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Abstract 

Background:  The main objective of this paper is to develop and test the ability of 
the Leap Motion controller (LMC) to assess the motor dysfunction in patients with 
Parkinson disease (PwPD) based on the MDS-UPDRSIII exercises. Four exercises (thumb 
forefinger tapping, hand opening/closing, pronation/supination, postural tremor) 
were used to evaluate the characteristics described in MDS-UPDRSIII. Clinical ratings 
according to the MDS/UPDRS-section III items were used as target. For that purpose, 16 
participants with PD and 12 healthy people were recruited in Ospedale Cisanello, Pisa, 
Italy. The participants performed standardized hand movements with camera-based 
marker. Time and frequency domain features related to velocity, angle, amplitude, and 
frequency were derived from the LMC data.

Results:  Different machine learning techniques were used to classify the PD and 
healthy subjects by comparing the subjective scale given by neurologists against the 
predicted diagnosis from the machine learning classifiers. Feature selection methods 
were used to choose the most significant features. Logistic regression (LR), naive Bayes 
(NB), and support vector machine (SVM) were trained with tenfold cross validation with 
selected features. The maximum obtained classification accuracy with LR was 70.37%; 
the average area under the ROC curve (AUC) was 0.831. The obtained classification 
accuracy with NB was 81.4%, with AUC of 0.811. The obtained classification accuracy 
with SVM was 74.07%, with AUC of 0.675.

Conclusions:  Results revealed that the system did not return clinically meaningful 
data for measuring postural tremor in PwPD. In addition, it showed limited potential 
to measure the forearm pronation/supination. In contrast, for finger tapping and hand 
opening/closing, the derived parameters showed statistical and clinical significance. 
Future studies should continue to validate the LMC as updated versions of the software 
are developed. The obtained results support the fact that most of the set of selected 
features contributed significantly to classify the PwPD and healthy subjects.
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Background
Parkinson disease (PD) is a degenerative disorder of the central nervous system and is 
currently growing as a neurological disorder in the aging society. According to the Par-
kinson Disease Foundation, one million Americans are living with Parkinson disease, 
and approximately 60,000 Americans are diagnosed with Parkinson disease each year. 
Similarly, 1.2 million Europeans suffer from it, and this number forecasted to double by 
2030 [1].

Parkinson disease symptoms can be classified as motor or non-motor. The first 
includes tremor, rigidity, bradykinesia, and postural instability. Non-motor symp-
toms are various and includes loss of taste and sense of smell, sleep disturbances, gas-
trointestinal complications, constipation, swallowing problems, anxiety, pain, fatigue, 
depression, sexual dysfunction, hallucinations and psychosis, impulse control disorders, 
cognitive impairment, and dementia [2].

Currently, motor disorder studies still offer different clinical challenges for the scien-
tific community. For example, diagnostic criteria for PD rely on the presence of motor 
signs and, for the assessment of movement disorders, the neurologist uses a visual exam-
ination of motor tasks and semi-quantitative rating scales, such as the Hoehn–Yahr (HY) 
Scale and the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS). This subjective assessment leads to inter- and intra-rater variability due 
to neurologist subjectivity; therefore, the necessity of objective motor assessment tools 
is crucial in the future of PD diagnostic procedures [3].

Similarly, motor performance and pattern analysis and interpretation seem to have 
relevance in early diagnosis [4]. Patients generally are clearly diagnosed with PD at the 
advanced stage; moreover, any neuroprotective therapy initiated at such a late stage 
may have fewer substantial effects on the disease progression. Thus, the investigation of 
movement performance is one of the most challenging opportunities to obtain valid and 
objective biomarkers to recognize early PD symptoms [5].

Additionally, motor assessment is valuable in differential diagnosis between PD and 
atypical parkinsonism and can be more challenging particularly at early stages, when 
clinical features can overlap and in cases of misdiagnosis, as described in several clin-
icopathological studies [6]. Moreover, factors including the long-term development of 
the disease, often characterized by motor fluctuations during specific times of day; long 
waiting lists; and high travel costs (particularly for people who live in rural areas) sup-
port the need for specific monitoring instrumentation to monitor PD progression also at 
home [7].

Currently, no cure is available for the disease or the symptoms; therefore, movement 
therapy is important to delay the loss of motor function. However, the most developed 
solutions in providing an objective assessment involve neuroimaging. Many imaging 
methods have been employed for the diagnosis of PD, the most common being posi-
tron emission tomography (PET) and single-photon emission computed tomography 
(SPECT) [8]. However, due to their high level of invasiveness and prohibitive cost, less 
expensive alternative techniques are required. Recent advances in technology have ena-
bled human motion analysis based on sensor data, which can be used to extract valu-
able information for assessing movement disorders in lower and upper limbs. While a 
number of works have focused on solutions for lower limbs, few studies are present in 
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literature that aim to deeply investigate solutions for motor assessment in upper limbs 
[3]. For this reason, a solution for upper limbs is provided here.

In the last decade, several motion sensing devices have emerged, including wearable 
sensors (e.g., accelerometer, gyroscope) and vision-based sensors (e.g., Vicon, Microsoft 
Kinect) [9]. Wearable sensors, such as inertial measurement units (IMUs), offer a more 
portable, flexible, inexpensive solution for the assessment of motor dysfunction of PD. 
The advantages of accelerometers include small size and relatively high sampling fre-
quency. Their main disadvantage is that they need to be attached to the body, which may 
affect their motion performance. Indeed, for each gram of additional mass a sensor adds, 
the peak frequency of finger tremor decreases up to 0.85 Hz, which affects the accelera-
tion amplitude [10].

Recently, several studies [11–13] were conducted on PwPD to assess motor dysfunc-
tion using commercially available non-contact video and RGB-D based sensors. Result 
showed that the video-based system could detect bradykinesia and dyskinesia in the 
clinical environment. Recent studies also focused on another commercially available 
device, the Leap Motion controller (LMC), which incorporates a 3D camera that is 
connected to a computer and is claimed to measure positional data accurate to within 
0.01  mm [14]. LMC was primarily employed with video games, such as in the study 
of Lin [13], where it was used to track the hand movements to enhance the computer 
accessibility in rehabilitation. Similarly, in the study of Blazica [15], LMC was used with 
kinetic sensor to achieved the full kinematics of movement during game play. LMC has 
also been used for the assessment of movement disorder in PD. However, to the best of 
our knowledge, after a literature review, the number of studies focusing on the assess-
ment of motor dysfunction in PD with LMC are limited. A study by Matthew [10] was 
performed using Leap Motion and a tremor-scope accelerometer-based device to assess 
the rest tremor and essential tremor in PwPD and healthy control, comparing K-mean 
clustering and SVM techniques. Results showed that out of eight, six characteristics of 
frequency and power showed no statistical difference between devices according to the 
Wilcoxon Signed Ranks Test and Sign Test.

Similarly, in another study by Nastaran [16], a kinetic sensor and LMC were tested on 
real patients to understand the ability of both systems. For motor examination of Parkin-
son’s patients by considering the limitations of the Kinect sensor, some part of the motor 
section was chosen to be studied by the Kinect sensor, such as leg agility, arising from 
chair, postural stability, and body bradykinesia and hypokinesia. Since the used Kinect 
sensor is not able to give precise information of the hand and finger movements, the 
Leap Motion controller was implemented to compensate for this specific limitation of 
the Kinect sensor. From Leap Motion, different characteristics of the hand movements 
were extracted. The hand movements of the patients were based on the line created by 
moving the hand in the air. By comparing the line on the screen and the results from the 
patient exercise, the physician can see how shaky the hand is and study the rate of the 
tremors. Similarly, in another study by Kai-Hsiang Chena [17], the Leap Motion con-
troller system was tested with four patients diagnosed with essential tremor. The results 
showed that the system has the potential to assess the hand tremor in the clinical envi-
ronment. This study did not include the other types of action tremors due to hardware 
limitation, and all examination were of Parkinson’s patients.
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To the best of our knowledge, no comprehensive study, in which multiple exercises 
of section 3 of UPDRSIII are used on real PwPD with LMC, has been performed. This 
study encompasses the four exercises (hand opening/closing, thumb forefinger tap-
ping, pronation/supination, and postural tremor) of section 3 of UPDRSIII motor tasks 
for the objective assessment of PwPD with LMC. To test the potential of the LMC, we 
first extracted the characteristics of UPDRSIII from all the exercises objectively. Feature 
selection algorithms were employed to select the most discriminating features. These 
selected features were fused and entered in the machine learning algorithms to clas-
sify the PwPD and healthy control. In this context, the aim of this paper is to present 
a deeper investigation, with respect to the state of art, of the use of the LMC in clinical 
setting to assess motor performance in upper limbs; provide a comprehensive study of 
all the exercises of the MDS-UPDRS scale, including upper limbs; present algorithms to 
extrapolate movement parameters of each exercise that are, as much as possible, compa-
rable with the visual assessment provided by the neurologist; provide a statistical inves-
tigation of the significance of the extracted features, focusing on their correlation with 
the clinical scores and their relevance with respect to a control group of healthy subjects; 
propose a machine learning model for classifying patients and healthy subjects on the 
basis of different feature selection methods; give indications about the opportunities and 
limitations of the LMC in PD applications, and profiles possible future investigations to 
improve the current study.

Methods
Participants

All subjects were recruited at the Cisanello Hospital, Pisa. Sixteen PwPD (11 men, 
5 women; mean age ± SD: 68.8 ± 9.43  years old; average MDS/UPDRS-Section III 
scores ± SD: 19.69 ± 8.91; average Hoehn and Yahr (H &Y) stage ± SD: (1.6 ± 0.5) and 12 
healthy controls (2 men, 10 women; mean ± SD: 70.2 ± 11.88  years old) were asked to 
participate in this study. Exclusion criteria were impairments or diseases other than PD 
(i.e. orthopaedic or neurologic) that could affect the task performance. All subjects lived 
independently in the community; the most relevant clinical information is described in 
Table 1. Upon arrival at the testing location, all subjects were informed of the purpose of 
the study and provided written consent.

Instruments

LMC (Fig. 1) is a commercially available non-contact optical device manufacturer (LEAP 
MOTION, INC., USA), 45 g in weight, that can detect the motion and position of the 
hand in 3D. It consists of three infrared (IR) transmitters (LEDs) and two IR depth data 
capture cameras [16]. Both IR cameras are at a distance of 20 mm from the center of 
the LMC. The field of view in the hemispherical area is approximately 150°. The infor-
mation regarding the user’s hand, fingers, and gestures is captured as long as the hand 
is between 25 and 600  mm above the center of the sensor. The carried hand position 
is relative to the center of the LMC. According to the manufacturer specifications, the 
accuracy of the LMC in spatial measurement can reach 0.01 mm; in previous studies, 
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however, the error of spatial measurement in a static setup was approximately 0.2 mm, 
and the average spatial error in continuous motion was 0.4  mm [18]. The LMC was 
placed on the table (as shown in Fig. 1a) in all exercises. In this study, average sampling 
rate during the data acquisition was 35 Hz.

Table 1  Clinical details of healthy control and patient with Parkinson disease

Healthy subjects Patient with Parkinson disease

Age (gender) Age (gender) UPDRS III (0–56) H &Y (1–5) Disease 
duration 
(years)

74 (M) 72 (M) 9 1 6

43 (F) 76 (M) 5 1 7

75 (F) 62 (M) 23 1.5 7

80 (M) 62 (M) 23 2 10

58 (F) 68 (F) 26 2 14

61 (F) 65 (F) 9 1.5 4

83 (F) 69 (M) 25 2.5 10

77 (F) 82 (M) 32 2.5 7

79 (F) 61 (F) 18 1.5 3

61 (F) 60 (F) 26 2 20

78 (F) 76 (M) 20 2 10

74 (F) 75 (M) 32 2 10

82 (M) 15 1 1

46 (F) 7 1 6

63 (M) 15 1 2

75 (M) 30 1.5 8

70.25 (± 11.88) 68.80 (± 9.43) 19.69 (± 8.91) 1.63 (± 0.53) 7.81 (± 4.71)

Fig. 1  Coordinate system of LMC and experimental setup for each exercise: a leap motion controller, b 
postural tremor and hand opening–closing, c thumb fore-finger tapping, d forearm pronation/supination
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Experimental protocol

The experimental protocol was composed of four exercises, corresponding to motor 
tasks 3.4, 3.5, 3.6, and 3.18 of the MDS/UPDRS-Section III [19]: pronation/supination 
of the forearms (PSUP); opening/closing of the hands (OPCL); thumb-forefinger tapping 
(THFF); and postural tremor (POST).

The subjects were asked to sequentially perform the exercises three times for both 
upper limbs to complete the experimental session. In addition, every subject underwent 
a short preliminary training to try all required movements. A neurologist assessed the 
subjects during the execution of the exercises and assigned them a score according to 
the tasks in MDS/UPDRS, based on the Edinburgh Handedness inventory [18] that is 
used to assess the dominance of a person’s right or left hand. Further dominant hand 
parameters were used for the analysis. These exercises were performed with both hands 
(left and right) for each exercise.

Pronation/supination (PSUP)

The subject was directed to assume a sitting posture at rest and was asked to put the arm 
outstretched in front of him or herself, with the wrist stable, the hand in prone position, 
and the fingers outstretched approximately 1 cm apart. After 5 s in resting position, the 
subject executed forearm pronation supination movements as fast and as wide as pos-
sible for 10  s. Then, the subject was directed to keep the hand in prone position and 
fingers outstretched in resting position for 5 s more.

Opening closing hand (OPCL)

The subject was directed to assume a sitting posture at rest with the arm flexed at the 
elbow. The elbow was fixed on the table, and the palm of the hand was kept in front of 
the subject. After 5 s in resting position, the subject alternatively opened and closed the 
hand as fast and with the fingers as wide as possible for 10 s, keeping the forearm and 
the wrist fixed. Then the subject was directed to keep the palm of the hand in front of 
the body in resting position for 5 s.

Thumb forefinger tapping (THFF)

The subject was directed to assume a sitting posture at rest, keeping the hand out-
stretched in front of him or herself. In the starting position, the thumb and the forefinger 
were in open position. The subject remained for 5 s in resting position and then tapped 
the forefinger against the thumb as quickly and as widely as possible for 10 s. Then, the 
subject was directed to keep the thumb and forefinger in open position for 5 s.

Postural tremor (POST)

The subject was directed to assume a sitting posture at rest and was asked to put the 
arm outstretched in front of him or herself with wrist stable, the hand in prone posi-
tion, and the fingers outstretched approximately 1 cm apart from each other. The subject 
remained in this position for the duration of the exercise, for 20 s.

An alarm controlled by a timer on the PC was used to prompt the subjects to perform 
the correct movements in the different phases of the exercises.
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Data acquisition from Leap Motion

The LMC software development kit (SDK) (Fig. 1) device directly provides some of the 
most relevant points of hand movements, avoiding the need for complex computations 
to extract the depth and colour data [20]. A stand-alone C++ program was implemented 
to develop a simple user interface to record the movements and save data in CVS format 
for further signal processing. The code was run three times for each participant for both 
hands (right and left). Further, raw data was fed to the algorithms to extract the features. 
The LMC SDK was used to record the movements of the fingers and hand for each exer-
cise, acquiring both the three-dimensional coordinates of fingertips and the following 
four features, computed directly from the algorithms included in the LMC SDK:

1.	 Palm angle: Roll angle of the palm, i.e. rotation of the hand around the z-axis.
	 This value was used in the PSUP exercise and was computed via the LMC SDK 

instruction given below: 

	 This angle is estimated as the angle between the negative y-axis and the projection of 
the palm normal vector into the x–y plane (Fig. 2c).

2.	 Fingertip distance: Sum of each fingertip’s distance from the palm centre of hand.
	 This value was used in the OPCL exercise and was computed by the LMC SDK 

instructions given below: 

(1)Ap(k) = hand.palmNormal.roll(k)

(2)Df (k) =

5∑

n=1

fingers[n].tipPosition.distanceTo(hand.palmPosition(k))

Fig. 2  Leap Motion features on a gesture example: a fingertips distance [41], b thumb and index finger 
distance, c palm angle [21], d finger tips velocity [15]
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 where n is the number of fingers.
	 The hypothesis here is that the distance Df is smaller in the closing position of the 

hands as compared to when all fingers are in the opening positions (Fig. 2a). There-
fore, Df provides adequate information about hand opening/closing movements.

3.	 Thumb forefinger distance: Distance between the thumb and index fingertips in 
pinch hand pose.

	 This value was used in the THFF exercise and was computed via the LMC SDK 
instruction given below: 

	 The distance is computed by looking at the shortest distance between the last two 
phalanges of the thumb and index finger. This pinch measurement only takes the 
thumb and index finger into account (Fig. 2b).

4.	 Fingertips velocity index: Average value of the velocity module of all five fingertips 
(Fig. 2d).

	 This value was used in POST exercise and was computed via the LMC SDK instruc-
tion given below: 

	 This velocity index is demonstrated to be correlated to the tremor amplitude of the 
hand [17] and gives the rate of change of the fingertips and hand position.

Since the LMC does not have a constant frame rate, the collected data is non-uniform 
with respect to time. To satisfy the Shannon sampling theory [21] and to obtain con-
sistency in feature extraction, all signals were reconstructed with a linear interpolation 
method with an average sampling rate of 50 Hz (Matlab 2015b).

Feature extraction

The main features that are necessary to characterize the execution of the above listed 
exercises of the MDS-UPDRSIII included in this study are listed in Table 2.

For PSUP, OPCL, and THFF, the number of movements included in the exercise and 
their velocity were calculated, as well as the variability of frequency and amplitude. To 
obtain the number of repetitions, an appropriate peak finder algorithm [22] was used to 
identify peaks and valleys in the signals based on the local maxima and minima. In PSUP 
and OPCL, peaks in Ap and Df represent the respective supination and opening positions 
of hands, while valleys represent pronation and closing positions (Fig. 3a–c). Similarly, 
Dp was used for calculating the number of taps in THFF.

The amplitude of each single repetition is another important feature. It is calculated as 
the difference of the values of each peak and the next valley (Fig. 3) [23]. Furthermore, 
amplitude variability is estimated by calculating the standard deviations (std) of all indi-
vidual movements of amplitudes.

Frequency of each movement is defined as the inverse of the time between consecutive 
peaks. Further frequency variability is also estimated by calculating the standard devia-
tions of all individual frequency components, respectively.

(3)Dp(k) = handPinchDistance(k)

(4)Vf (k) =

∑5
n=1 Fingern.tipvelocity.y

5
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Opening speed of hand or finger tapping in OPCL and THFF is defined as the distance 
variation between one peak from the previous valley divided by the time of hand or fin-
ger movement from the last valley to peak:

Similarly, closing speeds of hand and finger tapping are obtained with the distance var-
iation between one peak to the next valley divided by the time of hand or finger move-
ment from the last peak to the next valley:

Angular velocity in pronation is defined as the variation of the angle from one peak to 
the last valley divided by time. For pronation, angular velocity is defined as:

Angular velocity in supination is defined as the variation of the angle from one peak to 
the next valley divided by time duration.

For supination, angular velocity is defined as:

For the POST exercise, the Vf  signal was analyzed in the typical band of interest for 
Parkinson (8–12 Hz). Since the use of acceleration for tremor assessment is a more 
relevant variable than velocity or displacement [24], it was, first, time-differentiated 

(5)Speedopen =

Distance peakn − Distance valleyn−1

Time peakn − Time valleyn−1

(6)Speedclose =
Distance peakn − Distance valleyn

Time peakn − Time valleyn

(7)Angular Velocitypronation =

Supination anglen−1 − Pronation anglen

Time pronationn − Time supinationn−1

(8)Angular Velocitysupination =

Supination anglen − Pronation anglen

Time supinationn − Pronation anglen

Table 2  Biomechanical parameter extracted from all exercises

Exercises Extracted features Acronyms

PSUP Number of rotational movements num-PS

Supination speed wps

Pronation speed wsp

Variability of frequency fSD-PS

Variability of amplitude tetaSD-PS

OPCL Number of opening/closing movements num-OC

Hand opening speed wop

Hand closing speed wcl

Variability of frequency fSD-OC

Variability of amplitude tetaSD-OC

THFF Number of thumb-forefinger tapping tapTF

Opening speed woTF

Closing speed wcTF

Variability of frequency fSD-TF

Variability of amplitude tetaSD-TF

POST Signal strength of the movement PwrP

Relative power in the band of interest of postural tremor 
(8–12 Hz)

PwrpP2
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to yield finger acceleration and then filtered with a low-pass Butterworth filter at 
14  Hz [17]. Subsequently, the power spectral density (PSD) of the obtained signal 
acceleration was estimated using the Burg’s method in Matlab. Particularly, the fol-
lowing two features were estimated. The frequency with the maximum power was 
determined as the hand tremor frequency, and the average PSD in the band of 
interest (8–12 Hz) was obtained with the average of PSD of frequency components 
between 8 and 12 Hz. Results of the three trials were averaged to represent the per-
formance of movement in the dominant hand (right) of the subject in all parameters.

Feature analysis and selection

Feature selection was the next step to assess the potential of the extracted metrics and to 
select the most suitable parameters for machine learning classifiers to obtain the high-
est accuracy. From a statistical point of view, the Spearman’s correlation was estimated 
with SPSS21 (IBM, Armonk, North Castle, NY, USA) to determine the correlation 

Fig. 3  Example of the smoothing spline signal for all exercise as: a thumb fore-finger tapping, b hand 
opening closing, c pronation supination, d postural tremor. The frequency of each movement is obtained 
as the inverse of the time between consecutive peaks. The frequency of each movement was defined as 
the inverse of the time difference between the second and first peaks. The amplitude of each movement is 
obtained as the difference in amplitude from a peak to the next valley. Opening speed of hand and finger 
tapping were obtained with the distance travel between peak from the previous valley divided by time of 
hand or finger move from valley to peak. Similarly, for closing speed of hand or finger tapping were obtained 
with the distance travel between current peak to the next valley divided by time travel from current peak 
to the next valley. For pronation, angular velocity was obtained change in the angle from peak to last valley 
divided by time. Similarly, for supination, angular velocity was obtained with change in the angle from 
consecutive peak and valley divided by time duration of the change in angle from consecutive peak to valley. 
In postural tremor average velocity of fingers was used to obtain the signal strength and power in the band 
of interest 8–12 Hz. A Fast Fourier Transformation was used to obtain the power spectrum. Average of power 
spectrum was considered as the signal strength. Power b/w 8–12 HZ obtained with the average of power 
spectrum between 8 and 12 HZ. The tremor frequency is defined as the frequency with the maximum power 
in the spectrum
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between measured biomechanical parameters and clinical scores estimated by the neu-
rologist. As proposed in [25], features with a correlation higher than strong (0.40–0.69: 
strong, 0.70–1.00: very strong) were considered as significant with respect to the clinical 
scores. Since the measurement for the PwPD group violated the normality assumption, 
the unpaired Mann–Whitney U test for non-parametric samples was calculated [26] to 
identify the ideal features for comparison between healthy controls and the PD group. 
The most dominant side (the side with the best task performance) of PD participants 
was compared with the participants’ best performing side of the healthy control group. 
The choice of the cut-off points to accept the alternative hypothesis (same as rejecting 
the null hypothesis) is totally subjective. The common use of p ≤ 0.05 was chosen by 
Fisher [27]. A probability value (p) of p < 0.05 was considered significant for all the analy-
ses [28, 29]. ANOVA tests were used to assess differences in objective measurements 
between PwPD and control groups. Obtained results from ANOVA were presented in 
mean and standard deviation. All the statistical analyses were performed with SPSS21 
(IBM, Armonk, North Castle, NY, USA). Simultaneously, Cohen’s d effect size was also 
calculated with an available online calculator [30].

Because the extracted features included considerable decreasing classification accu-
racy and the generalization of ‘‘noise’’ [4], we used the feature selection algorithms 
(WEKA 3.6, New Zealand) to select features with the most discriminative ability. In 
this study, we ran multiple tests using various algorithms and search methods (principal 
components analysis, support vector machine, consistency, J48, filtered subset evalua-
tion, information gain, gain ratio, and Chi-square attribute evaluation) to define their 
optimal subsets and attributes, which would help us avoid over-fitting our model to 
redundant information (Table 5). All the methods were run over the tenfold cross valida-
tion. We used feature selection methods that were based on different criteria to define 
the value of single features and subsets of features. As is argued in [31], a single variable 
may not be important on its own, but it may contribute to the performance of the classi-
fier when used in a subset [32].

Classification algorithms for healthy control and PwPD

Supervised learning methods such as support vector machine (SVM), logistic regression 
(LR), and naive Bayes [32, 33] with tenfold cross validation were used to classify both 
groups of subjects (PwPD and control). The tenfold cross validation randomly splits 
the n different subjects into tenfolds with roughly proportional numbers of healthy and 
PwPD in each fold. The prediction algorithm is repeated 10 times with the cases of each 
fold withheld from the training set in turn, the cross-validated error rate being the aver-
age error rate on the withheld cases. A typical fold contained 10 subjects for the pros-
tate data, healthy and PwPD, which were then predicted by the rule constructed from 
the data of the other remaining subjects. The SVM classifier was trained with sequential 
minimal optimization (SMO) methods and with polynomial kernel. All the classifiers 
were developed under the environment of machine learning software weka3.6 (Univer-
sity of Waikato, New Zealand).
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Results
Correlation between objective parameters and subjective evaluation

The most significant parameters, characterized by a strong correlation with the clinical 
evaluations, are presented in Table 3. In all exercises the correlation between extracted 
parameters with the respective medical rank resulted mostly weak. On the same time, 
standard error of estimate showed that moderate values mean the moderate predica-
tion capability of extracted parameters. For the POST exercise, no correlation was found 
between the extracted features and the clinical rank.

Difference between the control and PwPD objective parameters

Assessment of the parameters (Table  4) between the PwPD and healthy control 
groups showed that Num-PS (number of pronation/supination), fSD-PS (frequency 
variation in pronation/supination), Num-OC (number of opening/closing hand), 
WOP (hand opening speed), WCL (hand closing speed), fSD-OC (hand opening/
closing frequency variation), tetaSD-OC (hand opening/closing amplitude variation), 
Wc-TF (finger tapping closing speed), and Wo-TF (thumb forefinger tapping opening 
speed) showed a significant difference between the median of both groups of subjects 
(PwPD, control). At the same time, all the listed features have high effect size, so both 
groups (PwPD and healthy) have a large standard deviation and present significant 
differences. Other parameters—Wps (supination speed), Wsp (pronation speed), and 
tetaSD-PS (frequency variation in pronation/supination)—showed statistical signifi-
cance according to Mann–Whitney but had small effect size, which means that both 
groups (healthy and patients) are not differ from large standard deviation. Similarly, 
from postural tremor, PwrP (signal strength) and PwrpP2 (signal strength between 8 
and 12 Hz) parameters were not significant according to Mann–Whitney and Spear-
man correlation, and they also presented a small Cohen’s effect size.

Table 3  Spearman’s correlation between clinical scores and biomechanical parameters

Exercises Extracted features Spearman’s correlation Standard error 
of estimate

PSUP Num-PS − 0.257 0.263

Wps − 0.009 0.254

Wsp − 0.025 0.211

fSD-PS − 0.488 0.199

tetaSD-PS 0.307 0.257

OPCL Num-OC − 0.539 0.238

Wop − 0.647 0.281

Wcl − 0.639 0.264

fSD-OC 0.313 0.244

tetaSD-OC − 0.647 0.280

THFF tapTF − 0.728 0.247

WcTF − 0.804 0.284

WoTF − 0.836 0.253

fSD-TF − 0.006 0.202

tetaSD-TF − 0.188 0.284

POST PwrP 0.59 0.281

PwrPR2 0.159 0.286
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Feature selection for a machine learning model

Before training the machine learning classifier, a number of multiple tests, based on 
various algorithms and search methods, were used to select the most significant fea-
tures. This preliminary study was crucial to define optimal subsets and attributes, 
which could help avoid over-fitting the machine learning model with redundant infor-
mation, and avoid a high-dimensional features space, which may affect the ability of 
the machine learning system to successfully classify.

The reason for using the multiple feature selection methods was because a single 
variable may not be important on its own, but its contribution to the performance 
of the classifier could be relevant when used in a subset. In Table  5, the feature 
selection approaches, based on subset space (principal components analysis, sup-
port vector machine, information gain, gain ratio, and Chi-square attribute evalua-
tion), frequently have similar results, in terms of selected features, to the selection 
approaches, based on attribute space (consistency, J48, and filtered subset evaluation), 
even if there are noticeable differences between the two methodologies. For exam-
ple, the Num-PS feature was selected by the two approaches, subset space and attrib-
ute space methods, but it was ranked differently (i.e. lower in the first and higher in 
the second). On the other hand, the PwrP feature was considered more important by 
most of the attribute space-based methods and not relevant by the other space-based 
subsets. Regardless of the method used, the Num-OC feature was almost always 
deemed important during the feature selection tests, suggesting that it was useful as a 
discriminating feature.

Out of 17 derived features, 14 were considered appropriate for the classification mod-
els. Three features, i.e. fSD-OC, tapTF, and PwrPR2, were not selected by any feature 
selection methods, thus appearing trivial for the classification between the PwPD vs. 
healthy subjects.

Table 4  Mann–Whitney statistical significance between patients and healthy controls

Exercises Extracted features Control Patient p Cohen’s d effect size

PSUP Num-PS 18.82 ± 5.52 15.08 ± 4.283 0.034 0.757

Wps 173.71 ± 47.91 181.35 ± 74.9 0.509 − 0.1215

Wsp 179.97 ± 47.162 187.45 ± 77.2 0.509 − 0.1164

fSD-PS 0.79 ± 0.225 0.54 ± 0.132 0.001 1.3553

tetaSD-PS 16.92 ± 5.709 15.29 ± 11.96 0.044 0.173

OPCL Num-OC 19.83 ± 3.102 16.50 ± 5.38 0.002 0.758

Wop 378.78 ± 71.87 322.54 ± 125.9 0.059 0.5486

Wcl 378 ± 71.87 322.54 ± 125.9 0.059 0.5486

fSD-OC 18.75 ± 6.42 14.75 ± 8.58 0.059 0.5278

tetaSD-OC 0.6242 ± 0.129 0.530 ± 0.123 0.065 0.747

THFF tapTF 22.58 ± 6.798 23.55 ± 10.31 0.300 − 0.111

WcTF 87.29 ± 43.515 116.39 ± 56.5 0.073 − 0.5770

WoTF 85.64 ± 39.524 111.70 ± 50.5 0.087 − 0.5747

fSD-TF 10.26 ± 6.320 8.89 ± 4.233 0.284 0.2547

tetaSD-TF 0.87 ± 0.239 0.86 ± 0.269 0.379 0.0399

POST PwrP 72.68 ± 16.618 91.17 ± 54.29 0.161 − 0.4605

PwrPR2 55.748 ± 6.583 63.950 ± 28.80 0.274 − 0.3926
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Classification performance

Three different machine learning classifiers were used, namely logistic regression (LR), 
naïve Bayes (NB), and support vector machine (SVM), to establish the best performing 
method. For each subset of features, selected in Table  5 (numbered from 1 to 8), the 
three classifiers were applied with the tenfold cross validation method. The performance 
of each subset with respect to each classifier (LR, NB, SVM) is presented in Tables 6, 7 
and 8, respectively.

The best performing classifier was the NB, achieving 81.45% of average accuracy, 76% 
of sensitivity, 86.5% of specificity, and a 0.811 AUC value, using a selection of features 
from the feature subset defined by a SVM ranker method (number 2 in Table 5). The 
same feature subset performed slightly worse with the other classifiers (SVM and LR), 
with an accuracy, sensitivity, and specificity of 70.37%, 41.7% and 93.3%, respectively, 
for SVM and of 70.37%, 58.3% and 80.0%, respectively, for LR. All the other subsets, 
selected by the other feature selection methods, showed the worst classification perfor-
mance in all machine learning classifiers (LR, NB, SVM), as shown in Tables 6, 7 and 8, 
respectively.

Table 5  Features selection test according to feature selection methods

Test 
number

Method Selects Search 
algorithms

Selected subsets/features (mean 
value among the three trials)

1 Principal components Attributes Ranker Num-OC, Wcl, tetaSD-OC, Wop, 
Num-PS

2 SVM Attributes Ranker fSD_PS, WcTF, tetaSD-PS, tetaSD-
OC, Wps, WoTF, Num-PS

3 Consistency Subset Greedy SW Num-OC, Wop, fSD-PS, tetaSD-PS

4 J48 Subset Greedy SW Num-OC, WcTF, Wop

5 Filtered subset evaluation Subset Genetic search Num-PS, Num-OC, tetaSD-PS, 
fSD-PS, Wcl

6 Information gain Attributes Ranker PwrP, fSD-TF, Num-OC, tetaSD-TF, 
Wsp, Wps, Num-PS

7 Gain ratio Attributes Ranker PwrP, fSD-TF, Num-OC, tetaSD-TF, 
Wsp, Wps, Num-PS

8 Chi square attribute evaluation Attributes Ranker PwrP, fSD-TF, tetaSD-TF, Num-OC, 
Wsp, Wps, Num-PS

Table 6  Logistic REGRESSION CLASSIFICATION test

Classifier Average accuracy 
(%)

AUC​ TP TN Test number

LR 44.44 0.339 25 60.0 1

70.37 0.831 58.3 80.0 2

62.93 0.672 50.0 73.3 3

66.66 0.65 50.0 80.0 4

59.25 0.578 41.0 78.0 5

55.5 0.572 41.7 66.7 6

55.55 0.572 50.0 60.0 7

55.55 0.572 41.7 66.7 8
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Discussion
This study investigated the possibility to use the LMC as an assessment tool in diagnosis 
and monitoring of Parkinson disease. Particularly, the four main exercises of the UPDRS 
Part III clinical protocol involving only upper limbs (PSUP, OPCL, THFF, and POST) 
were used to test the LMC device, and a comparison with the relative clinical score pro-
vided by the neurologist was performed, as well as a comparison with a healthy control 
group. To the best of our knowledge, this is the first work that tried to study the feasibil-
ity of a low-cost 3D camera-based marker less hand tracking system in clinical settings 
with patients with Parkinson disease and with a clinical standardized protocol.

In the PSUP exercise, the number of rotation movements (Num-PS), frequency (fPD-
SD), and amplitude (tetaSD-PS) variability showed good significative for the distinction 
of patients and healthy control in terms of p-test and Cohen’s d coefficient (Table  4). 
Interestingly, these parameters were also included, as selected features, in the most per-
formant selection feature method, the SVM ranker method (Table 5), used in combina-
tion with the NB machine learning model.

Supination speed (Wps) during the pronation/supination contributed significantly, 
as it was selected frequently in different feature selection methods. Similarly, in PwPD, 
the speed should be discontinuous due to fatigue, freezing, and uncontrollable rota-
tional movements, should eventually reduce the supination speed, and should contribute 
significantly toward classifying the healthy and control subjects as frequently selected 
by feature selection methods. Conversely, no clinical association was revealed, which 

Table 7  Support vector machine classification test

Classifier Average accuracy 
(%)

AUC​ TP (%) TN Test number

SVM 40.74 0.40 53.00 66.7 1

70.37 0.675 41.7 93.3 2

66.66 0.642 41.7 86.7 3

59.25 0.558 25.0 86.7 4

74.07 0.717 50.0 93.3 5

51.85 0.492 25.00 73.3 6

55.85 0.525 25.00 80.0 7

51.85 0.492 25.00 73.3 8

Table 8  Naïve Bayes classification test

Classifier Average accuracy 
(%)

AUC​ TP TN Test number

NB 51.8 0.589 58.3 46.7 1

81.4 0.811 75.0 86.7 2

74.0 0.8 75.0 73.3 3

62.9 0.171 75.0 53.0 4

74.4 0.783 75.0 73.3 5

55.5 0.533 75.0 40.0 6

48.1 0.539 66.7 33.3 7

55.5 0.533 75.0 60.0 8



Page 16 of 21Butt et al. BioMed Eng OnLine          (2018) 17:168 

directs the intra-rater variability of the clinical scores. Low effect size also directs the 
limited contribution of the parameter to classify the PwPD and healthy control.

Statistically significant differences or outcomes simply address whether to accept or 
reject a null or directional hypothesis, without providing information on the magni-
tude or direction of the difference (between groups). To improve the interpretation of 
clinical significance, researchers commonly include more clinically-relevant information 
such as confidence intervals and effect sizes, which reflects the magnitude of the dif-
ference in outcomes between groups. A greater effect size indicates a larger difference 
between PwPD and control groups. Statistically significant differences alone should not 
be the primary influence for clinical interpretation of a study’s outcome for application 
to patient care. Hence, it proves that even if some features show statistical significance, it 
is not necessary it also reflect the clinical significance, which is often misinterpreted. The 
additional analysis to investigate the clinical significance is mandatory via methods such 
as effect size [34].

Amplitude variation (tetaSD-PS) in the pronation/supination, selected by two feature 
selection methods (Table 5: 2, 3, 5), showed significance. This parameter also revealed a 
clinical association in the previous study [35]. The roll angle metrics showed the poten-
tial to measure the metrics which can extract characteristics related to bradykinesia and 
hypokinesia and thus can discriminate between healthy individuals and PwPD. Standard 
deviation was used to determine the strength of the signal, so the higher values of STD 
indicate stronger movements [35]. LMC showed potential to quantify the amplitude var-
iation in the forearm-based rotational movements, which also contributed to classifying 
the healthy and PwPD subjects.

In the hand opening/closing, four parameters—Num-OC (number of hand opening/
closing movements), Wop (hand opening speed), Wcl (hand closing speed), and tetaSD-
OC (hand opening/closing amplitude variation)—showed significant clinical association 
while also showing a high effect size between two groups (patients and healthy subjects). 
In feature selection methods, these parameters were selected frequently, demonstrating 
that these features have potential to contribute significantly to classifying the PwPD and 
healthy subjects. The average distance of all fingertips from palm positions was exploited 
to extract the other related parameters. This study revealed other potential metrics such 
as Wop (hand opening speed), Wcl (hand closing speed), and tetaSD-OC (hand open-
ing/closing amplitude variation), which were not consistent with a previous preliminary 
study on LMC [35].

Hand opening/closing amplitude variation (tetaSD-OC) not only was selected by 
feature selection methods, but it also showed clinical association with the neurolo-
gist’s assessment. Rhythm is a characteristic mentioned in the MDS-UPDRS and can be 
defined as any sequence of regularly reoccurring events. The STD of estimated ampli-
tude of the movements represented this characteristic and contributed significantly to 
classify the PwPD and healthy subjects, which is also consistent with the pervious pre-
liminary studies on LMC [35].

In addition, in the thumb forefinger tapping (THFF), most of the features showed good 
performance in the clinical correlation and distinction between the two groups. Bradyki-
nesia refers to movement that is slower than desired. These symptoms can be assessed 
with repetitive movements. Repetitive movements in the finger tapping motion result in 
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a progressive reduction in tapping speed and motion amplitude, and they increase the 
use of visual feedback as a compensatory mechanism for a motor system with inherently 
high variability of motor output [36]. Particularly, WoTF and WcTF were selected in the 
most performant feature selection methods and also presented a good clinical associa-
tion for clinical assessment, thus being potentially able to discriminate the bradykinesia. 
Feature selection methods also ranked highly. It is known that repetitive finger tapping 
movement in bradykinesia/hypokinesia eventually reduces in speed due to fatigue, and 
thus the movement is helpful in discriminating between healthy individuals and PwPD.

In the OPCL and THFF, most of the parameters demonstrated both a good cor-
relation with the clinical assessment (Table  3) and good significance in distinguishing 
between patients and healthy subjects (Table  4). Conversely, the same cannot be said 
of the PSUP and POST exercises, showing that in this case, there could be some limita-
tions in the capability of the LMC to be used as a clinical assessment tool. This latter 
point was preliminarily found in another study [33] and also better investigated in [37], 
which revealed that the LMC could not return clinically meaningful data for measuring 
forearm pronation/supination, having serious inconsistencies in reported joint angles 
(RMSE = 38.4°). Therefore, the functional SDK measurement accuracy of the frequency, 
amplitude, and speed of such movement, described by the angle between the negative 
y-axis and the projection of the vector on to the x–y plane (roll-angle), was not sufficient 
and did not match with the observation and estimation of the clinician. Additionally, 
this low accuracy could be further worsened by the fact that the PSUP exercise was per-
formed by patients in an advanced stage of the disease who had difficulty in perform-
ing regular movements of pronation and supination at fastest velocity, thus contributing 
to increasing the error in measuring the PSUP parameters [38]. However, it should be 
considered that, despite some accuracy problems related to the roll angle metrics, the 
other parameters appropriately contributed to the general assessment, and this was also 
confirmed by the results of the feature selection methods (Table 5). These other param-
eters are those that are not connected with the necessity to measure accurate angles and, 
mainly, concern those value related to counting something, i.e. number of taps, rota-
tions, etc. Indeed, these parameters do not require accuracy in the angles, but only track 
the variation of the signals that enables counting the execution of the movement, i.e. 
in pronation/supination peak-to-peak movements (Num-PS) was a parameter that was 
not influenced by the accuracy of the angle estimation. This lack of accuracy in measur-
ing some parameters may lead to a similar situation in tremor exercise (POST). Here, 
the parameters were calculated from the velocity signal, which in the posture exercise 
referred to a very small movement, thus requiring high accuracy.

The thumb forefinger tapping also revealed potential metrics such as tapTF (thumb 
forefinger tapping opening/closing movements), which is not consistent with a prelimi-
nary study on LMC [35]. In contrast, small effect size and exclusion of tapTF from the 
feature selection method directs the biased clinical association of this parameter. One 
significant reason could be intra-rater variability in the clinical scores. Two other param-
eters (Wotf, Wctf ) also showed a clinical association, while a large effect size endorse the 
significance of these parameters. The fact that feature selection methods also selected 
these features frequently endorses the significance of these parameters. Frequency and 
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amplitude variation in the finger tapping did not show clinical association—in addition, 
low effect size in both parameters between two groups (PwPD and healthy control) also 
showed the insignificance of these parameters. In postural tremor, no parameter showed 
clinical association, while small effect size also showed the limited potential of these 
parameters to provide clinically meaningful information.

Limitations
One of our main goal in this study was to investigate matrices that could be extracted 
from a MDS-UPDRSIII tasks, and to confirm its merit when combined with the other 
well-established metrics included in our analysis. Because these metrics could lead to 
highly correlated features, it is not appropriate for all of them to be used in the same 
classification model. Therefore, during our treatment of the data with machine learning 
techniques, we opted against the complexity of re-introducing feature selection inside 
the classification training, and assessed the performance of the individual feature sub-
sets, as they are given in Table 5, applying various classifiers after the feature selection 
procedure, as shown in Tables 6, 7 and 8.

Maximizing the generalize ability of machine learning in neuroscience will require a 
different type of validation approaches. In other words, do the machine learning dis-
covered models capture fundamental principles of brain function and reflect causative 
phenomenon that extrapolate across multiple biologically relevant contexts [39]. On the 
same time testing the different and new data on the same training model is next step to 
obtain the highest accuracy for the diagnosis. Since, supervised machine learning tech-
niques have been extensively used in predicting PD through a set of datasets. However, 
the most methods developed by supervised methods do not support the incremental 
updates of data [40]. Even we test the new data on final training set, whenever there is 
fresh data there is need to update the training model. Moreover, feature selection every 
time for a new training model does not allow to automate and implement this model 
for real time applications. Ultimately there is need to investigate machine learning tech-
niques which supports incremental updates and re-learning of data. In recent years, con-
volutional neural networks (CNNs) have shown excellent performance on classification 
problems when large-scale labeled datasets are available. However, it is challenging to 
apply CNNs to problems where only small labelled datasets are available. For example, 
collecting and labeling a large amount of medical data is often difficult. As a result, it is 
challenging to apply CNNs to small-scale medical data. To enable automated evaluation 
of PD motor states which covers a wide range of PD symptoms across patients, a large 
amount of wearable sensor data in daily-living conditions is needed [41].

Conclusions
In this study, highly reliable metrics provided by the Leap Motion SDK for skeletal 
tracking were exploited for MDS-UPDRSIII motor tasks to assess bradykinesia-
related characteristics. This study, for the first time, focused on the MDS-UPDRSIII 
motor tasks. Other authors [42, 43] investigated the potential of the LMC for reha-
bilitation of the palm and fingers for patients with cerebral strokes, physical injury, 
or other developmental disabilities. Others [37, 44–46] focused on investigating the 
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clinical association of the extracted information. Our approach required both PwPD 
and healthy subjects to perform MDS-UPDRSIII motor tasks from in a clinical envi-
ronment. At the same time, one neurologist visualized the performance of each sub-
ject and assigned a subjective score based on the performance of the subject. The 
LMC-provided SDK was exploited to extract the related parameters for objective 
assessment of motor dysfunction in PwPD. Our finding showed that LMC has a lim-
ited angle of view to assess the motor dysfunction in PwPD. Certain gestures could 
not be recorded properly depending on the placement of the Leap Motion controller 
[46]. The sensor was not able to recognise all of the fingers. Fingers touching each 
other, folded over the hand, or hidden from the camera viewpoint were not captured, 
and in many configurations, some visible fingers could be lost, specifically if the hand 
is perpendicular to the camera [47], eventually effecting the accuracy of the measured 
information. Experimental results showed that although the data recorded from Leap 
Motion was not completely reliable, a reasonable overall accuracy with the proposed 
set of features and classification algorithms was obtained. In general, we can conclude 
that LMC is not yet able to track motor dysfunction characteristics from all MDS-
UPDRS proposed exercises. However, intra-rater variability in clinical scores could be 
one significant reason for the limited monotonic relationship between clinical scores 
and biomechanical parameters when classifying with machine learning algorithms. It 
would be interesting to investigate the other potential metrics to extract the related 
parameters. Following the same methodology with a large number of samples and 
more than one evaluator (neurologist) and employing only the tasks where consensus 
is found, such as hand opening/closing, could lead to an unbiased objective measur-
ing system. This could lead to an improvement in the assessment and monitoring of 
movement disorders using LMC. This study, for the first time, revealed the functional 
limitation of LMC-provided SDK for postural tremor assessment in PwPD. One pos-
sible reason could be an inconsistent frame rate of the device with respect to time. 
Moreover, it is important to enhance the accuracy in SDK algorithms. Usability of the 
workspace should be improved to facilitate the use by nontechnical individuals.

Finally, it is possible to state that the LMC represents a very promising device for 
the implementation of innovative service [48] in neurodegenerative diseases and 
other ageing-related disorders or frailties; however, improvements in SDK algorithm 
accuracy and usability are required for consolidating its use in healthcare contexts.
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