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Background
The standard 10-s 12-lead electrocardiogram (ECG) is a diagnostic cornerstone of medi-
cine. Serial electrocardiography is defined as the comparison of a newly made ECG 
with a previously made one, to look for possible changes. These changes are either used 
to detect new pathology or to verify the efficacy of a specific therapy or intervention. 

Abstract 

Background:  Serial electrocardiography aims to contribute to electrocardiogram 
(ECG) diagnosis by comparing the ECG under consideration with a previously made 
ECG in the same individual. Here, we present a novel algorithm to construct dedicated 
deep-learning neural networks (NNs) that are specialized in detecting newly emerging 
or aggravating existing cardiac pathology in serial ECGs.

Methods:  We developed a novel deep-learning method for serial ECG analysis and 
tested its performance in detection of heart failure in post-infarction patients, and in 
the detection of ischemia in patients who underwent elective percutaneous coronary 
intervention. Core of the method is the repeated structuring and learning procedure 
that, when fed with 13 serial ECG difference features (intra-individual differences in: 
QRS duration; QT interval; QRS maximum; T-wave maximum; QRS integral; T-wave 
integral; QRS complexity; T-wave complexity; ventricular gradient; QRS-T spatial angle; 
heart rate; J-point amplitude; and T-wave symmetry), dynamically creates a NN of at 
most three hidden layers. An optimization process reduces the possibility of obtaining 
an inefficient NN due to adverse initialization.

Results:  Application of our method to the two clinical ECG databases yielded 3-layer 
NN architectures, both showing high testing performances (areas under the receiver 
operating curves were 84% and 83%, respectively).

Conclusions:  Our method was successful in two different clinical serial ECG applica-
tions. Further studies will investigate if other problem-specific NNs can successfully be 
constructed, and even if it will be possible to construct a universal NN to detect any 
pathologic ECG change.
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Serial ECG comparison is common clinical practice; usually, clinicians do this by visual 
assessment of the differences between two ECGs. Time distance between the two ECGs 
depends on their availability. Sometimes, serial ECGs are made in the setting of certain 
protocols (clinical research or check-up), other without any specific objective to per-
form a serial electrocardiographic analysis. An example of two serial ECGs is depicted 
in Fig. 1, that represents two standard 10-s 12-lead ECGs of a patient, made at baseline 
(panel a) and during follow-up (panel b). The two ECGs show impressive differences that 
clearly highlight the aggravation of the patient’s clinical condition (additional details on 
this case are provided in the "Results" section of this paper). Although visual comparison 
of two ECGs is normally performed by cardiologists in order to evaluate the aggrava-
tion of a cardiac pathology, studies reporting systematic application of approaches spe-
cifically developed for serial ECG analysis are still quite sporadic. To our knowledge, 
systematic serial ECG analysis has been previously applied to reveal pulmonary valve 
dysfunction in Fallot patients [1, 2] and to support the diagnosis of patients with sus-
pected acute coronary syndrome [3].

As described before, serial electrocardiography aims at demonstrating a change in the 
clinical cardiac status of the patient. However, besides a clinical change, intra-subject 
ECG differences may also have a physiological or technical origin. Indeed, the ECG of 
a person changes with blood pressure, mental stress, body position, respiration rate, 
age and weight; additionally, irreproducible electrode positioning, specifically of the six 
precordial electrodes, is a major source of ECG variability. Together, ECG changes due 
to both physiological and technical causes constitute the “noise” of serial electrocardi-
ography [4], whereas clinically relevant ECG changes represent the “data of interest”, 
the detection and the interpretation of which are limited by the signal-to-noise ratio, no 
matter whether serial ECG analysis is done by visual inspection or by computer analysis.

Some current commercial programs for automated computerized ECG analysis sup-
port serial electrocardiography interpretation. For example, the Glasgow program [5] 
compares an ECG with the previous ECG of the same patient when present in its data-
base and produces a statement whether relevant changes occurred. Performance of this 
and other algorithms for serial ECG analysis have never been scrutinized. Automated 
serial ECG analysis has not reached the level of sophistication and validated perfor-
mance that the algorithms for automated analysis of single ECG have achieved. Addi-
tionally, current algorithms for serial ECG analysis are rule-based and rigid. Typically 
based on threshold definitions, they consider only changes over threshold of a single 
feature, without considering single feature variations in time or the relative variations 
of several features for the identification of emerging or aggravating cardiac pathology. 
Because at present little can be said about which ECG changes are relevant in a specific 
clinical setting, a more flexible algorithm with learning abilities is needed.

Recently, several studies have demonstrated the potentiality of using machine learn-
ing for the prediction of cardiac pathology [6–10]. Aim of the present work is to pre-
sent a novel approach that merges deep-learning classification methodology with serial 
electrocardiography. One important issue nowadays investigated in deep-learning is the 
design of algorithms for automated neural networks (NNs) construction [11, 12]. Our 
approach generates problem-specific NNs to diagnose newly emerging or aggravating 
cardiac pathology. We validated this approach by establishing its performance in the 
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detection of newly emerging heart failure in post-infarction patients and acute ischemia 
in patients with a sudden short-lasting complete coronary occlusion. In order to confirm 
the superiority of flexible over rigid algorithms with learning ability, we analyzed the 
same populations with standard logistic regression, and compared the results obtained 

a

b

Fig. 1  Two electrocardiograms (ECGs) of a case patient from the heart failure database (HFDB). The first 
ECG was made at baseline (a) and the second during follow-up (b). Both ECGs are standard 10-s 12-lead 
ECGs displayed according to the standard ECG display format. For each panel, the upper three traces show, 
multiplexed, 2.5 s of the four lead groups I/II/III, aVR/aVL/aVF, V1/V2/V3 and V4/V5/V6; instead, the longer trace 
displays continuously lead II, specifically used for rhythm analysis. A selection of measurements made by the 
LEADS program [13] is displayed in the upper part of each ECG page. See text for the clinical context and 
interpretation of these ECGs
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with our specifically-developed NN against those obtained by application of the logistic 
regression.

Methods
Method to construct a deep‑learning neural network for serial electrocardiography

Feature selection

We compared two digital standard 10-s 12-lead resting ECGs of each patient: an ini-
tial baseline ECG (BLECG) and a follow-up ECG (FUECG). Each 12-lead ECG was con-
verted into a vectorcardiogram (VCG), a coherently averaged beat was computed, after 
which 13 VCG features were computed that together represent the major cardiac electri-
cal properties: QRS duration, QT interval, QRS maximum amplitude, T-wave maximum 
amplitude, QRS-integral vector magnitude, T-wave integral vector magnitude, QRS 
complexity, T-wave complexity, ventricular gradient vector, QRS-T spatial angle, heart 
rate, J-point vector and T-wave symmetry (computed as the ratio of the area between 
T-wave apex and end to the area between the J point and T-wave end) [13–15].

The VCG features are based on electrophysiological considerations: QRS duration is 
linked to intraventricular conduction; the QT interval is linked to intraventricular con-
duction and action potential duration; the maximum QRS amplitude is linked to ventric-
ular mass; the maximum T-wave amplitude is sensitive to, e.g. ischemia and electrolyte 
abnormalities; the QRS and T-wave integrals are indexes of depolarization and repo-
larization dispersion, respectively; the QRS- and T-wave complexity measure the depo-
larization and repolarization processes complexity, respectively; the ventricular gradient 
measures heterogeneity of the action potential morphology distribution; the QRS-T spa-
tial angle characterizes ECG concordance/discordance; heart rate partly expresses auto-
nomic nervous system activity; and the J-point amplitude and T-wave symmetry also 
alter with ventricular ischemia. Together these VCG features cover that much aspects 
of electrical heart function that is difficult to imagine that electrical heart function could 
change without manifesting itself in a change in one or more of the 13 VCG features. 
Consequently, by subtracting the 13 BLECG VCG features from the corresponding 13 
FUECG VCG features, the 13 difference features listed in Table 1 were obtained.

The difference features were chosen in such a way that, in variables where pseudo-
normalization can occur (ventricular gradient, QRS-T spatial angle, J vector), the abso-
lute value of the difference is considered [16]. All 13 difference features as defined above 
serve as input of our novel deep-learning classification method described below.

Repeated structuring and learning procedure for neural‑network construction

To discriminate patients with altered clinical status from stable patients by serial 
ECG analysis, we developed a new method that automatically constructs NNs with a 
problem-specific architecture. For the purpose of learning and testing, we used ECG 
databases of patients with known clinically stable status, denominated controls, plus 
patients with a known pathological development during follow-up, denominated 
cases. Details about the ECG databases are described later in the "Methods" section. 
Databases were equally randomly divided into learning and testing datasets, contain-
ing data of both controls and cases. The learning datasets were further divided into a 
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training dataset (in this study, 80% of the learning dataset) and a validation dataset (in 
this study, 20% of the learning dataset).

Our deep-learning classification algorithm consists of a supervised NN with 13 
inputs (one for each difference feature) and 1 output. Output values range from 0 to 
1, with 0 representing a control classification and 1 a case classification. Intermedi-
ate values indicate an uncertain classification, to be further processed using a case/
control decision threshold. The NN consists of neurons with weights and biases 
between − 1 and + 1 and sigmoid activation functions. Its architecture is dynamically 
formed using the new repeated structuring and learning procedure (RS&LP), that we 
developed in order to handle this specific type of classification problems and that we 
describe here for the first time. The algorithm starts from an initial configuration of 
one hidden layer with 1 neuron (the minimal number of neurons per layer), which is 
initialized with random weights and bias. The maximal number of hidden layers is 
set at 3, while no maximal number of neurons per layer is set. The NN architecture is 
notated as horizontal vector in which the number of elements represents the number 
of layers, and the numerical value in each element represents the number of neurons 
in the corresponding layer.

Conventionally, for a given NN architecture, the learning algorithm adjusts neu-
ron weights and biases according to the scaled-conjugate-gradients algorithm [17], to 
optimize the training set classification by minimizing a training-error function, com-
puted as the normalized sum of the squared differences between estimated outputs 
and true classification values. Similarly, a validation-error function is computed for 
the validation dataset; it is expected to decrease monotonously during learning. In 
our learning algorithm, both the training-error and validation-error functions contain 
weights to compensate for the disproportion between the number of cases and con-
trols [18]; in our algorithm, we assigned the inverse of the prevalence of the cases and 
controls in the dataset as their weights. The learning phase ends when the validation-
error function starts to increase [19].

Table 1  List of the 13 difference features

These 13 features are obtained from the subtraction of the 13 VCG features computed using the BLECG from the 
corresponding 13 VCG features computed using the FUECG

#Feature Abbreviation Units Description

1 �QRSdur ms QRS-duration difference

2 �QT ms QT-interval difference

3 �|QRSmax| μV Difference in maximal QRS-vector magnitude

4 �|Tmax| μV Difference in maximal T-vector magnitude

5 �|QRSintg| mV·ms QRS-integral vector magnitude difference

6 �|Tintg| mV·ms T-integral vector magnitude difference

7 �QRScmplx % QRS-complexity difference

8 �Tcmplx % T-wave complexity difference

9 |�VG| mV·ms Magnitude of the ventricular-gradient difference vector

10 |�SA| ° Magnitude of the QRS-T spatial-angle difference

11 �HR bpm Heart-rate difference

12 |�J| μV Magnitude of J-vector difference vector

13 �Tsym % T-wave symmetry difference
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This conventional learning algorithm is integrated in our RS&LP, a supervised proce-
dure that we designed to build a NN by alternating phases of structuring with phases 
of learning (Fig. 2). The RS&LP assumes that each new architecture contains the previ-
ous architecture plus one new neuron, and recursively applies the following 3 steps:

•	 Step1: determination of all possible new architectures;
•	 Step2: initialization of new neurons and learning of possible new architectures;
•	 Step3: selection of the new NN.

Determination of all possible new architectures

Existing
NN

Identify and count of the acceptable possible NNs

na>0

Perfect 
classification?

Select the best NN

Existing NN = best NN

Possible new 
architecture 1

Possible new 
architecture 2

Possible new 
architecture n

Possible 
NN 1

na (number of
acceptable NN)

NO

Final NN

Final NN = Existing NN

YES

Possible 
NN 2

Possible 
NN n

...

best NN

NO

YES

Repeated Structuring &
Learning Procedure

Initialization
and learning

Initialization
and learning

Initialization
and learning

Fig. 2  Flowchart of the repeated structuring and learning procedure (RS&LP) to construct a neural network 
(NN) for serial ECGs analysis
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After Step3 is concluded, the procedure starts again from Step1; it ends only when a 
stopping criterion (see below) is met.

Step1: Determination of the possible new architectures. In each structuring cycle (see 
Fig. 3), possible new architectures are strategically built by adding one neuron to the existing 

a

b c

d e

Fig. 3  Example of determination of the possible new neural network (NN) architectures that can grow from 
a given NN (a) that emerged in the course of the repeated structuring and learning procedure (RS&LP). 
The new architecture will consist of the currently existing NN plus one additional neuron. The first attempt 
to create a new architecture consists of adding the extra neuron to the first hidden layer, this architecture 
is possible (b). The second attempt consists of adding an extra neuron to the second hidden layer, this 
architecture is not permitted because it would give the second hidden layer more neurons than the 
first hidden layer (c). The third attempt consists of adding the extra neuron to the third hidden layer, this 
architecture is possible (d). The fourth attempt consists of creating a new hidden layer with the extra neuron, 
this architecture is not permitted because the number of layers is limited to three (e). Hence, out of four 
attempts, two are successful (b, d) and will be evaluated in the next learning step
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NN. This can be done either by adding the neuron to an existing hidden layer or by creating 
an additional hidden layer consisting of the new neuron with the following constraints:

•	 The maximal number of hidden layers is three;
•	 The number of neurons in a given hidden layer may not be larger than the number of 

neurons in the previous hidden layer.

Step2: Initialization of new neurons and learning of possible new architectures. All 
possible new architectures keep the weights and biases of the neurons of the existing 
NN; only the new neuron is initialized with random weights and bias. A possible new 
architecture is acceptable only if new neurons increase training performance (decrease 
training error) after one iteration. If not, it undergoes a new neuron initialization or is 
rejected after 500 initializations. All accepted possible new architectures undergo the 
conventional learning process, at the end of which their validation error is either larger 
than the validation error of the existing NN (failure) or smaller/equal (success). In case 
of failure, the possible new NN is either re-initialized (at most 10 times) or rejected. 
Might all possible new architectures be rejected, the existing NN is kept as the final one 
and the RS&LP is stopped (first stopping criterion).

Step3: selection of the new NN. In case of success of one or more of the possible new 
NNs generated in step 2, the one with the lowest validation error is upgraded and 
becomes the new existing NN. Once a new existing NN has been selected, the RS&LP 
starts anew or stops if no misclassifications occurred in either the training or the vali-
dation dataset (second stopping criterion). This stopping criterion was incorporated to 
prevent the loss of generalization through overfitting [19].

Neural‑network optimization

If the RS&LP is run two times on the same learning dataset, the resulting NNs will be 
different due to the random neuron initialization. In our implementation, 100 alternative 
NNs are constructed. For each of the 100 alternative NNs, the receiver operating charac-
teristic (ROC) is obtained by varying the case/control decision threshold on the learning 
dataset, and the area under the curve (AUC) is computed. Finally, the NN with the larg-
est learning AUC is selected.

Clinical testing of neural network

We tested our RS&LP by constructing NNs for two different ECGs databases, a heart-
failure database (HFDB) and an ischemia database (IDB).

The HFDB [16, 20] is composed of ECGs of patients who had experienced a myo-
cardial infarction. An ECG, routinely made at least 6 months after the infarction and 
when the patients were clinically stable without any sign of heart failure, was selected as 
BLECG. Patients who remained stable were selected as controls, and a routinely made 
ECG recorded about 1 year after the BLECG was selected as FUECG. Patients who 
developed chronic heart failure were selected as cases; the ECG that was made when 
they presented themselves at the hospital for the first time with this newly arisen pathol-
ogy was selected as FUECG. Overall, the HFDB contains 128 ECG pairs (47 cases and 81 
controls). All ECGs were retrospectively selected from the digital ECG database of the 
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Leiden University Medical Center. The HFDB was randomly equally split into a learning 
dataset (64 ECG pairs; 24 cases and 40 controls) and a testing dataset (65 ECG pairs; 24 
cases and 41 controls). The learning dataset further split into a training dataset (54 ECG 
pairs; 20 cases and 34 controls) and a validation dataset (10 ECG pairs; 4 cases and 6 
controls).

The IDB is composed of ECGs retrospectively selected from the digital ECG database 
of the Leiden University Medical Center (controls) and from the STAFF III ECG data-
base [20–23] (cases). Control patients were outpatients of the cardiology department, 
selected on the availability of two digital ECG recordings made about one year apart 
(BLECG and FUECG, respectively). Cases had stable angina and underwent elective 
coronary angioplasty. In the STAFF III Study, balloon inflations, intended to widen the 
lumen of the stenotic vessel, were intentionally long, thus causing acute ischemia in the 
tissue distal from the occlusion. The BLECG and FUECG were taken immediately before 
and after 3 min of balloon occlusion, respectively. Overall, the IDB contains 482 ECG 
pairs (84 cases and 398 controls). For the purpose of our study, it was randomly equally 
split into a learning dataset (241 ECG pairs; 42 cases and 199 controls) and a testing 
dataset (241 ECG pairs; 42 cases and 199 controls). The learning dataset was further split 
into a training dataset (202 ECG pairs; 35 cases and 167 controls) and a validation data-
set (39 ECG pairs; 7 cases and 32 controls).

All ECGs of both databases were analyzed by the Leiden ECG Analysis and Decom-
position Software [13], that converts a 12-lead ECG into a VCG, computes the coher-
ently averaged beat and determines QRS onset and offset (J point) and T-wave offset. 
Two independent ECG analysts reviewed the automatically-detected ECG landmarks 
and edited these when necessary. Using these landmarks, the 13 difference features were 
computed.

The present retrospective study on both HFDB and IDB is undertaken in compliance 
with the ethical principles of Helsinki Declaration and approved by the Leiden Univer-
sity Medical Center Medical Ethics Committee.

Comparison of neural network with other methods

The NNs computed with the RS&LP ( NNRS&LP ) are computed after a many learning 
steps, alternating with structuring steps. Usually, the standard method to train a NN 
( NNSM ) with a fixed structure is to apply only one single training phase, according with 
the learning algorithm. In order to compare the RS&LP with the fixed-structure NN 
learning method, we trained NNSM that had the same architecture as the final NNRS&LP 
in the conventional way, initializing the parameters of the NNSM and applying the learn-
ing phase only one single time while using the same data division and learning algorithm 
(scaled-conjugate-gradients algorithm [17]).

In the absence of data from literature, in order to confirm superiority of flexible over 
rigid algorithms with learning ability in serial ECG analysis, we compared the perfor-
mance of the final NNRS&LP with that of a standard logistic regression (LR) [18, 19, 24–
26]. LR for case/control classification was constructed using the HFDB and IDB learning 
datasets. Cases and controls were weighted inversely to their prevalence [18]. When fed 
with the 13 difference features, LR computes a discriminating function (an exponential 
combination of the difference features) the value of which represents the classification 
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value ranging from 0 (representing a control patient) to 1 (representing a case patient). 
As for the construction of the NNs, the discriminating function of LR was computed 
with the learning dataset.

Statistics

The ECG and ROC feature distributions were described in terms of 50th [25th;75th] per-
centiles and compared using the Wilcoxon ranksum and DeLong’s tests [27]. NNRS&LP , 
NNSM and LR performances were quantified from the ROC curves of the learning and 
testing datasets in terms of AUC, 95% confidence intervals (CI) and the diagnostic accu-
racies (ACC; computed at the point of equal sensitivity and specificity), computing the 
ROC curves of the testing datasets. Statistical significance was set at 0.05.

Implementation

Programming was done in Matlab R2017a (The MathWorks, Natick, MA, USA). 
The flow-chart of the RS&LP has been represented in Fig.  2, showing the concep-
tual sequence of decisions needed to reach the final NN. Moreover, in order to better 
describe all steps of the procedure, Fig. 4 depicts the pseudocode of its implementation 
(Fig. 4, left column) with associated explanatory comments (Fig. 4, right column).

Results
An example of two serial ECGs of a case patient from the HFDB is given in Fig. 1. The 
BLECG (panel a) of this patient was made six months after acute myocardial infarction. 
It has various pathological aspects, among which a long QRS duration (122 ms) and a 
negative T wave in various leads. Also the QRS-T spatial angle, which is the planar angle 
between the QRS- and T-wave axes, is pathological (144°) [28]. The FUECG (panel b) 
was made when the patient presented at the hospital for the first time with signs of heart 
failure. Also, this ECG is pathological and impressive differences with the BLECG can be 
seen; for example, the QRS width increased to 176 ms.

The quantitative characterization of the difference features distributions of both 
HFDB and IDB is reported in Table 2. The number of difference features that were sta-
tistically different between cases and controls was 9 in the HFDB ( �QRSdur, �|Tmax| , 
�|QRSintg | , �QRScmplx , �Tcmplx , |�VG| , |�SA| , �HR and |�J | ), and 8 in the IDB ( �
QRSdur, �|QRSmax| , �|QRSintg | , �|Tintg | , �QRScmplx , |�SA| , �HR and |�J |).

As an example, Fig. 5 shows the dynamic construction of one alternative NN (not 
the final one) for the IDB by the RS&LP, from the initial architecture ([1]) to the final 
one ([19 9 9]).

The NNRS&LP characteristics for the two databases obtained by our deep-learning 
method are reported in Table  3. Both NNRS&LP efficiently discriminated patients 
with altered clinical status ( AUC ≥ 83% ; ACC ≥ 75% ). The number of layers in the 
NNRS&LP architectures was 3; the total number of neurons for the HFDB was 41, 
larger than the total number of neurons for the IDB, which was 21. Additionally, 
regarding the HFDB and the IDB the AUCs (84% and 83%, respectively) and the ACCs 
(75% and 76%, respectively) were comparable.

Table  3 also shows the NNSM and LR results. NNSM performance ( AUC ≥ 73% ; 
ACC ≥ 67% ) and LR performance ( AUC ≥ 61% ; ACC ≥ 54% ) was inferior to 
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NNRS&LP performance for both databases. This finding is visualized in Fig.  6, where 
ROCs regarding NNRS&LP were generally above ROCs regarding NNSM and LR. Supe-
riority of NN over LR was statistically significant only in the IDB ( P < 0.05).

Discussion
The present work presents a novel application of deep-learning NN classification to 
serial electrocardiography. Differently from current rule-based serial electrocardiogra-
phy algorithms, our deep-learning approach considers several input features that likely 
vary (independently or in a relative fashion) during emerging or aggravating of any car-
diac pathology.

Core of the here presented deep-learning NN approach is the new RS&LP, which 
dynamically creates a specific NN for a specific problem by iterative alternation of struc-
turing and learning, while retaining the learning effect of the previous iteration in each 
new structure. This allows for reaching an efficient NN configuration without losing its 

Fig. 4  Pseudocode implementing the repeated structuring and learning procedure (RS&LP)
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generalization properties. RS&LP overcomes the problem that the standard learning 
procedures are only training NNs with fixed, user-defined architectures, since it con-
sists of a systematic and controlled NN construction method that, additionally, inte-
grates a weight-correction algorithm to adjust for disproportion between classes. The 
latter is likely occurring in clinical applications in which the number of controls is typi-
cally higher than the number of cases, which is also the case in our databases. Although 
originally designed for serial electrocardiography, RS&LP is a potentially useful tool 
in several other (not further specified to avoid speculation) classification problems, in 
medicine and other fields.

AUCs were chosen as performance index for all algorithms; indications of diagnos-
tic ACC were computed at the points on the ROC where sensitivity equals specific-
ity. Indeed, in clinical practice, the choice of an operating point on a ROC is a tradeoff 
between false-positive and false-negative decisions and associated costs. RS&LP yielded 
3-layer NN architectures with high learning and testing performances (Table 3). Due to 
the limited sizes of testing datasets (65 and 241 ECG pairs for the HFDB and the IDB, 
respectively), CI remained relatively wide (22% and 16% for HFDB and IDB, respec-
tively; Table 3). Neuron weight and bias values are available in Additional file 1 (Neuron-
WeightAndBias.mat).

Table 2  Quantitative characterization of  the  13 difference features distributions 
in the HFDB and the IDB

Values are reported as percentiles 50th [25th;75th] percentiles

*,**,***: reflects P-value < 0.05 , < 0.01 , < 10
−3 , respectively, when comparing corresponding features computed for cases vs 

controls

HFDB IDB

Total Controls Cases Total Controls Cases

(N = 129) (N = 81) (N = 48) (N = 482) (N = 398) (N = 84)

�QRSdur (ms) 0.0
[− 4.0;8.0]

0.0
[− 4.0;4.5]

4.0*
[− 4.0;17.0]

0.0
[− 2.0;16.0]

0.0
[− 4.0;4.0]

8.0**
[0.0;17.0]

�QT  (ms) 1.0
[− 13.3;20.3]

− 1.0
[− 13.0;− 13.8]

7.5
[− 15.5;34.0]

2.0
[− 14.0;16.0]

2.5
[− 14.0;15.0]

0.0
[− 17.0;19.0]

�|QRSmax| (μV) − 26.0
[− 149.0;86.6]

− 34.2
[− 144.9;57.3]

− 11.9
[− 196.4;175.7]

− 21.1
[− 131.3;79.8]

− 12.1
[− 127.9;96.1]

− 38.9*
[− 144.0;16.0]

�|Tmax| (μV) − 15.5
[− 65.7;39.7]
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Fig. 5  Example of the dynamic construction of a neural network (NN) by the repeated structuring and 
learning procedure (RS&LP) using the ischemia database (IDB). A total of 147 learning iterations of the 
scaled-conjugate-gradients algorithm, during which 37 new structures are created, leads from the initial 
architecture [1] to the final architecture [19 9 9]. The training error decreases monotonously (left panel). Some 
new architectures (e.g., [12 4 2]) are almost not contributing to a reduction of the training error, while others 
(e.g., [10 2 1]) strongly decrease the training error. With the introduction of a new architecture, the validation 
error (right panel) may increase in the first iteration (visible in the figure when the new structures [2] and 
[10 1] are initialized), but it has to decrease monotonously in following iterations. RS&LP stopped when the 
validation classification reached 100% correctness, yielding the structure [19 9 9]

Table 3  NNRS&LP , NNSM and LRs characteristics for the HFDB and the IDB

Architecture HFDB IDB
[16 13 12] [11 9 1]

NNRS&LP Learning AUC (%) 99 98

Testing AUC (%) 84 83

CI (%) [73–95] [75–91]

ACC (%) 75 76

NNSM Learning AUC (%) 86 77

Testing AUC (%) 83 73

CI (%) [72–94] [60–87]

ACC (%) 75 67

LR Learning AUC (%) 89 88

Testing AUC (%) 61 77

CI (%) [46–75] [68–86]

ACC (%) 54 71
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For performance assessment of the RS&LP, we compared the results obtained with the 
NNRS&LP against those obtained with the standard method to learn the NN ( NNSM ) and 
against conventional LR, constructed on the same databases. In all cases, NNRS&LP clas-
sification was superior to NNSM and to LR classification (Table  3, Fig.  6). The RS&LP 
provides better classification performances than standard NN learning; moreover, its 
property to construct the NN architecture during learning overcomes one of the chal-
lenges of NNs: the definition of the architecture. Future studies will evaluate the robust-
ness of the chosen criteria, such as the maximal number of hidden layers or the number 
of iterations.

In an earlier study of our group on heart failure [16], ROCs were constructed by apply-
ing a variable threshold to signed and unsigned QSR-T spatial-angle differences; result-
ing AUCs were 72% and 78%, respectively. Another study on ischemia [20] compared 
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Fig. 6  Receiver operating characteristics (ROCs) of the test results obtained with the neural networks with 
the RS&LP (NNRS&LP-blue lines), with the neural networks learnt with the standard method (NNSM-green lines) 
and with the logistic regression (LR-red lines) in the heart failure database (HFDB-a) and in the ischemia 
database (IDB-b)
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performances of absolute differences of VG and ST-elevation, obtaining AUCs of 88% 
and 91%, respectively. Both studies [16, 20] were transversal analyses, performed on 
entire databases not split into learning and testing datasets; hence, no predictions can be 
made based on those results. AUCs of these studies have to be compared to our learning 
AUCs and not to our testing AUCs, which rather represent predictions. Our learning 
AUCs were all close to one (Table 3), thus higher than those in [16, 20]. Moreover, our 
testing AUC in the HFDB is 84%, which means that NN-based prediction outperforms 
the transversal classification in [16]. Similarly, our testing AUC in the IDB was 83%, very 
close to the transversal classification in [20].

Based on our results, we can conclude that our RS&LP yielded high-performing NNs 
readily applicable to serial ECGs to recognize emerging heart failure in post-infarction 
patients and acute ischemia in patients with a sudden short-lasting complete coronary 
occlusion. Still, other clinical applications in heart failure and ischemia require addi-
tional research. In emerging heart failure, serial ECG changes might already occur in 
the subclinical stage; if confirmed, serial ECG analysis could be used as a screening 
method in post-infarction patients. Ischemia detection by serial ECG analysis is of para-
mount importance in the real-world ambulance scenario, when patients are transported 
because of chest pain possibly related to acute coronary ischemia, possibly leading to 
a myocardial infarction. In this application, the FUECG is recorded in the ambulance, 
whereas the BLECG is to be found in ECG databases of hospitals and may be several 
years old. Compared to our case patients, case ambulance patients mostly suffer from 
acute coronary syndrome, which can manifest in various forms. For example, occlusions 
may be dynamic and may have been present much longer than the duration of the bal-
loon inflations in the STAFF III database. The classification problem is further compli-
cated because the control ambulance patients (those with no ischemia) may have other 
acute ECG-affecting pathologies, like pulmonary embolism or pericarditis. Thus, ECG 
changes measured in ambulance patients will be different from those observed in our 
IDB patients, and a specific NN needs to be constructed on the basis of serial ECGs 
that represent the specific mix of patients with ischemia (cases) and patients without 
ischemia, but often with other pathology (controls), as they present themselves to the 
emergence medical services.

Conclusion
In conclusion, although we cannot claim that our method is universally suited for the 
construction of problem-specific NNs for serial ECG comparison, we consider it as a 
strength that it was successful in two very different clinical applications: the detection 
of newly emerging heart failure in post-infarction patients, and the detection of acute 
ischemia. Further exploration of our method has to reveal if other problem-specific NNs 
can successfully be constructed, and even if it will be possible to construct a universal 
NN to detect any pathologic change in the ECG.
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Additional file

Additional file 1. NeuronWeightAndBias.mat is a Matlab file, that contains the Weights and Biases of the neural 
network obtained bythe repeated structuring and learning procedure.
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