiers for the classification of patients with TMD from healthy individuals. The
authors concluded that the KNN method presented the best results in terms of accuracy
(92.42%), sensibility (94.70%) and specificity (90.15%).

In this scenario, given the difficulty of diagnosing TMD, and the wide variety of
approaches used to test it, the introduction of non-invasive identification methods to
support the diagnosis of TMD is an area of valid investigation [27]. This study proposes
the analysis of biomechanical features achieved through the trajectory of mandibu-
lar movements, collected by an optoelectronic system to record jaw movements as a
diagnostic tool for the evaluation of TMD. These features discriminate biomechanical
features extracted from individuals with muscular TMD, from those with arthropathic
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TMD, using the classifiers K-Nearest Neighbor—KNN, Support Vector Machine, Naive
Bayes and Random Forest [12].

Results
Figure 1 shows the trajectory of the three motions studied (open/close of mouth; lateral
movement of the mandible and protrusion movement) for an individual of the AG, using
the jaw movement capture system designed in our laboratory.

Through the data collected from the trajectory of the mandibular movement, the fol-

lowing features were calculated:

¥

Z
Fig. 1 Movement trajectory for a person in the AG group (yellow dashed line), with the primary marker in
blue: a opening-closing motion (frontal view); b lateral motion (frontal view); ¢ protrusion/retraction motion
(sagittal view). The red lines in a, b and the green lines in ¢ show the trajectories of the six repetitions of each
movement, showing their maximum points
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Fig. 2 Measurements of the features extracted from each movement. The movements are indicated by
arrows: a, b opening and closing movement; ¢, d lateral excursion to the left and to the right; e, f protrusion

+ ODX—maximum deviation, in the x-axis direction, from the mouth opening

movement (Fig. 2a);

+ CDX—maximum deviation, in the x-axis direction, of the mouth closing move-

ment (Fig. 2a);
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+« OCX—ODX+ CDX (Fig. 2a);

+ OCZ—maximum distance from mouth opening and closing trajectory in the
z-axis direction (Fig. 2b);

+ ODY—distance from the beginning of the mouth opening movement to the point
where ODX occurs (Fig. 2a);

+ CDY—distance from the beginning of the mouth closing movement to the point
where CDX occurs (Fig. 2a);

+ OCY—measure of maximum mouth opening in y-axis direction (Fig. 2a).

Features of the lateral displacement (right and left):

+ LLX—maximum distance, in the x-axis direction, of the lateral movement of the
mandible to the left side (Fig. 2c);

+ LLY—maximum distance, in the y-axis direction, of the lateral movement of the
mandible to the left side (Fig. 2¢);

+ LLZ—maximum distance, in the z-axis direction, of the lateral movement of the
mandible to the left side (Fig. 2d);

+ LRX, LRY and LRZ are analogous to LLX, LLY and LLZ, respectively, with jaw
movement performed to the right side.

Features of the protrusion movement:

+ PX—maximum distance, in the x-axis direction, of the protrusion movement of
the mandible (Fig. 2e);

« PY—maximum distance, in the y-axis direction, of the protrusion movement of
the mandible (Fig. 2f);

+ PZ—maximum distance, in the z-axis direction, of the protrusion movement of
the mandible (Fig. 2f);

« PDX—distance from the start of the protrusion movement to the point where PX
occurs (Fig. 2e);

+ PDZ—distance from the beginning of the protrusion movement to the point
where PY occurs (Fig. 2f).

After calculating the number of individuals (), it was found that the features from
10 individuals would be sufficient for the classification of all group pairs. The excep-
tions were the features OCZ, LLZ, LRY, LRZ, PX, PY, PZ and PDZ, which could not
distinguish CG from AG; OCZ, which could not distinguish CG from MG; and ODX,
LLX, LRX and PY, which could not distinguish AG from MG. Table 1 shows the fea-
tures and situations in which the value of n (10) would not be able to distinguish CG
from AG, CG from MG or AG from MG. Columns marked with “*” indicate features
that require more than 10 volunteers to distinguish the group pairs analyzed.

Although some features were unable to classify some group pairs with ten volunteers,
these features were still retained. The decision to maintain these features was based on
their importance for the classification of other group pairs. For example, the OCZ fea-
ture is not able to classify the CG-AG or CG—MG group pairs, but this feature is able
to classify the AG-MG pair with the ten volunteers, as shown on Table 1. This same
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Table 1 Features that require more than 10 volunteers to distinguish groups (marked

with u*")
Groups Opening/closing features
ocxX ocz ODX oDY CDX cDY
CG-AG *
CG-MG *
AG-MG *
Laterality (left/right) features
LLX LLZ LRX LRY LRZ
CG-AG * * *
CG-MG
AG-MG * *
Protrusion features
PX Pz PDX PDz
CG-AG * * *
CG-MG
AG-MG

Table 2 Evaluation of the classifiers for each group and comparison among KNN, Random

Forest, Naive Bayes and Support Vector Machine

Groups Sensitivity (£ STD) Specificity (+ STD) Precision (£ STD) Accuracy (£STD)
KNN
AG 0.9737 (0.0582) 0.9756 (0.0221) 0.9320 (0.0566) 0.9701 (0.0219)
MG 0.8703 (0.0793) 0.9897 (0.0142) 0.9676 (0.0425) 0.9599 (0.0221)
CG 0.9769 (0.0265) 0.9411 (0.0398) 0.9445 (0.0353) 0.9590 (0.0234)
Random forest
AG 0.6852 (0.0030) 0.8839 (0.0011) 0.6642 (0.0021) 0.8342 (0.0009)
MG 0.6650 (0.0030) 0.8961 (0.0009) 0.6817 (0.0021) 0.8383 (0.0009)
CG 0.7900 (0.0018) 0.7951 (0.0018) 0.7947 (0.0014) 0.7926 (0.0011)
Naive Bayes
AG 0.7132(0.0052) 0.8634 (0.0022) 0.6391 (0.0040) 0.8258 (0.0020)
MG 0.5601 (0.0056) 0.9424 (0.0018) 0.7716 (0.0055) 0.8468 (0.0018)
CG 0.8411 (0.0029) 0.7691 (0.0033) 0.7864 (0.0024) 0.8051 (0.0020)
Support vector machine
AG 0.7942 (0.0049) 0.7894 (0.0045) 0.7925 (0.0040) 0.7918 (0.0037)
MG 0.7894 (0.0045) 0.7942 (0.0049) 0.7963 (0.0042) 0.7918 (0.0037)
CG 0.8846 (0.0030) 0.7718 (0.0050) 0.7989 (0.0037) 0.8282 (0.0029)

STD standard deviation

analysis was performed for all features that required more than 10 volunteers for the

classification of group pairs.

Table 2 shows the evaluation results of the KNN, Random Forest, Naive Bayes and

Support Vector Machine methods in terms of sensitivity, specificity, precision and accu-

racy. The values shown in Table 2 were calculated using the following configurations:
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Fig. 3 Evaluation of the KNN classifier: a sensitivity; b specificity; ¢ precision; d accuracy

« KNN—K=1;

+ Random Forest—120 trees;

+ Naive Bayes—kernel (normal);

+ Support Vector Machine—polynomial kernel.

The results in Table 2 show that the KNN classifier has a precision and accuracy of
more than 93% and 95%, respectively, when differentiating between the three classes.
The myopathic group had the lowest sensitivity value (87%). The Random Forest has a
sensitivity and precision below 80%, but the CG classification showed similar findings
across all evaluators (~79%). The Naive Bayes classifier showed an accuracy of below
85%, while the MG identification sensitivity is the lowest found at 56%. The Support
Vector Machine provides a similar classification with respect to the identification of AG
and MG (~79%c¢); however, it has a higher sensitivity (88%) and accuracy (82%) for the
identification of CG.

The results for sensitivity, specificity, precision and accuracy of the KNN classifier are

summarized in Fig. 3.

Discussion

Challenges in the classification of TMD

Recent reporting of TMD has shown an increase in both severity and incidence [12].
TMD is the second most common musculoskeletal condition (after chronic low back
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pain), resulting in pain and disability [6]. TMDs affect the normal life of individuals and
interfere with their daily activities. Correct diagnosis is crucial for receiving proper treat-
ment and follow-up for that particular type of TMD. Qualitative approaches are typically
used to assess and identify the TMD, which requires the training of a health professional
in a clinical setting. In this sense, a quantitative method would help to improve and auto-
matically evaluate an individual, leading to a more accurate diagnosis, independent of
professional experience, particularly in the clinical context where such professionals are
not readily available.

A wide variety of techniques can be applied to the diagnosing of TMD. The large num-
ber of diagnostic elements that examiners must take into account makes it essential to
use an accurate TMD classification system [28]. Among the techniques used, AROM
proved to be reliable for the diagnosis of TMD. However, this technique depends on the
experience of the examiner and, unfortunately, the visualization of deviations during the
movement of the mandibular along its trajectory is very difficult, especially in the early
stages of TMD. However, the use of an optoelectronic system to record jaw movements
achieves an accuracy and precision of 0.1 mm, in addition to recording the entire trajec-
tory of the movement. Additionally, the AROM method, using conventional tools, is not
able to classify volunteers with TMD from the AG and MG groups.

Although these methods can diagnose TMD with high sensitivity and high specific-
ity, it is still a challenge to classify TMD as myopathy or arthropathy, as pain referred
in TMD is more complex and more difficult to analyze and diagnose precisely due to
the distance between the probable site of origin and the place where it is manifest [28].
In addition, the clinical presentation of TMD in patients is individually different. Thus,
many patients do not fit into only one TMD category and other patients may not fit into
any category [29].

The technique proposed in this paper allows for the automatic classification of individ-
uals with TMD into groups AG and MG. This classification is only conceivable thanks to
the possibility of using new features (due to the accuracy and precision of the optoelec-
tronic system for the recording of jaw movements) other than the maximum opening of
the mouth, maximum laterality and maximum protrusion.

Evaluation of the features used

The method involves the analysis of four different movements of the jaw on three axes,
a feature that enhances the precision of classification. From these movements and the
analyzed plans, 18 features were chosen for analysis, in order to diagnose TMD and its
subtypes (arthropathy or myopathy). Some of these features, as shown on Table 1, are
not able to classify all group pairs with ten individuals. However, the same feature that
cannot classify a group pair is capable of classifying another group pair. Thus, all the fea-
tures contributed to the identification of the groups analyzed.

The features that presented the greatest difficulty in classifying the groups were those
related to laterality (LLZ, LRY, LRZ, LLX and LRX). The authors Leeuw et al. also
acknowledged this challenge in their study, reporting that there was no statistical dif-
ference between patients with TMD and the healthy group [30]. This finding also agrees
with the study of Mazzetto et al. who used a 3D-ultrasonic system and a digital caliper
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rule to compare one group with TMD and another healthy group. They found no statis-
tical difference between the groups in the lateral movements [31].

Evaluation of the classifiers used

In this study, four classifiers were compared (KNN, RF, NB and SVM). The study by
Haghnegahdar also used the same classifiers, but with two major differences. The first
was that the study by Haghnegahdar used image data and the second is that the aim of
work by Haghnegahdar was to separate healthy individuals from individuals with TMD,
without classifying the individuals into the TMD subclasses (arthropathy and myopathy)
[12].

The use of four types of data classification algorithms presented herein had the ability
to demonstrate their performance results. The KNN classifier has an acceptable preci-
sion and accuracy rate (>90%). The DC/TMD for clinical and research applications [6]
states that the acceptable sensitivity and specificity for a definitive diagnosis is >70% for
the former and > 95% for the latter. Our method shows a >97% for sensitivity and >97%
of specificity when classifying the individual as AG and >87% and >98% for individuals
with MG.

The KNN classifier presents the best results when compared to RF, NB and SVM. This
result may be due to the fact that KNN is a non-parametric tool, the adaptive nature to
the dataset in the forming of nonlinear boundaries for the data points, along with dem-
onstrating its capabilities as a tool for approximating a point to a dataset [32—-34].

KNN is relatively simple to use and does not require professional experience in patient
preparation. However, the drawback of the proposed method is that it requires a motion
capture system that is not always readily available.

Conclusions

We analyzed the human jaw motion trajectory for three different movements and devel-
oped a data analysis method as an auxiliary to the automatic diagnosis of TMD. Indi-
viduals with and without TMD were divided into three groups (CG, MG, AG) and the
KNN classifier was the most capable with regard to separating each individual into clus-
ters at an acceptable rate. The approach suggested herein has been able to discriminate
between healthy individuals and individuals with TMD and identify these as individuals
with myopathic diseases attributable to arthropathic disorders. The study has a statisti-
cal demonstration that is consistent with the literature and the proposed method can be
used to assist the professional in the diagnosis, classification and follow-up of individu-
als with TMD.

Methods

Selection of individuals

Forty individuals were selected for this study, ranging from 18 to 50 years of age. All
participants were informed of the tests and tasks of the study and signed a consent form.
The Human Research Ethics Committee approved all protocols (Human Research Ethics
Committee approval ID: 164/10 and 318.962). This study followed the steps shown in
Fig. 4.



Calil et al. BioMed Eng OnLine (2020) 19:22 Page 11 0f 18

Recruitment Data Collection Processing Data Data Analysis

Selection 7 \
Data \
of Classifiers
Individuals ‘ Aquisition y '

Infrared Cameras;

9 markers; Data normalization;
4 3 S-shaped primary marker in a s . Divided into 3 groups;
1850 years; e fixed position; Max_lmum amplnl{des/ . Re sample with replacement;
Evaluated by a professional; Mouth e Jcl deviations of 3D trajectory; Predicto del:
Divided into 3 groups. CUtLTIOVEMENIS: OpenCose 18 characteristics; fedictonmocel;
- left/right - 4 Classifiers;
protrusion/retraction; Repetition: 1000x
Repeated 6x.

Fig. 4 Methodology divided into four stages: recruitment, data collection, processing data and data analysis

Initially, the participants are assessed by an experienced professional, a DC/TMD
questionnaire specialist, and classified into three categories according to the results:
control group (CG) (20 healthy individuals, 5 males and 15 females); myopathic disorder
group (MG) (10 individuals, 3 males and 7 females); and arthropathic disorder group
(AG) (10 people, 4 males, and 6 females). Highlighted here is that the DC/TMD ques-
tionnaire does not list TMD in the category of severity [35].

A pilot study was conducted with 12 individuals (4 CG individuals, 4 AG individuals
and 4 MG individuals) to calculate the sample size. The same features used for group
classification were extracted from these individuals. Each feature was re-sampled 1000
times using bootstrap, and the mean and standard deviation were determined from each
feature. This procedure was carried out for the three groups (CG, AG and MG). From
the means and the standard deviation, the number of individuals required to classify
each group was calculated using Eq. 1 [36]:

(2o +zﬂ)2 %02

1
(n1 — p2)? @

n=2sx%
where, # is the number of individuals required; z, (obtained from the normal curve
table), the z-score value for =0.05 in a two-tailed test (z,=1.96); z; (obtained from
the normal curve table), the z-score value for a power of 80% (zﬁz 0.84); o, the standard

deviation; and ¢, and y, are the mean of the features of the groups under evaluation.

Data collection
A motion-tracking system consisting of infrared cameras (OptiTrack Flex V100; Natu-
ral Point, Corvallis, OR, USA) was used to capture the biomechanical features studied,
which identified reflective markers located on the face of the individual. A set of nine
reflective markers with a diameter of 10 mm were placed on the face of the individual.
The jaw movement was tracked by means of a primary marker (a stainless steel wire
with a tip made from a plastic sphere 10 mm in diameter covered by a reflective mate-
rial) which was fixed to the lower incisors (Fig. 5a). The movement of the primary
marker is therefore similar to the motion of the lower incisors and as such possesses the
same movement as the previous region of the jaw. This marker has an S-shaped contour-
ing around the mandibular incisors, thus, eliminating the compression of the upper and
lower labial tissue, which could create interference in the movements of the jaw (Fig. 5b).
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Metal Rod ¢———

Primary Marker

y y
L} J
Fig. 5 Marker positioning on the face of each individual: a frontal view, b sagittal view. The primary marker
was placed on an S-shaped metal rod. The secondary markers were placed as follows: 1 on the forehead, 1

at each side of the temporomandibular joint, 2 at each side of the jawbone, and 1 in the middle of the labial
philtrum

The primary marker was fixed with a zinc oxide eugenol paste, not interfering with den-
tal occlusion while in movement. The marker was sterilized after each use. The reflec-
tive marker placed on the head, functioned as a reference for decreasing the impacts in
measurement errors, due to head movements. The other 7 reflective markers (10-mm-
diameter plastic sphere fixed by Velcro tape) were used solely for the purpose of enhanc-
ing the visibility of mandible motions, without any influence on the data collection of
movements.

Each individual was seated in an upright position on a normal chair with a headrest.
The individual was positioned parallel to the ground in the Frankfurt horizontal plane.
Three infrared cameras (OptiTrack Flex V100-Frame Rate 100 Hz) were positioned on
tripods as follows: the front camera was positioned 1.3 m away and the other two cam-
eras were positioned 1 m away, forming a 60° angle together with the front camera. The
three cameras were placed 20 cm above the headline.

Before the data were recorded, each individual was given training. The set of tasks
involved maximum range of motion for elevation/depression (opening/closing move-
ment of the mouth), left and right lateral movement of the jaw (closing of the mouth)
and protrusion/retraction (closing of the mouth). The tasks followed international
parameters for the evaluation of the temporomandibular joint for physical examination.

In order to determine how many times the tasks should be repeated, a pilot study was
conducted with 12 subjects. The results showed that with six repetitions, the average for
the features changed very little. Thus, each task was performed six times. The speed of
each task was performed at the discretion of each individual.

A custom software for jaw motion capture, designed in our laboratory [20], was used
to determine the trajectories of the markers in the tasks described and these were
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Table 3 Features extracted from each movement

Movement Features Lateral deviation
Open/close OCX/0CY/0CZ ODX/0ODY/CDX/CDY
Lateral left LLX/LLY/LLZ

Lateral right LRX/LRY/LRZ

Protrusion PX/PY/PZ PDX/PDZ

exported as numerical data for further analysis. It is important to note that, despite the
multiple images coming from all cameras, the image-tracking system software converts
all collected images into one image, where the motion will be analyzed. The analysis uses
a band-pass Butterworth filter with 4 poles and the cut-off frequencies are 0.01 Hz and
8 Hz, since mandible voluntary movements have a frequency of 6-7 Hz [20].

Feature selection

There is currently no standard for the features of mandibular movement. However, the
AROM technique recommends some mandibular movements that will be used and,
from these movements, some features will be selected.

The movement performed by the patient is an important step for collecting the trajec-
tory and for selecting the features. In this way, the movements requested from the vol-
unteers for collecting the trajectory were put into four types: opening/closing of mouth
(OC); lateral movement of the mandible to the left side (LL); lateral movement of the
mandible to the right side (LR) and protrusion movement (P).

In this way, the 3D trajectory of the requested movements was collected using the
infrared camera system. From the 3D trajectory, features were selected on the three axes
(X, Y and Z). To prevent irrelevant movements from influencing the analyzed features,
maximum displacement was used. In this way, the features chosen consisted of the dis-
tance (in millimeters) of the maximum displacements of the jaw movements in 3D-XYZ
axes of each trial and the lateral deviation of the mandible in relation to the axis of each
movement.

The maximum displacements of the four movements give rise to 12 features (four
movements and three axes). In addition to these features, the maximum deviations
that occurred in the trajectory were used, such as the maximum lateral deviation of the
opening movement (OD) on the plane XY, maximum lateral deviation of the closing
movement (CD) on the plane XY and the maximum lateral deviation of the protrusion
movement of the mouth (PD) on the plane XZ. Thus, 18 features were used (Table 3).

Prediction and validation
Data were normalized using z-score. For normalization purposes, the z-score is used, in
order that each point in the dataset has the same scale. The formula for z-score normali-
zation of a given value is:
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25 — ((value—u)) 2)

o

where 1 is the mean value of the feature and o is the standard deviation of the feature.

Following this, the data were separated into the three groups (AG, MG, CQ). Prior
to the application of a classifier, two subsamples were created for each of the three
groups (AG, MG and CG), one subsample for creating the model and the other sub-
sample for validating the model created for the performed classification. For the
model subsamples, the original data were randomly re-sampled 1000 times with a
replacement sample, each subsample comprised about half of the original data set.
The same procedure was performed for creating the validation subsamples.

To create a predictor model for each group, four kinds of classifiers were employed
using the model subsamples of each group: K-nearest neighbor classifier (KNN)
[26, 37], using an Euclidean distance of 1, Random Forest classifier using bootstrap
aggregated (bagged), the Naive Bayes used a Gaussian distribution and the SVM uses
a one-vs-one approach. These classifiers were chosen as they are the most widely
used in machine learning with good results. Moreover, due to their wide use, they
are already well known [12].

The KNN is well known and is used as a method with no prior assumptions about
how data are distributed [38—40]. When a data point is given, KNN searches the
training dataset for its K-nearest samples closest to the data point using Euclidian
distance, given by Eq. 3, between a point A(ay,42,...,a,) and B(b1,by,...,by,). For
an optimal response to this technique, tests were performed on the K value ranging
from 1 to 4. The best results were achieved with K=1, with this being the value used
to classify the TMD.

d(A,B) = (Z (Ai — Bi)2> (3)
i=1

Random Forest is an algorithm that uses a combination of individual tree predic-
tors [23, 41]. To choose the best number of trees, the data were processed with the
number of trees ranging from 60 to 1000. The best results were found with the num-
ber of trees equal to 120.

The support vector machine tries to classify data by the use of a separating hyper-
plane [42, 43]. SVM can use three types of kernels to classify the data, namely the
linear, Gaussian or polynomial kernel. The data were classified using the three types
of kernels. The best results were achieved with the polynomial kernel.

The Naive Bayes classifier is based on the Bayes theorem, which assumes inde-
pendence from the predictors. In order to perform classification, the Naive Bayes
classifier can be used with Gaussian, multinomial or kernel (normal) predictors.
Tests were performed with predictors, and the kernel (normal) predictor showed the
best results.

After the creation of the model, a predictor for each classifier was applied to deter-
mine the probability that an individual would be in class AG, MG or CG and validate
the model.
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Statistical analysis

To evaluate the result of the classifiers, the scores calculated were sensitivity, specific-
ity, precision and accuracy. Sensitivity is a measure of how many positives were cor-
rectly classified as positives (Eq. 4). Specificity is a measure of how many negatives were
correctly classified (Eq. 5). Precision is the frequency of when a positive condition is
correctly classified (Eq. 6). Accuracy is based on frequency, which generally states the
classifier is correct (Eq. 7):

TP
Sensitivity = ——©
ensitivity TP + EN (4)
TN
Specificity = ———,
pecificity IN + EP (5)
TP
Precision = ——, (6)
TP + FP
TP + TN
Accuracy = 7)

TP + TN + FP + EN’

where TP is the number of true positives, FN is the number of false negatives, TN is the
number of true negatives, and FP is the number of false positives. On a multiclass confu-
sion matrix, the values of TP, FP, FN, TN are given by:

TP; = cjj, (®)
n
FP; =Y c;— TP, ©)
=1
n
EN; = cy— TP, (10)
=1
n n
TNiZZZCIk—TPi—FPi—FM, (11)
=1 k=1

where ¢;; is the position of the element i on the matrix.

After the application of the four methods, a subsequent matrix with the resulting
scores of each validation subsample was created. Each score possessed 1000 values, cal-
culated from each validation subsample. In terms of validating the results for the classi-
fiers, the average and standard deviation were calculated from each score.

Abbreviations

TMD: Temporomandibular disorder; TMJ: Temporomandibular joint; DC: Diagnostic criteria; CT: Computed tomography;
MRI: Magnetic resonance imaging; KNN: K-nearest neighbor; SVM: Support vector machine; NB: Naive Bayes; RF: Random
forest; CG: Control group; MG: Myopathic disorder group; AG: Arthropathic disorder group; OC: Free opening/closing of
mouth; LL: Lateral movement to the left side; LR: Lateral movement to the right side; P: Protrusion movement (P); OCD:
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Deviation of the opening; LD: Deviation of the closing; PD: Deviation of the protrusion of the mouth; TP: True positive;
FN: False negative; TN: True negative; FP: False positive; STD: Standard variation; EMG: Electromyography; sEMG: Surface
electromyography.
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