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Background
Sleep [1] and the quality of sleep has a decisive influence on general health [2–4], and 
sleep deprivation is known to have a negative impact on overall feeling of well-being, 
and on cognitive performance such as attention and memory [5]. However, sleep qual-
ity is difficult to measure, and the current gold standard, polysomnography (PSG) [6] 
requires expert assistance and expensive equipment. Moreover, characterizing sleep 
by means of conventional PSG equipment will inevitably have a negative impact on the 
sleep, and thereby bias the sleep quality assessment. Because of the need for professional 

Abstract 

Background:  Sleep and sleep quality assessment by means of sleep stage analysis 
is important for both scientific and clinical applications. Unfortunately, the presently 
preferred method, polysomnography (PSG), requires considerable expert assistance 
and significantly affects the sleep of the person under observation. A reliable, accurate 
and mobile alternative to the PSG would make sleep information much more readily 
available in a wide range of medical circumstances.

New method:  Using an already proven method, ear-EEG, in which electrodes are 
placed inside the concha and ear canal, we measure cerebral activity and automatically 
score the sleep into up to five stages. These results are compared to manual scoring by 
trained clinicians, based on a simultaneously recorded PSG.

Results:  The correspondence between manually scored sleep, based on the PSG, and 
the automatic labelling, based on ear-EEG data, was evaluated using Cohen’s kappa 
coefficient. Kappa values are in the range 0.5–0.8, making ear-EEG relevant for both sci-
entific and clinical applications. Furthermore, a sleep-wake classifier with leave-one-out 
cross validation yielded specificity of 0.94 and sensitivity of 0.52 for the sleep stage.

Comparison with existing method(s):  Ear-EEG based scoring has clear advantages 
when compared to both the PSG and other mobile solutions, such as actigraphs. It is 
far more mobile, and potentially cheaper than the PSG, and the information on sleep 
stages is far superior to a wrist-based actigraph, or other devices based solely on body 
movement.

Conclusions:  This study shows that ear-EEG recordings carry information about sleep 
stages, and indicates that automatic sleep staging based on ear-EEG can classify sleep 
stages with a level of accuracy that makes it relevant for both scientific and clinical 
sleep assessment.

Keywords:  EEG, Ear-EEG, Mobile EEG, Sleep scoring

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Mikkelsen et al. BioMed Eng OnLine  (2017) 16:111 
DOI 10.1186/s12938-017-0400-5 BioMedical Engineering

OnLine

*Correspondence:   
mikkelsen.kaare@eng.au.dk 
1 Department 
of Engineering, Aarhus 
University, Finlandsgade 22, 
8200 Aarhus N, Denmark
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-7360-8629
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-017-0400-5&domain=pdf


Page 2 of 15Mikkelsen et al. BioMed Eng OnLine  (2017) 16:111 

assistance in PSG acquisition, and because of the laborious process to evaluate PSG data, 
sleep assessment is in most cases limited to a single or a few nights of sleep.

Due to these circumstances, there is an ongoing effort to explore other options for 
high-quality sleep monitoring [7, 8]. A very promising candidate in this field is ear-EEG 
[9], due to its potential portability and the fact that it conveys much of the same infor-
mation as the PSG, namely EEG data [10]. It is likely that the ear-EEG technology will 
have a much lower impact on the quality of sleep, giving a more accurate picture of the 
sleep, and also be suitable for sleep assessment over longer periods of time. Recently, the 
feasibility of ear-EEG for sleep assessment has been studied in a few exploratory papers 
[11–13], all indicating that ear-EEG is a very promising candidate.

This paper is based on a new dataset comprising nine healthy subjects recorded simul-
taneously with both PSG and ear-EEG for one night. This is significantly more sleep 
data than in previous studies. Trained clinicians manually scored the sleep following the 
guidelines of the American Academy of Sleep Science (AASM) [14]. The sleep staging 
based on ear-EEG was based on an automatic sleep staging approach, where a statistical 
classifier was trained based on the labels from the manual scoring (for other examples of 
this, see [15–17]). The automatic sleep staging was chosen for two reasons: (i) there was 
not any established methodology for sleep staging based on ear-EEG, while the machine 
learning approach provided rigorous and unbiased sleep staging. (ii) The question of 
whether a given method can also be used without manual scoring is important whenever 
wearable devices for long term monitoring are discussed.

In  the “Results” section below, additional support for this reasoning is presented, 
based on waveforms.

Methods
Research subjects

For this study, nine healthy subjects were recruited, aged 26–44, of which three were 
female. Measurements were all conducted in the same way: subjects first had a partial 
PSG [consisting of six channel EEG, electrooculography (EOG) and electromyography 
(EMG) on the chin] mounted by a professional at a local sleep clinic. Subsequently the 
subject was transported to our laboratory where the ear-EEG was mounted.

The subjects went home and slept with the equipment (both PSG and ear-EEG) for the 
night, and removed it themselves in the morning. The subjects were instructed to keep 
a cursory diary of the night, detailing comfort and whether the ear-EEG ear plugs stayed 
in during the night.

EEG hardware

The ear plugs used in this study were shaped very similarly to those used in [18], with 
the difference that the plugs here were made from soft silicone, and the electrodes were 
solid silver buttons soldered to copper wires. See Fig. 1 for an example of a left-ear plug. 
Before insertion, the outer ears were cleaned using skin preparation gel (NuPrep, Weaver 
and Company, USA) and electrode gel (Ten20, Weaver and Company, USA) was applied 
to the electrodes. Ear-EEG electrodes were ELA, ELB, ELE, ELI, ELG, ELK, ERA, ERB, 
ERE, ERI, ERG, ERK, as defined in [19].
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As described in [18], ear-EEG electrodes were validated by measuring the auditory 
steady state responses (ASSR) using 40 Hz amplitude modulated white noise, which 
was performed while the subject was still in the laboratory. All electrodes (including 
ear-EEG) were connected to the same amplifier (Natus xltek, Natus Medical Incorpo-
rated, USA), and ear-EEG electrodes were Cz-referenced during the recording. The PSG 
consisted of two EOG electrodes, two chin EMG electrodes and 8 scalp electrodes (O1, 
O2, C3, C4, A1, A2, F3, F4 by the 10–20 naming convention). The data was sampled at 
200 Hz.

Sleep scoring

Manual scoring

All PSG-measurements were scored by trained experts at the local sleep clinic, accord-
ing to the AASM guidelines [14]. The scorers did not use the ear-EEG data in any way, 
and did not receive any special instructions regarding this data. Scoring was done based 
on 30-s non-overlapping epochs, such that each epoch was assigned a label from the set: 
W, REM, NREM1, NREM2, NREM3. We direct the reader to the established sleep litera-
ture (such as [14]) for a discussion of these labels.

Automatic scoring

To investigate the hypothesis that ear-EEG data can be used for sleep scoring, machine 
learning was used to train an automatic classifier to mimic the scoring of the sleep 
experts. The analysis pipe line used for this is described below.

Channel rejection

Even though the ear-EEG electrodes were qualified in the lab by measuring an ASSR, 
it was found in the analysis of the sleep EEG, that some of the ear-EEG channels were 
noisy. This was probably due to a deterioration in the electrode-body contact from the 
time when the subject left the lab until they went to bed. The deterioration may also be 
related to deformation of the ear, when the subject laid their head on the pillow. Because 
of this deterioration, it was necessary to perform a channel rejection prior to the analysis 
of the data. This was done in the following way:

Fig. 1  Example left-ear ear plug with silver electrodes.
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All intra-ear derivations were calculated, and the power in the 10–35 Hz fre-
quency band was calculated. If pij is the power calculated for the derivation con-
sisting of channels i and j, let mi = median

(

{pij}j
)

. Electrode i was then rejected if 
mi > 5 · 10−12 V2/Hz . This uses the fact that a high-impedance electrode will tend to 
have much more high-frequency noise, and that this will be the case for all derivations 
that it takes part in. Elegantly, it does not require a simultaneous ’ground truth’ elec-
trode, such as a scalp measurement, to determine good and bad electrodes. The value 
of 5 · 10−12 V2/Hz was determined by observing which value cleanly separated the elec-
trodes into two groups, commensurate with the knowledge from the ASSR measure-
ments and the subject diaries (for instance, one subject reported having removed one 
ear plug entirely before falling asleep). See Appendix A for a visualization of this separa-
tion. In total, 14 electrodes were rejected out of a possible 72, resulting in a rejection rate 
of 19%.

We note that the band-pass filtering of 10–35 Hz was only chosen and performed for 
the sake of this channel rejection. The non-filtered data set was passed to the next stage 
of the analysis, as described below.

Feature extraction

The eight ear-EEG channels were distilled into three derivations (�·� denotes average):

Note that the L and R-channels describe the potential differences between concha 
and channel electrodes in each ear. If an electrode was marked as bad, it was excluded 
from the averages. If this meant that one of the derivations could not be calculated (for 
instance, if both ELA and ELB were missing), that derivation was substituted with a copy 
of one of the others. This was only done in the case of subject 5, which was missing data 
from the right ear plug.

When choosing features, we were inspired by [15], and chose the list of features shown 
in Table 1. Of these, a subset were not used by [15] and are described in Appendix B.  
In general, the time and frequency domain features were based on a 2–32 Hz-band-
pass filtered signal, while the passbands for EOG and EMG features were 0.5–30 and 
32–80 Hz, respectively. A 50 Hz notch filter was also applied. All frequency domain fea-
tures were based on power spectrum estimates using Welch’s algorithm with segment 
length 2 s, 1 s overlap and applying a Hanning window on each window.

It is important to stress that the EOG and EMG proxy features discussed in this paper 
were extracted entirely from ear-EEG data—no EOG or EMG electrodes were used in 
the analysis. This was to distill as much information about EOG and EMG variation as 
possible from the ear-EEG data.

All 33 features were calculated for each of the three derivations. As described in 
Appendix B, an attempt was made to reduce the number of features. However, this did 
not yield satisfactory results, and instead all 99 features were used in the study.

L-R: �ELA,ELB,ELE,ELI ,ELG,ELK �

− �ERA,ERB,ERE,ERI ,ERG,ERK �

L: �ELA,ELB� − �ELE,ELI ,ELG,ELK �

R: �ERA,ERB� − �ERE,ERI ,ERG,ERK �
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Classifier training

Type of classifier

We used ensembles of decision trees, called a ‘random forest’ [20], with each ensemble 
consisting of 100 trees. The implementation was that of the ‘fitensemble1’ function 
in Matlab 2015b, using the ‘Bag’ algorithm. This means that each decision tree is trained 
on a resampling of the original training set with the same number of elements (but with 
duplicates allowed), and each tree has a minimum leaf size of 1. For each tree, splitting is 
done such that the Gini coefficient [21] is optimized, and continues until all leaves (sub-
groups) are either homogeneous or have the minimum leaf size.

Cross validation

We explored three different ways to select test and training data for the classifier 
(described graphically in Fig. 2):

Leave-one-out Data was partitioned into nine subsets, each subset corresponding to a 
single subject. Thus the classifier had not seen any data from the person which it was 
tested on.

Table 1  Features used in this study

F1-6 and F13-25, 27, 28 are copied from [15], see Appendices A, B for a precise mapping between these features and those 
in [15]

Label Short description Type

F1 Signal skewness EEG time domain

F2 Signal kurtosis

F3 Zero crossing rate

F4 Hjorth mobility

F5 Hjorth complexity

F6 75th percentile

F7 Channel correlation

F8 EMG power EMG proxy

F9 Minimal EMG power

F10 Relative EMG burst amplitude

F11 Slow eye movement power EOG proxy

F12 Rapid eye movement power

F13, F14, F15, F16 Relative power in α,β , θ , δ-bands EEG frequency domain

F17, F18, F19, F20, F21, F22 Power-ratios: α/δ, δ/β , δ/θ , θ/α, θ/β ,α/β

F23 (θ + δ)/(α + β)

F24 Spectral edge frequency

F25 Median power frequency

F26 Mean spectral edge frequency difference

F27 Peak power frequency

F28 Spectral entropy

F29 Spindle probability Sleep event proxies

F30 Frequency stationarity

F31 Lowest adj. frequency similarity

F32 Largest CWT value

F33 Longest sleep spindle
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Total All epochs from all subjects were pooled, and partitioned into 20 subsets. A clas-
sifier was trained based on 19 sub-sets, and tested on the last subset. Cross-validation 
was performed over all 20 combinations.
Individual Same as ‘Total’, but only done on data from a single subject, which was split 
into ten subsets. Thus, there were 90 different test sets.

The three validation schemes each provide a different perspective on the sleep staging 
performance and the applicability of the method.

‘Individual’ is thought as a model of the scenario in which users have personal models/
classifiers created. This builds on an assumption that measurements from one night will 
have similar characteristics to those from a different night. This seems like a reasonable 
assumption, given the literature [22–24]. As shown in Fig. 2, test and training data was 
only picked from the same subject. Of course, as part of the calculation of the population 
Cohen’s kappa value, all data was eventually used as test data (each test having its own 
training data).

In ‘Leave-one-out’, a pre-trained classifier was applied to data from a new subject, 
which is probably the most relevant scenario. However, in this study we only had nine 
subjects, which is likely much too low for any given subject to be well represented by the 
remainder of the population.

Therefore, we have included ‘Total’, which represents the scenario where the pool of 
subjects is very large, in which case all normal sleep phenotypes are assumed repre-
sented in the training data. In the limit of a very large subject group, it is expected that 
‘Leave-one-out’ and ‘Total’ would converge, to a result in-between the results reported 
here. However, to achieve this would likely require a substantial number of subjects.

Leave One Out:

#1 #2 #3 #9

Total:

all pooled

Individual:

#1 #2 #3 #9

Train Test Unused

Fig. 2  Graphical illustration of the three cross validation methods. The ‘Leave-one-out’ method use all 
epochs from eight subjects for training, and all epochs from the remaining subject for testing. This is done 
for all nine subjects (ninefold cross validation). In the ‘Total’ method, all epochs from all subjects are pooled 
together and partitioned into 20 subsets. The classifier is trained on 19 subsets and tested on one subset. This 
is done for all 20 combinations of subsets (20-fold cross validation). In the ‘Individual’ method the classifier is 
subject specific. For each subject, the epochs are partitioned into ten subsets, the classifier is trained on nine 
subsets and tested on one subset. Thereby the algorithm is validated ten times on each of the nine subjects 
(90-fold cross validation)
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During the analysis, we found that it is very important in ‘Total’ and ‘Individual’ that 
the test sets each form contiguous subsets of the data. If instead of the above, each sub-
set was selected at random, it would mean that most likely each test epoch would have 
neighboring training epochs on both sides. This in turn would give the classifier access 
to the correct label for epochs extremely similar to the test epoch, preventing proper 
generalization, and leading to over fitting. We will return briefly to the discussion of this 
‘neighbor effect’ later in the paper.

To evaluate the agreement between the expert labels and the output of the classifi-
ers, Cohens kappa coefficient [25] was calculated for each of the three cross-validation 
methods.

Results
Measurements

All nine subjects managed to fall asleep wearing the PSG and ear-EEG equipment. One 
subject (number 5) reported having removed the right ear plug before falling asleep. 
When asked to judge their quality of sleep between the categories: unchanged–worse–
much worse, 1 subject reported “unchanged”, 5 reported “worse” and 3 felt they slept 
much worse than usual. The subjects were not asked to describe whether their dis-
comfort was caused by the ear-EEG device, the PSG, or both. The subjects slept (or 
attempted to sleep) between 2.4 and 9.6 h with the equipment on, an average of 6.9. This 
means that in total, 61.8 h of sleep were recorded and scored by the sleep scorer, result-
ing in 7411 30-s epochs. In Table  2 are shown the number of useable electrodes and 
scored epochs for each subject.

In the analysis below, the one-eared subject was not removed, instead all three deriva-
tions were identical for that subject.

A first comparison

Figure 3 shows characteristics of conventional EEG and ear-EEG, during sleep. Figure 3a 
shows power spectra for REM, NREM2 and NREM3 for two scalp derivatives and a 
left-right ear-EEG derivative. A large degree of similarity is observed for the scalp and 
ear derivatives, in particular REM and NREM spectra are clearly separated for all three 
derivatives. Figure 3b shows characteristic sleep events (sleep spindle and K-complex) 
for the same two scalp derivatives and the left-right ear-EEG derivative. Clear similari-
ties in the waveforms are observed across all three derivatives.

However, despite these similarities it cannot in general be assumed that sleep stage 
signatures will be exactly equal in conventional EEG and ear-EEG. Further, it should 

Table 2  κ values for each subject, for all methods of cross-validation

Averages were calculated as the average of all nine columns, not by weighting each subject by number of epochs

Subject 1 2 3 4 5 6 7 8 9 Avr.

Useable electrodes 10 10 11 12 6 12 12 11 10 10.4

Scored epochs 1040 964 932 1150 491 926 758 293 857 823

Leave-one-out, κ 0.05 0.36 0.57 0.60 0.03 0.59 0.75 0.65 0.44 0.45

Total, κ 0.50 0.49 0.63 0.65 0.57 0.64 0.78 0.65 0.70 0.62

Individual, κ 0.52 0.52 0.67 0.72 0.55 0.65 0.76 0.70 0.76 0.65
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be stressed that not all sleep events are as clearly visible in ear-EEG as those shown. 
As was mentioned in the introduction, this is part of the reason why a machine learn-
ing approach is suitable for this study. More precisely, while we deem it likely that sleep 
experts could be trained, with some level of success, to score sleep based on ear-EEG 
data, it would likely require a significant amount of retraining, not suitable for this study.
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Classification results

Figure 4 shows kappa values (κ) for the three modes of cross validation and for 5, 3 and 
2-stage classification (the stages in the last two being W-REM-NREM and W-Sleep, 
respectively). Results for 3 and 2-stage classification were simply obtained by relabelling 
the 5-stage results, so the classifiers were not retrained. Regarding the percentagewise 
agreement, it is noteworthy that manual scorers have been shown to have an average 
agreement of 82.6% [26], while actigraphs using 2 stages have an agreement rate of 83.9–
96.5% with PSG’s [6].

For comparison, our classifier performs somewhat worse than the ones presented in 
[15] (κ ≈ 0.85) and [16] (correlation coefficient ≈ 0.84), though their studies did use 
scalp electrodes instead of ear-EEG.

When comparing the numbers shown in Fig. 4 to those found elsewhere in other stud-
ies, it is valuable to keep in mind that the ‘neighbour effect’ stemming from scattered 
test data, as was discussed above (see “Cross validation” section), may not always be 
accounted for in the literature. In our case, using scattered test data increased the per-
centagewise agreement between manual and automatic labels by an average 6% points 
across ‘Total’ and ‘Individual’.

Figure 5 shows sleep staging traces for subject 7, using the ‘Individual’ cross-valida-
tion method. We see that generally the transitions between stable stages are accurately 
predicted.

Figure  6 shows the confusion matrices for the three cross validation schemes. The 
most difficult state to identify is NREM 1, likely stemming from the fact that there are 
very few examples of this (only 7% of epochs). However, NREM 2 and NREM 3 are iden-
tified very well, even for ‘Leave-one-out’ cross validation.

In Table 2 is shown the κ-values for all subjects, for each method of cross validation. It 
is interesting to note that subject 5 was not always the worst performing subject, despite 
the fact that only data from one ear piece was available from this subject.

Wake
REM

NREM 1
NREM 2
NREM 3

Manually scored sleep stage progression for subject 7

100 200 300 400 500 600 700

100 200 300 400 500 600 700

30 second epochs

Wake
REM

NREM 1
NREM 2
NREM 3

Estimated sleep stage progression, κ = 0.76482

Fig. 5  Comparison of sleep staging results from manual (top) and automatic (bottom) staging, for one 
subject, using a classifier only trained on data from the same subject. REM stages have been highlighted in 
red, as per usual convention
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Discussion
We have seen that ear-EEG as a platform for automatic sleep staging has definite merit, 
especially if problems related to inter-subject variability can be addressed. Compared 
with other studies [15, 27, 28], the subject cohort in this study is rather small at only nine 
individuals. However by resampling the cohort, it is possible to estimate the classifier 
performance for larger cohorts; following the procedure outlined in [29] we find that a 
cohort size of 30 would likely have increased the 5-stage ‘Leave-one-out’-κ to 0.5.

Fig. 6  Confusion matrices for the three types of cross validation, and three model complexities. Colors match 
those of Fig. 4. For each matrix is given an extra column of sensitivities and specificities. We direct the reader 
to Fig. 4, right axis, for average accuracies. As indicated by the legend, rows correspond to manual labels, 
columns to automatically generated labels
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An intriguing question which was not addressed here is intra-subject variability. In 
other words, how well does a classifier trained on data from Tuesday perform on data 
from Wednesday? It seems safe to say that it will at the very least be comparable to the 
‘Leave-one-out’-scheme described here, but possibly much closer to the ‘Individual’ 
scheme. Based on studies concerning individual differences in physiological measures 
during sleep [22–24], it seems likely that intra-subject variability will be low. In this sce-
nario, one could imagine uses where a single night (possibly just a day-time nap) with 
both PSG and ear-EEG could be used to calibrate a classifier to each individual user. One 
example could be a clinical setting where the usual one night of PSG could be supple-
mented with a longer ear-EEG study spanning several weeks or more.

All data in this study was obtained from healthy individuals, and thus the study does 
not provide any information as to how ear-EEG would perform in the presence of 
pathology. However, given the demonstrated ability of ear-EEG to reliably classify sleep 
staging, it is likely that a specialist could utilize the technology to detect abnormal sleep.

A surprising issue during the study was that of user comfort. As soon as user discom-
fort was reported, a parallel investigation was initiated into possible remedies. These will 
be applied in a future study, where we expect the level of discomfort to be substantially 
reduced.

An additional benefit of the ear-EEG platform is the ease with which the electrodes 
remain attached to the skin. Whereas conventional electrodes need adhesives and/or 
mechanical support to ensure a reliable contact, ear-EEG benefits from the precise fit 
of the ear piece within the outer ear, largely retaining the connection through geometry 
alone.

Conclusions
The study makes the valuable contribution of having more participants than previous 
ear-EEG sleep studies, as well as being the first study to make a quantitative comparison 
to simultaneously recorded PSG.

Through the machine learning approach, the study amply demonstrates that ear-EEG 
contains sleep-relevant data, in line with previously published studies. However, the 
need for a comfortable sleep-monitoring solution is also highlighted. We are convinced, 
based on developments taking place after this study was conducted, that the comfort 
problems discussed here will be solved in future studies.

In summary, we consider the findings of this study very positive regarding the contin-
ued development of ear-EEG as a mobile sleep staging platform.

Sleep monitoring with ear-EEG will be particularly interesting in cases where it is rele-
vant to monitor sleep over extended periods of time. In such cases automatic sleep stag-
ing turns out to be even more important and is probably a necessity. The findings in this 
study are also very positive in this regard.

In future studies, it would be interesting to add additional ways to compare measure-
ments, for instance one in which the training and test sets were matched according to 
age and gender. This would most likely require a substantially larger pool of subjects.
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Appendix A: Channel rejection
To further elaborate on the choice of electrode rejection criteria, Fig. 7 shows mi for all 
channels. In the plot, electrodes that were expected to be bad either due to lost connec-
tion during the recording (an ear plug removed, for instance) or due to poor results in 
the initial ASSR test, have been marked in red. We see that the simple rejection criteria 
employed finds almost all these electrodes, and we consider this method both a more 
reproducible, as well as more scientifically sound approach.

10-4 10-2 100 102 104

Median power above 10 hz

median power = 5  10-12 V2/Hz
Known bad electrodes

Fig. 7  The justification for the chosen threshold for electrode rejection. Each marker corresponds to an elec-
trode, red markers show electrodes which, based on either ASSR measurements or visual inspection, were 
deemed unsuitable. We see that rejecting all electrodes above this limit corresponds quite well to the initial, 
more loosely defined criteria

http://www.eareeg.org/SleepData_2017/sleep.zip6
http://www.eareeg.org/SleepData_2017/sleep.zip6
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Appendix B: Additional feature discussion
Feature elimination

Feature elimination was attempted, by systematically removing one feature, and evaluat-
ing classifier performance, looping over all features. After each loop, the feature whose 
absence was the least detrimental to classifier performance was removed for the remain-
der of the analysis. In this way, the pool of features was gradually shrunk [30].

The data material in this test was all subjects pooled (called ‘Total’ above), and classifier 
performance was evaluated by partitioning the data pool into 20 equal parts, and itera-
tively training a classifier using 95% of the data as training data and the remaining 5% as 
test data. Finally, Cohen’s κ was calculated based on the combined classifier results.

Figure 8 shows the maximal κ as a function of number of features. We see a general 
trend that best performance is achieved somewhere between 20 and 60 features. How-
ever, after further analysis, we have discovered that the precise set and number of fea-
tures depends intimately not only on which subjects are included in the pool, but also 
how that pool is partitioned into 20 chunks. In other words, either the same, somewhat 
arbitrary choice of features is used, based on one chosen partitioning, in which case 
there is a risk of introducing a bias in the classifier (whichever representative subset of 
the data is chosen for selecting features, that subset may be overfitted when it is later 
used as test data), or there will be no clear indication of which set of features others 
should use. In the latter case, we would still have to present 99 features to our readers, 
and would have achieved no improvement in either classifier performance or readability. 
In future studies, we aim to have sufficient data to set aside a dedicated validation data 
set for determining feature selection, without the risk of overfitting. For now, we have 
chosen not to perform feature selection, but instead keep all 99 features.

Feature details

Below is given a detailed description of those features used which were not included in [15].

F7: Correlation coefficient between channels The only feature requiring multiple chan-
nels in its definition. Since there are three EEG derivations, this feature was simply cal-
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Fig. 8  Results from feature rejection. Features were gradually removed from the pool, in order to increase κ. 
At each step, the highest achieved value was recorded. Note the overall very low variation in κ
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culated as a the correlation coefficient between the i’th and (i+1)’th derivations, mak-
ing sure that all pairs of derivations are evaluated.
F8: EMG power Total power in the [32, 80] Hz band.
F9: Minimal EMG power Each epoch was split into ten segments. EMG power was cal-
culated for each segment, and the lowest of these ten values was recorded.
F10: Relative EMG burst amplitude Maximum EMG signal amplitude divided by F9.
F11: Slow eye movement power Power in the frequency band [0.5,  2] relative to full 
power in the [0.5, 30] Hz-band. Inspired by Zhang et al. [31].
F12: Rapid eye movement power Power in the frequency band [2,  5] relative to full 
power in the [0.5, 30] Hz-band. Inspired by Zhang et al. [31].
F26: Mean spectral edge frequency difference Taken from [32].
F29: Spindle probability Letting P(x − y) be the set of power esti-
mates for frequencies in the x to y Hz band, this feature is calculated as 
max(P(11− 16))/(�P(4 − 10)� + �P(20− 32)�), and is inspired by Huupponen et  al. 
[33] (“sigma index”).
F30: Frequency stationarity For each epoch, the Welch algorithm calculates power 
spectra for 31 segments. F30 calculates the average Pearson correlation between these 
31 spectra.
F31: Lowest adj. frequency similarity Using the same correlations as in F30, F31 is the 
lowest recorded correlation between neighboring segments.
F32: Largest CWT value A continuous Wavelet Transform of the filtered EEG-signal is 
computed, using a complex frequency B-spline as wavelet. The wavelet has a support of 
0.5 s. Inspired by Lajnef et al. [34].
F33: Longest sleep spindle The signal was bandpass filtered to a band of 11–16 Hz, and 
the Teager energy operator (TEO) was applied to it (see [35]). At the same time, a short 
term Fourier transform (STFT) was applied to the unfiltered signal, and the power in 
the 12–14 Hz band relative to average power in 4–32 Hz band was computed (exclud-
ing 12–14 Hz). Finally, signal segments in which F32 > 15, TEO > 0.5 and STFT power 
> 0.3 were assumed to be sleep spindles. The maximal length of observed spindles con-
stituted F33. This was inspired by Duman et al. [35].

As to the remaining features, the exact mapping is: (letting KN be the N’th feature from 
[15]): F1:K3, F2:K4, F3: K5, F4: K7, F5: K8, F6:K9, F13:K14, F14:K15, F15:K16, F16:K17, 
F17:K18, F18:K19, F19:K20, F20:K21, F21:K22, F22:K23, F23:K24, F24:K25, F25:K27, 
F27:K26, F28: K28.
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