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Abstract 

Background:  The purpose of this study was to design a customized fixation plate for 
mandibular angle fracture using topological optimization based on the biomechanical 
properties of the two conventional fixation systems, and compare the results of stress, 
strain and displacement distributions calculated by finite element analysis (FEA).

Methods:  A three-dimensional (3D) virtual mandible was reconstructed from CT 
images with a mimic angle fracture and a 1 mm gap between two bone segments, 
and then a FEA model, including volume mesh with inhomogeneous bone material 
properties, three loading conditions and constraints (muscles and condyles), was cre‑
ated to design a customized plate using topological optimization method, then the 
shape of the plate was referenced from the stress concentrated area on an initial part 
created from thickened bone surface for optimal calculation, and then the plate was 
formulated as “V” pattern according to dimensions of standard mini-plate finally. To 
compare the biomechanical behavior of the “V” plate and other conventional mini-
plates for angle fracture fixation, two conventional fixation systems were used: type 
A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain 
and displacement distributions within the three fixation systems were compared and 
discussed.

Results:  The stress, strain and displacement distributions to the angle fractured 
mandible with three different fixation modalities were collected, respectively, and the 
maximum stress for each model emerged at the mandibular ramus or screw holes. 
Under the same loading conditions, the maximum stress on the customized fixation 
system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% 
compared to type B. All maximum von Mises stresses of mandible were well below the 
allowable stress of human bone, as well as maximum principal strain. And the dis‑
placement diagram of bony segments indicated the effect of treatment with different 
fixation systems.

Conclusions:  The customized fixation system with topological optimized structure 
has good biomechanical behavior for mandibular angle fracture because the stress, 
strain and displacement within the plate could be reduced significantly comparing to 
conventional “one mini-plate” or “two mini-plates” systems. The design methodology 
for customized fixation system could be used for other fractures in mandible or other 
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bones to acquire better mechanical behavior of the system and improve stable envi‑
ronment for bone healing. And together with SLM, the customized plate with optimal 
structure could be designed and fabricated rapidly to satisfy the urgent time require‑
ments for treatment.

Keywords:  Mandibular angle fracture, Customized plate, Topological optimization

Background
Mandibular angle is located at the junction of the ramus and the lower body of the man-
dible, and the bone here is very weak, so it is easily fractured from violent crimes, sport 
or traffic accidents, or pathological processes [1–3]. According to literature statistics, the 
mandibular angle is one of the most common sites for fractures, accounting for 23–42% 
of all cases of mandibular fractures [4]. Moreover, mandibular angle fractures have the 
highest postoperative complications among all mandibular fractures, and the loosening 
of screws and fracturing of plates are main reasons for the complications [5].

Currently, there are two typical treatment modalities for the mandibular angle frac-
tures: the first one uses one mini-plate for fixation, which has been widely used dur-
ing the past two decades, following the principles described in 1975 by Champy [6–8]; 
the other one uses two mini-plates [9], with a upper mini-plate fixed at the same place 
of previous treatment which corresponds to the tension band of the mandible, and the 
lower mini-plate fixed at the inferior border of the mandible which corresponds to the 
compression band of the mandible. However, all the mini-plates used in the clinical case 
are standard and straight plates, and need to be bent to bone surface before fixation, 
which will increase the time of the operation and may lead to mismatching between the 
bone surface and titanium plates [10]. Based on recent clinical statistical studies, the 
incidence of plate removal has risen to 18%, occurring typically in less than 6–9 months 
after surgery, so the stability provided by the mini-plates has become a hot issue among 
surgeons [4, 11].

A few researchers had designed some custom-made or three-dimensional (3D) mini-
plates by changing the hole size, distance between the holes and shape of the plate for 
mandibular angle fractures [11–13]. However, these 3D plates are only modified slightly 
the dimensions of the existing plates and the biomechanical behavior of fixed mandible 
isn’t considered.

In order to decrease the need for plate removal, reduce the operative time and improve 
the stability of the fixation system, the biomechanical properties of intact mandible and 
treated mandible with a fracture are needed to investigated, and then a novel fixation 
plate could be designed based on biomechanical data using some optimal methods such 
as topological optimization. Topological optimization is one kind of structural optimiza-
tion techniques that conducts the optimal design for a structure subject to presupposed 
loading and boundary conditions [14]. Optimal structure is acquired by reducing the 
material under no stress or less stress, after satisfying the stiffness requirements. And it 
is often achieved with combination of an optimization algorithm or a numerical method, 
such as finite element method [15]. In order to minimize the stress concentration of the 
structure, optimization based on density method that can reflect the essential character-
istics of optimization is often used to pick out locations where material is necessary and 
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join them to a macro-structure. Therefore, topological optimization is an effective tool 
to determine the shape of customized plate and location of the titanium screw.

In many vitro studies, cadaver mandibles or synthetic jawbone models were used to 
meet the measurable comparison of mechanical strength and stability of various fixa-
tion systems to cure mandibular angle fractures [16, 17]. But the disadvantages of using 
cadaver mandibles are that it is very difficult to obtain ideal samples and all of the man-
dibles differ from each other in quality. At the same time, synthetic mandibles lack the 
true comprehensive representation of biomechanical properties of vital jawbone [18]. 
FEM is widely used in obtaining detailed stress, strain and displacement distributions 
of the fractured mandible with fixation system. And it is verified by many studies that 
the results of the FEA is a valid, accurate, and non-invasive method to predict different 
parameters of the complex biomechanical behavior of human mandible [19–23].

The purpose of this study was to design a customized fixation plate for a mandibular 
angle fracture by topological optimization method based on a 3D model reconstructed 
from computerized tomography (CT) scan, which was verified by comparing to the con-
ventional fixation systems on the biomechanical performance including stress, strain 
and displacement distributions of the fixed mandible system (including bone, plates and 
screws) calculated by FEA.

Methods
The customized fixation plate was designed with topological optimization program in 
Abaqus (V6.14, Dassault Systèmes, Cedex, France) and fixed on a mandible with mim-
icked angle fracture in 3-matic (V9.0, Materialise, Leuven, Belgium, an accessory tool 
to MIMICS). A right side angle fracture with 1 mm gap was created on the 3D model 
in MIMICS (V16.0, Materialise, Leuven, Belgium). And then, two conventional fixation 
systems (type A—“one mini-plate”, type B—“two mini-plates”) were analyzed by FEM, 
and the result data were used as constraints for optimal design of customized plate, also 
taking into account the presence of the inferior alveolar nerve. After optimal design to 
get the customized plate, three angle fractured mandible models for three different fixa-
tion modalities were compared and analyzed: type A, type B, and type C-customized 
plate. The biomechanical performances of three internal rigid fixation systems to man-
dibular angle fracture with 1 mm fractured gap were investigated. Maximum von Mises 
stress, principal strain and displacement were measured from each numerical simula-
tion. Totally, 27 data sets (3 loading positions × 3 fixation design × 3 outcome measure-
ments) were compared and analyzed. Figure 1 shows the flowchart of this study, starting 
from the CT file of a healthy female, then comparing the results (stress, strain and dis-
placement distribution) of the FEA, and finally validating the customized plate.

3D model reconstruction and fracture simulation

A CT file of a healthy female was used to reconstruct a 3D model with contours of vari-
ous hard tissues in MIMICS. Then, a 3D mandible model represented as triangular mesh 
was reconstructed as a new mask through the region of interest extraction. Finally, the 
angle fracture with 1 mm gap on the right side of the mandible was created by the cut-
ting tool in the MIMICS (Fig. 2).
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FEA modeling and two typical fixation systems’ biomechanical analysis

Actually, the triangular meshes created from MIMICS just form a surface model. But 
volume meshes are required for finite element analysis. So the 3-matic was used to cre-
ate high-quality volume meshes for the fractured mandible and fixation systems. The 
Abaqus was used to analyze the biomechanical performance of the fractured mandible 
with different internal rigid fixation modalities [18].

In many FEA studies, the material property of bone was assumed as a homogenous 
material or two kinds of materials including cortical and cancellous bone [9, 20, 24]. In 
reality, the mandible is inhomogeneous in material and consists of various bone com-
ponents, so the bone locating at different areas have different modulus of elasticity and 
poisson’s ratio because of distinct degrees of calcification. Accordingly, some researchers 
reported that material property of bone could be calculated on Hounsfield unit (HU) 

Fig. 1  Flowchart of this study

Fig. 2  Simulation of the angle fractured mandible. a Intact mandible with 1 mm plane, b mandible with 
1 mm fracture gap
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value of CT images, and the real density could be related to modulus of elasticity. The 
material property of the mandible used in this paper was based on the following equa-
tions [25]: 

The HU values of the mandible mask was evenly divided into ten groups in order to 
represent nouniform distribution of real mandibular properties (Fig. 3). The bone den-
sity ranged from 0.055 to 2.281 g/m3 based on CT file. The Young’s modulus ranged from 
0.125 to 20.331 GPa based on the bone density. And the maximum Young’s modulus was 
distributed around the tooth, which was consistent with other studies [26]. The Young’s 
modulus was set as 116 GPa for titanium alloy (Ti-6Al-4V) plates and screws [27]. And 
all plates and screws have the same poisson’s ratio of 0.34.

Three occlusal situations simulated at different dental positions were applied to the 
angle fractured mandible model: loading I, incisor loading with 125  N, loading II, left 
second molar loading with 250  N, and loading III, right second molar loading with 
250 N, and the directions of loads were all vertical (Fig. 4) [28]. Both condyles were fixed 
at 3 degrees of freedom, simulating the moment of biting. Mandible muscles were simu-
lated as springs with no resistance during compression, the stiffness values of spring ten-
sion were taken from the related research [29]: masseter muscle = 16.35 N/mm, lateral 
pterygoid muscle =  12  N/mm, medial pterygoid muscle =  15  N/mm, and temporalis 
muscle = 14 N/mm, and the interaction area of the muscle were shown in Fig. 4. And 
the direction of vectors of the muscle structures were designed from published study 
[30]. The contact relation between bone sections along the fractured gap was set as 
“hard” contact. And the interaction of screw-bone, and screw-plate were set as “tie” con-
straint, without relative motions at these interfaces.

Two typical fixation systems including the plates and screws were modeled and fixed 
to the angle fractured mandible using 3-matic software: type A—“one mini-plate” 
(Fig. 5a); type B—“two mini-plates” (Fig. 5b). All screws were designed as cylinders with 
2 mm diameter and 6 mm in length. All mini-plates with 2 mm thickness had four screw 
holes [6, 20, 31]. And the biomechanical properties of the fractured mandible fixed with 
the two different fixation systems were calculated by finite element analysis. As shown in 

(1)ρ = 114 + 0.756×HU

(2)E = 0.51× ρ1.37

Fig. 3  Material properties of the mandible model based on HU values from the CT images
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Table 2, the maximum von Mises stress (MPa) of plate were 377, 332, and 394 for type 
A under the three loading conditions, and the values were 149, 123, and 192 for type B. 
As shown in Table 4, the maximum displacements (mm) of bony segments were 0.534, 
0.484, and 0.635 for type A, and 0.352, 0.324, and 0.464 for type B. These data would be 
used as references and constraints for optimal design of customized plate.

Customized fixation system optimal designing

The customized fixation plate proposed in this paper is designed by the topological opti-
mization program in Abaqus software. In order to find the valid scope of the customized 
plate, a 3D mandible model without right second molar was created by MIMICS soft-
ware. Based on the mandible model with triangular mesh, an original plate with 2 mm 

Fig. 4  Loading and muscle areas on the mandible. Four kinds of mandible muscles were modeled as springs 
at the colored ovals, and the three green lines represented the three occlusal situations: loading I, incisor 
loading with 125 N, loading II, left second molar loading with 250 N, and loading III, right second molar load‑
ing with 250 N

Fig. 5  Two typical fixation systems for mandibular angle fracture. a Type A, one mini-plate fixed at the 
tension zone according to Champy’s technique, and b type B, upper mini-plate fixed at the same place of 
previous treatment, and a lower mini-plate fixed at the inferior border of the mandible
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thickness (Fig. 6) was created by extracting partial bone surface from the mandible in 
Geomagic Studio (V12.0, 3D system, Rock Hill, SC, USA). The thickness of 2  mm is 
designed from a study which concluded that 2 mm thick plate could show satisfactory 
result and adequate safety limits after comparing effects of plates with various thick-
nesses [3, 32]. Then, the original plate was transferred to Magics (V13.0, Materialise, 
Leuven, Belgium) to cut and smooth the edges of the plate (Fig. 7). Next, the smoothed 
plate and the mandibular angle fractured model were imported to Abaqus software to 
enter the process of topological optimization. There are two occlusal situations taken 
into account: incisor loading with 125  N and left second molar loading with 250  N, 
because the right second molar had been removed. And the other FEA modeling envi-
ronment was same as the previous conditions, including muscles, condyles, and contact 
types. According to the FEA results of the two conventional fixation systems, the opti-
mization design of the customized plate is represented in Table 1.

The mathematical model of the topological optimization based on the density method 
is shown as follow [11, 33, 34]:

(3)Find a = (a1, a2, . . . , an)
T

(4)Min C(a) = FTM

(5)S.t.







V∗
≤ V

F=NM
0 < amin ≤ ai ≤ 1 (i = 1, 2, . . . , n)

Fig. 6  A original plate with 2 mm thickness. a Partial bone surface was selected, b, c different views of the 
generated plate

Fig. 7  The edge of plate was cut and smoothed. a External surface of the modified plate, b internal surface 
of the modified plate
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ai is design variable, the value is continuous between [amin, 1]; n is the number of opti-
mum design variable; V is the volume of structure before optimization; V* is the volume 
after optimization. F is the vector of structural force; N is the total stiffness matrix of the 
structure; M is the displacement vector of the structure. In addition, two groups of opti-
mization were studied because of different contact regions between mandible and plate 
(Fig. 8), and the contact regions were froze during the process of optimization. Based on 
the results of the two types of topological optimization (Fig. 9), the customized plate was 
formed and completed in Magics software. Finally, design the screws for the custom-
ized plate in the 3-matic software after fixing and smoothing it in the Magics software 
(Fig. 10). To simplify the modeling process, the screws were all designed as cylinders, 
and were 6 mm in length for customized plate.

Comparisons for biomechanical behaviors of three fixation systems by FEA

The biomechanical properties of angle fractured mandible with customized fixation 
design was calculated by finite element analysis under the same FEA modeling condi-
tions (same angle fractured mandible model and same loading conditions) of the two 
typical fixation systems. And the maximum von Mises stress, strain and displacement of 
fixed mandible system including bone, plate and screws were collected and analyzed in 
Tables 2, 3 and 4.

Results
In order to get the detailed information of the effects of the customized fixation designs, 
the FEA results of customized plate and the other two conventional fixation systems are 
shown in Figs. 11, 12 and 13, which represented respectively the stress distribution of the 

Table 1  Optimization design of the customized plate

Objective function Minimize the volume of initial plate

Optimization constraints The maximum stress of plate is under 120 MPa with loading I

The maximum stress of plate is under 100 MPa with loading II

The displacement of bony segment is under 0.3 mm with loading I

The displacement of bony segment is under 0.3 mm with loading II

Fig. 8  Two kinds of contact regions to mandible in topological optimization. a Strip tying, and b small seg‑
ments tying
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Fig. 9  Results of the two topological optimization. Upper row: strip tying (a and b), lower row: small seg‑
ment tying (c and d). The red regions are the frozen areas that will be reserved to the optimized results

Fig. 10  Fractured mandible with customized fixation system. a Final customized plate, and b customized 
fixation system (plate and screws) fixed on the fractured mandible

Table 2  Maximum von Mises stress (MPa) of three different fixation modalities

Loading I Loading II Loading III

Bone

 Type A 66 80 103

 Type B 57 65 56

 Type C 48 44 63

Fixation system (plate and screw)

 Type A 377 332 394

 Type B 149 123 192

 Type C 97 81 116
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angle fractured mandible and fixation system (plates and screws) under three occlusal 
situations. In each figure, the left column displays the stress distribution of mandible, 
and right column displays the stress distribution of the fixation system. And the maxi-
mum stress emerged at the mandibular ramus or screw holes regardless of the fixation 
designs.

Figure 14 shows the displacement of bony segments along the 1 mm fracture gap with 
three different fixation systems. And the maximum displacement was located at the area 
near the chin regardless of the loading positions.

Tables 2 and 3 record the results of maximum von Mises stress and maximum princi-
pal strain of the separated fractured mandible and fixation system under the same load-
ing locations. For loading I, the maximum stress to fixation system were 377, 149, and 
97 MPa for type A, type B, and type C, respectively. And the values of type C fixation 
were lower than other two fixation systems regardless of loading positions.

Table  4 shows the maximum displacement of bony segments along the 1  mm frac-
ture gap under three loading locations. And the maximum displacement under loading 
II were 0.484, 0.324, and 0.180 mm for fixation type A, type B, and type C, and the values 
under loading II were lower than other two loading conditions.

Discussion
The topological optimization method can be conducted based on finite element analysis 
to design the most appropriate plate structure for fractured mandible using the mini-
mum output values for stress of plate and displacement of bony segments to seek maxi-
mum reduction volume on an original plate. As shown in Table 2, under the same three 
loading conditions, the maximum von Mises stress (MPa) of plate were 377, 332, and 
394 for type A, and 149, 123, and 192 for type B. The values of customized fixation sys-
tem decreased 74.3, 75.6 and 70.6% when compared to type A, and 34.9, 34.1, and 39.6% 
compared to type B, respectively. As shown in Table  4, the maximum displacement 

Table 3  Maximum principal strain (%) of three different fixation modalities

Loading I Loading II Loading III

Bone

 Type A 0.007 0.009 0.009

 Type B 0.009 0.013 0.008

 Type C 0.007 0.006 0.009

Fixation system (plate and screw)

 Type A 0.003 0.003 0.003

 Type B 0.001 0.001 0.002

 Type C 0.001 0.001 0.001

Table 4  Maximum displacement (mm) of bony segment along the fractured gap

Loading I Loading II Loading III

Type A 0.534 0.484 0.635

Type B 0.352 0.324 0.464

Type C 0.286 0.180 0.246
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(mm) of bony segments were 0.534, 0.484, and 0.635 for type A, and 0.352, 0.324, and 
0.464 for type B. And the values of customized fixation system decreased 46.4, 62.8 and 
61.3% to type A, and 18.8, 44.4, and 47.0% to type B.

According to literature, the mini-plate is widely used in all types of mandibular frac-
tures, but clinical work found that the mini-plate may be insufficient in strength and 
stability, which will lead to failure of treatment to fractured mandible. Consequently, 
designing a customized fixation system that satisfy the stress condition and produce 
high stability is very essential. Topology optimization can be considered as an efficient 
way to achieve objective of reducing stress concentration [34]. It has been used to design 
micro-structure that enhances formation requirement with different pore sizes, hier-
archical scaffold [15], however, it is seldom used to design structure to angle fractured 
mandible. The design method of topological optimization in this paper was based on 
the “smaller the better” quality characteristics for the reduction of plate volume and 
the improvement of stability of mandible segments (small bone plate stress and relative 
movement) [13, 15]. The optimized results shown in Fig. 9 indicate that different contact 
areas have no obvious influence on the topological optimization, so the final customized 

Fig. 11  von Mises stress distribution to the mandible and fixation system under loading I. Type A (a and b), 
type B (c and d), and type C (e and f)
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plate is designed as the “V” pattern plate shown in Fig. 10a. Above all, the design meth-
odology for customized fixation system could be used for other fractures in mandible 
or other bones to acquire better mechanical behavior of the system and improve stable 
environment for bone healing.

The mandibular muscles were modeled as springs to simulate real environment of 
human mandible, which can effectively analyze the mechanical performance of the frac-
tured mandible with different fixation modalities. In addition, the material properties of 
mandible in this paper were assigned by the HU values of CT images, which will be more 
appropriate than the method that just takes use of two material (cortical and cancel-
lous bone) of mandible [28], because the human mandible is an inhomogeneous material 
components. In addition, our FEA results were studied under incisor and second molar 
loading positions that are considered as the most common occlusal situations.

Finite element method is an effective way to accurately predict the stress and strain 
distribution of the mandible and plate after surgery, which can avoid the phenomenon 
that the plate or screw was damaged for concentrated force after fixation. Compared 
with conventional experiments, FEM has the advantages of reducing complexity of 

Fig. 12  von Mises stress distribution to the mandible and fixation system under loading II. Type A (a and b), 
type B (c and d), and type C (e and f)
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experimental operation and error of manual operation. At the same time, FEM can keep 
the consistency of the mandible models, effectively reducing the error from comparing 
the biomechanical properties of different fixation methods, and it is beneficial to choose 
a appropriate way to treat angle fractured mandible, reducing the failure of operation.

The corresponding maximum von Mises stresses and principal strains for the fixed 
mandible system were predicted in Tables 2 and 3. The FEA results represent that the 
maximum stresses of all three fixation systems are under the yield strength of titanium 
alloy (σ = 780–950 MPa) [35], so all of the fixation systems are safe for fracture treat-
ment. But the stress distribution of customized plate is more uniform than conventional 
fixation mini-plate regardless of loading locations. And the maximum stress of mandible 
that located at the screw hole or mandibular ramus is well below the allowable stress 
of human bone ([σ] = 140 MPa) [36, 37], which will avoid bone resorption and achieve 
the stability of fixation plate. Critical yield tensile strain of human cortical bone is 0.4% 
according to relevant studies [18, 38]. And all principal strains of fixed mandible sys-
tems were well below it regardless of occlusal situations. The displacement distribution 
of bony segments were shown in Fig. 14, and the maximum displacement were collected 

Fig. 13  von Mises stress distribution to the mandible and fixation system under loading III. Type A (a and b), 
type B (c and d), and type C (e and f)
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in Table 4. According to involved studies, when a minimal fracture gap is under 150 μm 
and the fixation environment is stable, it is possible to achieve primary healing; when a 
small gap is under 2 mm with a stable mechanical environment, it is able to fulfill a good 
secondary healing [39]. So all of three fixation systems are beneficial to bone healing, but 
the customized fixation design has better biomechanical performance of treating frac-
tured mandible.

The customized fixation system designed directly from the specific patient is much fit-
ter to the bone surface when compared with the standard mini-plate, which will reduce 
the time of bending and fixing the plate during operation. Currently, type B is the most 
popular treatment in clinical cases to mandibular angle fracture, so it is persuasive to 
compare the FEA results of the customized fixation system with it. Firstly, the custom-
ized fixation system just have five screws, which will be less damaging to mandible and 
will reduce complication of infection [40], while the type B needs eight screws to fix the 
fractured gap. Secondly, the customized plate is an integrated plate with two branches, 
which will enhance stability of fixation under the different loads and make accurate posi-
tioning for surgery. Thirdly, the distances between screw holes in customized plate are 
larger than that in standard mini-plate, and the distances between screw holes can be 
changed for different patients, especially for patients with bad bone condition.

The customized plate can be fabricated by selective laser melting (SLM) rapidly to sat-
isfy the urgent requirements for surgical treatment. SLM, a typical technique of additive 
manufacturing, could produce titanium plate from metal powder, which has been veri-
fied in clinical application [41, 42]. Therefore, combined with SLM, topological optimi-
zation could allow a customized plate for mandible fracture fixation be designed and 
fabricated rapidly and used in clinic to improve the surgery quality and efficiency.

Fig. 14  Displacement of bony segment along the fracture gap under three different loading locations. 
Upper row: loading I—a Type A, b type B and c type C. Middle row: loading II—d type A, e type B and f type 
C. Lower row: loading III—h type A, i type B and j type C
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Conclusions
The customized fixation system with topological optimized structure has good biome-
chanical behavior for mandibular angle fracture because the stress, strain and displace-
ment within the plate could be reduced significantly comparing to conventional “one 
mini-plate” or “two mini-plates” systems. The design methodology for customized fixa-
tion system could be used for other fractures in mandible or other bones to acquire bet-
ter mechanical behavior of the system and improve stable environment for bone healing. 
And together with SLM, the customized plate with optimal structure could be designed 
and fabricated rapidly to satisfy the urgent time requirements for treatment.
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