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Introduction
Diabetes mellitus (DM), commonly referred to as diabetes, is a growing disease in the 
world. According to the World Health Organization (WHO) statistics, it is predicted 
that the number of people having DM will reach 439 million by 2030. One of the main 
complications of DM is diabetic retinopathy (DR) which is one of the most serious dis-
eases of the eye and one of the main causes of blindness in the world. Hence, accurate 
and early diagnosis of this disease can prevent the development of blindness. Detec-
tion of DR is done by examination of fundus and optical coherence tomography (OCT) 
images [1, 2].

Microaneurysms (MA) is usually the first symptom of DR that causes blood leakage 
to the retina. This lesion usually appears as small red circular spots with a diameter of 
fewer than 125 micrometers [3]. Therefore, periodic screening and detection of MA 
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will result in early detection of DR and reduction of eye injuries. However, screening 
and timely re-screening of DR is time-consuming and very costly [4]. As a result, many 
research has been conducted on analytical techniques and the automatic identification 
of MA. Although, OCT has become a powerful imaging modality for diagnosis of vari-
ous DR abnormalities, most of the CAD systems for early MAs detection use fundus 
images of the patient. In this study, we also use fundus images due to lack of available 
OCT dataset for detecting MAs.

Artificial neural networks and deep learning, conceptually and structurally inspired by 
neural systems, rapidly become an interesting and promising methodology for research-
ers in various fields including medical imaging analysis. Deep learning means learning 
of the representations of data with multiple levels of abstraction used for computational 
models that are composed of multiple processing layers. These methods rapidly become 
an interesting and promising methodology for researcher and are gaining acceptance for 
numerous practical applications in engineering [5]. Deep learning has performed espe-
cially well as classifiers for image-processing applications and as function estimators for 
both linear and non-linear applications. Deep learning recognizes complicated structure 
in big datasets by utilizing the back propagation algorithm to indicate how the internal 
parameters of a NN should be changed to compute the representation in each layer from 
the representation in the previous layer [6].

In particular, convolutional neural networks (CNNs) automatically learn mid-level 
and high-level abstractions obtained from raw data (e.g., images), and so have been con-
sidered as powerful tools for a broad range of computer vision tasks [6]. Recent results 
indicate that the generic descriptors extracted from CNNs are extremely effective in 
object recognition and localization in natural images [6]. Also, Medical image analysis is 
quickly entering the field and applying CNNs and other deep-learning methodologies to 
a wide variety of applications [5, 6].

Problems such as poor image quality, differences in the size of MAs, the closeness of 
some MAs to the vessels, and the low number of pixels belonging to MAs, which them-
selves generate an imbalanced data in the learning process, have caused many MA-
detection algorithms to provide low accuracy results. Consequently, MA-detection is 
still among the open issues. In this study, we propose to take advantage of deep learning 
especially convolutional neural networks to tackle with the above challenges by increas-
ing the accuracy of MA-detection and addressing imbalanced data in fundus images.

Related work

There are multiple approaches developed by the research community in the area of auto-
mated MA-detection CAD system. In these techniques, firstly, the quality of the image 
is improved by pre-processing the input image. This pre-processing step includes con-
trast enhancement [7, 8], shade correction [9], noise elimination [7], and in some cases, 
removal of anatomical components such as the bright lesion and vessels [10]. Then the 
identification of MAs is done on the resulting image. Various methods are used for 
this purpose including mathematical morphology techniques, template matching tech-
niques, pixel classification methods, and hybrid methods. Early techniques for MA iden-
tification are generally based on the use of mathematical morphology on fluorescein 
angiography images [3, 11–13]. In these papers, vessel removal is done by employing 
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directional structural elements in various directions and then using the top-hat trans-
form. The hit-or-miss transform is also another approach in this category which is used 
in [14]. The second category of techniques for finding MA candidates is template match-
ing using different filters such as Gaussian filter [10, 15–17] and a double-ring filter [18]. 
In these methods, Gaussian kernel size is chosen empirically and hence, changing the 
size of MAs can reduce the performance of these algorithms. Thresholding [19–21], the 
feature extraction based on Hessian matrix property [22], the extended minima trans-
form [23, 24], and the wavelet transforms [25] are methods that are in the third category 
of MA identification techniques, pixel classification based methods. In these methods, 
linear discriminant analysis(LDA), k-nearest neighbors algorithm(KNN) [8, 15, 17], 
artificial neural network [14, 21], Navie Bayse [23] are different classifiers which are 
employed. Also, in some articles, unsupervised learning methods such as mixture model 
(MM) clustering are used. Despite the fact that there is no need for training data, these 
methods cannot compete with the supervisor’s learning methods [7, 9, 16, 19, 20, 26]. 
Furthermore, examples of hybrid techniques, as the fourth category of MA identification 
methods, have been reported in [12, 15, 16].

A various method has been proposed by using deep neural networks. A stacked sparse 
auto-encoder (SSAE) an instance of a deep-learning method is proposed by Shan et al. 
[27]. This method can be built by incorporating multiple layers of sparse auto-encoder. 
The SSAE learns high-level features of MA. The high-level features learned by SSAE 
are fed into a softmax classifier to distinguish between MA or non-MA image patches. 
Budak et al. [28] presented a three stages includes pre-processing, five-stepped proce-
dure to detect potential MA locations and deep convolutional neural network (DCNN) 
with reinforcement sample learning strategy to classify MA and non-MA. Later, Chudzik 
et  al. [29] used a patch-based fully CNN which provided a novel network fine-tuning 
scheme called Interleaved Freezing. They claimed that the re-train time is reduced. 
The method by Cirecsan et  al. [30] for mitosis detection on histopathology images is 
also similar to ours. It uses candidate detection as well, using a simplified version of the 
boosting strategy is a two-step approach in which misclassified samples of an initial 
model are used as the training set of a second independent learner.

Recently, researchers are studying to define more robust reference standards that can 
be used to quantify performance. They use a 3D imaging technology, optical coherence 
tomography (OCT), to examine various layers of a retina in detail. ElTanboly et al. [31] 
proposed a CAD system for detecting DR in OCT images. In the first stage they local-
ize and segment the retinal layers by Markov-Gibbs random field (MGRF) model and 
then extract features from segmented layers. Finally they used deep fusion classification 
network (DFCN) to classify normal or diabetic regions. Sandhu et  al. [2] presented a 
novel CAD system that segments the retina into 12 layers and then some global features 
such as curvature, reflectivity, and thickness measured. Finally, a two-stage, deep net-
work is used to classify normal and abnormal areas. Although, OCT has become a pow-
erful imaging modality for diagnosis of various DR abnormalities. However, most of the 
CAD systems for early microaneurysms detection use fundus images of the patient. In 
the future, using these two complementary methods can be used together also to detect 
MAs with more precision.
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Contribution

In this paper a new method for MA-detection in fundus images based on deep-learning 
neural networks is developed to overcome the problems of the current automatic detec-
tion algorithms. Also, only few papers directly address issues specific to object detec-
tion like class imbalance/hard-negative mining or efficient pixel/voxel-wise processing 
of images. We expect that more emphasis will be given to those areas in the near future, 
for example in the application of multi-stream networks in a fully convolutional fashion 
[32, 33].

Deep-learning algorithms and in particular, convolutional networks, have rapidly 
become a methodology of choice for analyzing medical images [13]. Deep learning is an 
improvement of artificial neural networks with more layers which permits higher levels 
of abstraction and improved predictions from data [19]. In medical imaging, the accu-
rate diagnosis of a disease depends on both image acquisition and image interpretation. 
Thanks to the emerging of modern devices acquiring images very fast and with high res-
olution, image acquisition has improved substantially over recent years. The image inter-
pretation process, however, has just recently begun to benefit from machine learning.

In our proposed method, by using the characteristics of convolutional neural net-
works, the MA candidates are selected from the informative part of the image in which 
the structure is similar to an MA and then a CNN will detect the MA and the non-MA 
spots. Therefore, our method addresses the imbalanced dataset which is common prob-
lem in medical image analysis by using a two-stage training strategy. According to our 
results, the proposed method can decrease the false-positive rate and can be considered 
as a powerful solution for automatic MA-detection.

Methods
A schematic representation of our method is depicted in Fig.  1. To address the usual 
problems of previous works, mentioned in introduction (poor quality of images, the 
fixed scale of Gaussian kernel, MAs located close to blood vessels and imbalanced 

Fig. 1  Five steps of the development process of the proposed method. The illustrated fundus images is from 
E-Ophtha-MA dataset
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dataset), we proposed a two-stage training strategy. First, the pre-processing step is 
applied then normal samples are selected from a probability map which is the output 
of the first CNN, called basic CNN. The final CNN classify each pixel in the test images 
as MA or non-MA. This CNN gets the probability map from the previous stage as the 
selected samples for the input test images, and result in a final smoothed probability 
map for each test image showing the probability of being a pixel MA or non-MA. Finally 
the architectures of CNNs is described.

We have proposed to use two-stage classifiers for MA-detection because of two rea-
sons. First, it is desired to very remove basic false positives using a low cost neural net-
work e.g., basic CNN. And then, use a more complicated/expensive network to classify 
the remaining pixels. Therefore, it can be computationally very useful. The other reason 
is that when the classification task would be split into two stages, the second network 
becomes more expert in handling more difficult examples. Please note that the alterna-
tive approach is training of a single network that should handle very hard false-posi-
tive cases as well as an enormous number of simple common false-positive cases. This 
approach is also possible but it is more challenging, it may require online hard example 
mining, and it is harder to converge. Above all, a significant imbalance in the number of 
positive and negative samples adds to the complications.

Pre‑processing step

Because the retinal images are usually non-uniformly illuminated, a pre-processing step 
is needed to apply color normalization and eliminate retina background. This procedure 
was accomplished by estimating the background image and subtracting that from the 
original image. The background image was obtained by median filtering the original 
image with a 30× 30 pixel kernel.

Afterwards, input patches with the size of 101× 101 were produced from all part of 
image for training of the basic CNN. This patch size is chosen after examining different 
sizes ranging [25, 50, 64, 256]. These patches are labeled based on the label of their cen-
tral pixel from ground truth dataset. Those with a MA pixel at the center are considered 
as MA samples and those with non-MA pixel are considered as non-MA samples for 
training.

Candidate selection by basic CNN

The MA patch is assigned to all windows whose labels are determined by the label of 
their central pixel; all remaining windows are considered as non-MA class. The result 
of the “preparing patch” stage contains roughly 29,000 MA instances and 2,58,000 non-
MA instances (i.e., approximately 9 times). This issue is called imbalanced data problem 
which needs special attention. Note that, the largest areas of retinal images are non-ves-
sel and MA structures which are simple to detect; Only a tiny fraction of non-MA sam-
ples are hard to classify. Therefore, to detect this tiny fraction of samples we designed 
a basic CNN. At the first stage of training the basic CNN, an equal number of MA and 
non-MA patches are selected to train the network to remedy the imbalanced data prob-
lem. Because the basic CNN has been trained on a limited fraction of non-MA instances, 
it tends to classify challenging non-MA instances as MA and will cause a high false-
positive rate. Therefore, this output can help to choose challenging patches. The basic 
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CNN output is a probability map specifying the probability of each input pixel belonged 
to MA. Consequently, we can take advantages of this result to build the balanced input 
dataset for the final CNN by choosing pixels with the probability greater than 0.6. In fact 
we built a detector in order to choose informative samples among all non-MAs.

Figure  2 shows the architecture of basic CNN. The training procedure in CNN is a 
sequential process that requires multiple iterations to optimize the parameters and 
extract distinguishing characteristics from images. In each iteration, a subset of samples 
are chosen randomly and applied to optimize the parameters. This is obtained by back 
propagation (BP) and minimizing cost function [6].

Classification by final CNN

The final CNN works as the main classifier to extract the MA candidate regions. This 
CNN has more layers, and therefore more abstract levels than the basic CNN which lead 
to a discriminative MA modeling. Unlike the basic CNN which used a random sample 
from the input dataset pool, the final CNN apply the probability map from the previous 
stage as the selected samples for the input images. The input samples were obtained by 
thresholding (T=0.6 which obtained through trial and error) the probability map gen-
erated by the first network. This threshold was selected to yield a very high sensitivity 
and therefore results in many false positives. New patches centered on the pixels of the 
thresholded probability map were provided as input to the second network for training 
(Fig. 1).

By using a probability map, we reduced the number of non-MA patches used in train-
ing from one million to 258 thousands. Therefore, as the number of patches is reduced 
to a quarter, the network training time also decreases equally. If the whole images were 
used in the training stage, most of the training effort would have been wasted and if a 
uniform sampling were used, although it could have reduced the number of patches, the 
selected patches would not have been informative samples. So, in our proposed method, 
we wisely decrease the number of resources required for running the network. In order 

Fig. 2  The architecture of basic CNN applied in this project
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to do that, we built a concise training dataset by using the probability map to select 
which patches to feed to the final CNN. For each test image, the output of this CNN is 
a map which shows the MA-probability of each pixel. However, this map is noisy and a 
post-processing step is needed.

Post‑processing

In practice, the probability map obtained from the final CNN was extremely noisy. For 
example when there was two close candidates, they were merged and considered as one. 
Therefore, to obtain a smoothed probability map, it is convolved with a 5-pixel-radius 
disk kernel. The local maximum of the new map were expected to lie at the disk centers 
in the noisy map, i.e., at the centroids of each MA to obtain a set of candidates for each 
image.

The architectures of CNNs

Convolutional neural networks (CNNs) is one of the successful type of models for pat-
tern recognition and classification in image analysis. CNN consists of a set of layers 
called convolutional layers that contains one or more planes as a feature map. Each unit 
in a plane receives input from a small neighborhood in the planes of the previous layer. 
Each plane has a fixed feature detector that is convolved with a local window which is 
scanned over the planes in the previous layer to detect increasingly more relevant image 
features, for example lines or circles that may represent straight edges or circles, and 
then higher order features like local and global shape and texture. To detect multiple fea-
tures, multiple planes are usually used in each layer. The output of the CNN is typically 
one or more probabilities or class labels [5].

Figure 2 shows one of the architecture of CNN structured we used in MA-detection. 
As can be seen, the network is designed as a series of stages. The first three stages are 
composed of convolutional layers (blue) and pooling layers (green) and the output 
layer (brown) is consist of three fully-connected layers and the last layer is the softmax 
function.

In this work, two different structures are used for the basic and final CNNs. As can 
be seen from Fig. 2, the basic CNN includes three convolution layers, each of them fol-
lowed by a pooling layer, then three fully-connected layers and finally a Softmax layer in 
the output layer. The final CNN has more layers than the basic CNN. The corresponding 
layer number of final CNN is five convolution and pooling layers, then two fully-con-
nected and one Softmax classification layer which is fully connected with two neurons 
for MA and non-MA, see Tables 1 and 2.

In this work, to increase the accuracy, a dropout training with a maxout activation 
function is used. Dropout means to reduce over-fitting by randomly omitting the output 
of each hidden neuron with a probability of 0.25.

Training process is similar to standard neural network using stochastic gradient 
descent. We have incorporated dropout training algorithm for three convolutional layers 
and one fully-connected hidden layer. 16 filter sizes 7× 7 in the first convolution layer, 
16 filter size 5× 5 in the second layer, and 16 filter size 3× 3 is applied in the third con-
volution layer, and then maxout activation function is used for all layers in the network 
except for the softmax layer. The filter size in Max pool layer is 2× 2 with stride 2. After 
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each pair convolution and pooling layers, an activation LeakyReLU layer is applied that 
improved the version of ReLU (rectify linear unit) [34]. In this version, unlike the ReLU 
in which negative values become zero and so neurons become deactivated, these values 
in the Leaky ReLU will not be zero, instead, the value of a is added to the Eq. 1.

where a is a small constant value (0.01) and x is the output of the previous layer. The final 
layers of the network consist of a fully-connected layer and a final Softmax classifica-
tion layer. This function produces a score ranging between 0 and 1, indicating the prob-
ability of pixel belongs to the MA class. To train the network, loss function of a binary 
cross entropy is used, note that for a two class system output t2 = 1− t1 . Cross entropy 
calculate the difference between predicted values (p) and targets (t), using the following 
equation:

(1)f (x) =

{

x x ≥ 0
ax otherwise

(2)L = −t log(p)− (1− t) log(1− p)

Table 1  Architectures of final CNN with different input patch-sizes based on trial and error

Berr,(p) is the probability of Bernoulli distribution

Layer Operation Input size Detail Berr, (p)

Layer 1 Input 3× 101× 101 – –

Layer 2 Convolutional 16× 101× 101 7× 7 –

Layer 3 Max pooling 16× 50× 50 2× 2 0.25

Layer 4 Convolutional 16× 48× 48 5× 5 –

Layer 5 Max pooling 16× 24× 24 2× 2 –

Layer 6 Convolutional 16× 22× 22 3× 3 –

Layer 7 Max pooling 16× 11× 11 2× 2 0.25

Layer 8 Convolutional 16× 10× 10 2× 2 –

Layer 9 Max pooling 16× 5× 5 2× 2 –

Layer 10 Convolutional 16× 4× 4 2× 2 –

Layer 11 Max pooling 16× 2× 2 2× 2 –

Layer 12 Fully connected 100 1× 1 –

Layer 13 Fully connected 2 1× 1 –

Table 2  Architectures of basic CNN

Layer Operation Input size Detail Berr, 
(p)

Layer 1 Input 3× 101× 101 – –

Layer 2 Convolutional 16× 96× 96 7× 7 –

Layer 3 Max pooling 16× 48× 48 2× 2 0.25

Layer 4 Convolutional 16× 44× 44 5× 5 –

Layer 5 Max pooling 16× 22× 22 2× 2 0.25

Layer 6 Convolutional 16× 20× 20 3× 3 –

Layer 7 Max pooling 16× 10× 10 2× 2 0.25

Layer 8 Fully connected 200 1× 1 –

Layer 9 Fully connected 100 1× 1 –

Layer 10 Fully connected 2 1× 1 –
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Results
To verify our proposed method, we implement the CNNs using deep-learning Keras 
libraries based on Linux Mint operating system with 32G RAM, Intel (R) Core (TM) 
i7-6700K CPU and NVIDIA GeForce GTX 1070 graphics card. In this experiment, we 
used two standard publicly available datasets, Retinopathy Online Challenge [35] and 
E-Ophtha-MA [36] databases to train and test the proposed method for the detec-
tion of MA in retinal images. Retinopathy Online Challenge includes 100 color image 
of the retina that obtained from Topcon NW 100, Topcon NW 200 and Canon CR5-
45NM cameras with JPEG format. The image dimensions are 768× 576 , 1058× 1061 
and 1389× 1383 [37]. These images were divided into two parts of 50 subsets of train-
ing and testing. However, only the labels of the training set are available. Because the 
competition website is inactive, which makes it impossible to evaluate our method using 
the testing set. Consequently, we used cross-validation in the training set to evaluate 
the method (similar to [28, 38] and [39]). To validate results, the cross-validation is uti-
lized for each dataset separately. By dividing datasets into partitions, then exchange the 
training and testing sets in successive rounds such that all data have a chance of being 
trained and tested. E-Ophtha-MA database contains 148 color images with microaneu-
rysm and 233 image with no lesion of JPEG format and with the size of 2544 × 1696 and 
1440× 960 . To have a dataset with equal-size images, the smaller images were resized to 
the biggest dimension and many patches are extracted from each image. For our training 
and testing inputs we used about 28786 MA + 258354 Non-MA patches. Moreover, data 
augmentation is used by mirroring and rotating patches.

For accuracy evaluation, we computed true positive (TP) as the number of MA pix-
els correctly detected, false positive (FP) as the number of non-MA pixels which are 
detected wrongly as MA pixels, in other words detected pixels which had no reference 
of MA within a 5-pixel-radius of our disk kernel, false negative (FN) as the number of 
MA pixels that were not detected and true negative (TN) as the number of no MA pixels 
which were correctly identified as non-MA pixels. For better representation of accuracy, 
sensitivity is defined as follow.

In this experiment, to verify the accuracy of the proposed method, we compared our 
sensitivity value with the current works (Dashtbozorg [38], chudzik [29], Budak [28], 
Javidi [40], B Wu [39], Latim [25], OkMedical [10], Waikato group [41], Fujita Lab [18], 
B Wu’s method [39], Valladolid [42]) on Retinopathy Online Challenge dataset in Table 3 
and E-Ophtha-MA dataset in Table 4.

In addition, to assess our result, Retinopathy Online Challenge evaluation algorithm 
[37] is applied and the output of this algorithm is then used to generate a free-response 
receiver operating characteristic curves that plots the sensitivity against the average 
number of false-positive detection per image (Fig. 3). These plots, which are extensively 
used in the literature to estimate the overall performance on this task, represent the 
per lesion sensitivity against the average number of false-positive detections per image 
(FPI) obtained on the dataset for different thresholds applied to the candidate proba-
bilities. Thus, free-response receiver operating characteristic curves provide a graphical 

(3)sensitivity =
TP

TP + FN
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representation of how the model is able to deal with the detection of true lesions in all 
the images of the dataset.

Moreover, Table 5 computed the Competition Performance Measure (CPM) as pro-
posed in the Retinopathy Online Challenge [37] and the partial area under the free-
response receiver operating characteristic curves ( FAUC ) between 1/8 and 8 FPI to 
evaluate our results.

Discussion
From Tables 3 and 4, our proposed method, compared with other methods, has the 
lowest sensitivity (0.047) when the average number of FP per image (FPs/Img) is 1 / 8, 
while this value increased quickly and increased to a maximum of 0.769 at FPs/Img 

Table 3  Sensitivities of  the  different methods in  Retinopathy Online Challenge dataset 
at the various FP/image rates

The quantity given in italic form in each FPs/Img column represents the best result

* Indicate papers which use the full original dataset and others which use the cross-validation technique

Free-response receiver operating characteristic results on Retinopathy Online Challenge dataset 
at average number of False positives per image

FPs/img

Sensitivity

Method 1/8 1/4 1/2 1 2 4 8 Classification method

 Proposed method 0.047 0.173 0.351 0.552 0.613 0.722 0.769 CNN

 Dashtbozorg [38] 0.435 0.443 0.454 0.476 0.481 0.495 0.506 RUSBoost

 Chudzik [29] 0.142 0.201 0.250 0.325 0.365 0.390 0.409 CNN

 Budak [28] 0.039 0.061 0.121 0.220 0.338 0.372 0.394 DCNN

 Javidi [40] 0.130 0.147 0.209 0.287 0.319 0.353 0.383 Discriminative dictionary learning

 Wu’s [39] 0.037 0.056 0.103 0.206 0.295 0.339 0.376 KNN

 Valladolid [42]* 0.190 0.216 0.254 0.300 0.364 0.411 0.519 GMM

 Waikato group [41]* 0.055 0.111 0.184 0.213 0.251 0.300 0.329 Bayesian

 Latim [25]* 0.166 0.230 0.318 0.385 0.434 0.534 0.598 Thresholding

 OkMedical [10]* 0.198 0.265 0.315 0.356 0.394 0.466 0.501 Dynamic thresholding

 Fujita Lab [43]* 0.181 0.224 0.259 0.289 0.347 0.402 0.466 ANN

Table 4  Sensitivities of the different methods in E-Ophtha-MA dataset at the various FP/
image rates

The quantity given in italic form in each FPs/Img column represents the best result

Free-response receiver operating characteristic results on E-Ophtha-MA dataset at average number 
of False positives per image

Method

Sensitivity 

FPs/Img 1/8 1/4 1/2 1 2 4 8 Classification 
method

 Proposed method 0.091 0.258 0.401 0.534 0.579 0.667 0.771 CNN

 Dashtbozorg [38] 0.358 0.417 0.471 0.522 0.558 0.605 0.638 RUSBoost

 Chudzika [29] 0.151 0.264 0.376 0.468 0.542 0.595 0.621 CNN

 Wu’s [39] 0.063 0.117 0.172 0.245 0.323 0.417 0.573 KNN
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equals 8. Dashtbozorg extracted several preliminary MAs candidates by using a gradi-
ent weighting technique and an iterative thresholding approach at the first stage. In 
the next, intensity, shape descriptors and a new set of features based on local conver-
gence index filters is extracted for each candidate. Finally, for the discrimination of 
the MAs and non-MAs candidates, the collective set of features is trained a hybrid 
sampling/boosting classifier. While the sensitivity of this method appeared to be 
high at FPs/Img < 1 , our results are by far higher at FPs/Img > 1 . Chudzik proposed 
a fully convolutional neural network for detection of microaneurysms including 

Fig. 3  The comparison of free-response receiver operating characteristic curves of the proposed and 
previous method for a Retinopathy Online Challenge dataset and b E-Ophtha-MA dataset
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pre-processing and pixel-wise classification and also a fine-tuning procedure called 
Interleaved Freezing that reduces the amount of time needed to re-train a network. 
Our sensitivity is higher than this method except at FPs/Img = 1/4, 1/8 . Budak used 
reinforcement sample learning method to train deep convolutional neural network 
(DCNN). Javidi provided two separate dictionaries, for vessel and non-vessel, which 
are learned to reconstruct and discriminate information of the retinal image. The 
proposed method of B Wu’s includes pre-processing, candidate extraction, feature 
extraction, and KNN classifier. Totally the results of these methods are by far lower 
than proposed method.

The following methods used original test dataset while above mentioned methods 
used cross-validation technique due to unavailability of the original dataset. Vallado-
lid assumes all pixels in the image are part of one of three classes: class 1 (background 
elements), class 2 (foreground elements, such as vessels, optic disk, and lesions), and 
class 3 (outliers). A three class Gaussian mixture model is fit to the image intensities 
and a group of MA candidates are segmented by thresholding the fitted model. The 
sensitivity of this method is 0.190 at FPs/Img = 1/8 and gradually increase to 0.519 
at FPs/Img = 8 . The Waikato group Microaneurysm Detector performs a top-hat 
transform by morphological reconstruction using an elongated structuring element 
at different orientations which detects the vasculature. After removal of the vascula-
ture and a microaneurysm matched filtering step the candidate positions are found 
using thresholding. In comparison with other methods, Waikato group has the low-
est sensitivity ranging from 0.055 to 0.329. Latim assumes that microaneurysms at a 
particular scale can be modeled with 2-D, rotation-symmetric generalized Gaussian 
functions. It then uses template matching in the wavelet domain to find the MA can-
didates. Latim method can be considered to have the second high sensitivity value 

Table 5  Final score (CPM)

The quantities given in italic form for “Retinopathy Online Challenge dataset” and “E-Ophtha-MA dataset” represent the best 
results

Competetion measure (CPM) of Retinopathy Online Challenge at different points

Dataset Method CPM FAUC

Retinopathy Online Challenge Proposed method 0.461 0.660

Dashtbozorg [44] 0.471 0.484

Chudzik [9] 0.298 –

Budak [9] 0.221 –

Javidi [9] 0.261 –

B Wu’s [39] 0.202 0.302

Valladolid [42] 0.322 –

Waikato group [41] 0.206 0.273

Latim [25] 0.381 0.489

OkMedical [10] 0.357 0.430

Fujita Lab [18] 0.310 0.378

E-Optha-MA Proposed method 0.471 0.637

Dashtbozorg [44] 0.510 0.575

Chudzik [9] 0.431 –

Budak [9] 0.431 –

B Wu’s [39] 0.431 0.386
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after our proposed method. The sensitivity of this method is 0.166 at FPs/Img = 1/8 
and 0.598 at FPs/Img = 8 . OkMedical responses from a Gaussian filter-bank are used 
to construct probabilistic models of an object and its surroundings. By matching the 
filter-bank outputs in a new image with the constructed (trained) models a corre-
lation measure is obtained. In Fujita lab work, a double-ring filter was designed to 
detect areas in the image in which the average pixel value is lower than the average 
pixel value in the area surrounding it. Instead, the modified filter detects areas where 
the average pixel value in the surrounding area is lower by a certain fraction of the 
number of pixels under the filter in order to reduce false-positive detections on small 
capillaries. The sensitivity of OkMedical and Fujita ranged from 0.181 to 0.501. Nota-
bly, the proposed value which used in a clinical purpose is 1.08 and it provides an 
indication of “clinically acceptable” FPs/Img, therefore, the system can achieve higher 
performance for use in a clinical environment [37]. According to this statement our 
method surpasses other methods at 1.08 point on both Retinopathy Online Challenge 
and E-Optha-MA datasets by 0.584 and 0.553 respectively.

Figure  3 confirm our results on Tables  3 and 4. This figure shows the free-response 
receiver operating characteristic , and compare the sensitivity of the proposed method 
and other methods from [10, 25, 28, 29, 38–43] on Retinopathy Online Challenge and 
E-Ophtha-MA databases.

From Fig. 3a we can see that the sensitivity of the proposed method on Retinopathy 
Online Challenge dataset is about 0.2 higher that other methods. It is about 0.6 for the 
FP greater than 1 and reached the maximum of 0.8, while this number for other meth-
ods doesn’t exceed 0.6. The result from Table 3 shows that the sensitivity of proposed 
method on E-Ophtha-MA dataset increased after FPs/Img > 1 . In addition, Table 5 com-
pares the CPM value and FAUC of the proposed method with the state of the art for both 
Retinopathy Online Challenge and E-Ophtha-MA datasets. CPM values are 0.461 and 
0.471 for Retinopathy Online Challenge and E-Ophtha-MA dataset respectively which 
is raked in the second place after Dashtbozorg’s scores among state of the art methods. 
Our results on the images of Retinopathy Online Challenge and E-ophtha-MA dataset 
achieves FAUC of 0.660 and 0.637 which are significantly higher than the values reported 
by Dashtbozorg [44].

Conclusion
In this paper, an approach for automatic MA detection in retinal images based on deep-
learning CNN is developed to address the previous works problems such as imbalanced 
dataset and inaccurate MA-detection. In this method, because of using a two-stage 
CNN, the MAs candidate for classification process are selected from a balanced data-
set and informative part of the image where their structure is similar to MA, and this 
results in decreasing training time. According to our experimental results based on two 
standard publicly available dataset, the proposed method is about 0.3 higher than other 
methods. It has a promising sensitivity value of about 0.8 at the average number of false 
positive per image greater than 6 and can decrease false-positive rate compared to previ-
ous methods; it ,therefore, can be considered as a powerful improvement for previous 
MA-detection based on retinal images approach (Fig. 4).
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In the proposed method, employing network architecture and network parameters 
have been developed manually by trial and error, which is a time-consuming and error-
prone process. Because of this, nowadays, some autoML methods such as hyper-param-
eters optimization and neural architecture search (NAS) [45] have been proposed to 
tackle this problem. These methods can dramatically speed up, improve the design of 
machine learning pipelines, and tune hyperparameters in a data-driven way. We plan to 
use the autoML method in our future works. Moreover, we plan to apply this method on 
other medical application where imbalance data are an issue.
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