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Background
Unmanned aerial vehicles (UAVs) or drones, particularly small UAVs capable of hover 
are a rapidly maturing technology with increasing numbers of innovative applications. 
The ability of a UAV to detect and measure the vital signs of humans can have many 
applications, including: triage of disaster victims, detection of security threats and deep-
ening the context of human to machine interactions.

Abstract 

Background:  Remote physiological measurement might be very useful for bio‑
medical diagnostics and monitoring. This study presents an efficient method for 
remotely measuring heart rate and respiratory rate from video captured by a hovering 
unmanned aerial vehicle (UVA). The proposed method estimates heart rate and respira‑
tory rate based on the acquired signals obtained from video-photoplethysmography 
that are synchronous with cardiorespiratory activity.

Methods:  Since the PPG signal is highly affected by the noise variations (illumination 
variations, subject’s motions and camera movement), we have used advanced signal 
processing techniques, including complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN) and canonical correlation analysis (CCA) to remove 
noise under these assumptions.

Results:  To evaluate the performance and effectiveness of the proposed method, a 
set of experiments were performed on 15 healthy volunteers in a front-facing position 
involving motion resulting from both the subject and the UAV under different scenar‑
ios and different lighting conditions.

Conclusion:  The experimental results demonstrated that the proposed system 
with and without the magnification process achieves robust and accurate readings 
and have significant correlations compared to a standard pulse oximeter and Piezo 
respiratory belt. Also, the squared correlation coefficient, root mean square error, and 
mean error rate yielded by the proposed method with and without the magnification 
process were significantly better than the state-of-the-art methodologies, including 
independent component analysis (ICA) and principal component analysis (PCA).

Keywords:  Unmanned aerial vehicle, Imaging photoplethysmography, Canonical 
correlation analysis, Video magnification technique
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Remote-sensing imaging systems provide a convenient way to monitor human vital 
signs without any physical restrictions. Imaging Photoplethysmography (iPPG) is one of 
the most promising methods that uses a video camera as a photodetector to detect opti-
cal properties passing through or reflecting from the skin due to cardiac synchronous 
variations. The traditional contact monitoring methods, such as ECG, pulse oximeter, 
and respiratory belt transducer, require patients to wear adhesive sensors, electrodes and 
chest straps, potentially for a long time which may be discomfort, infection or adverse 
reactions in patients with sensitive skin (e.g., neonates or those suffering burns) [1–6]. 
The desire to solve the problems associated with contact monitoring systems has led to 
research using video cameras as a non-contact sensor for monitoring of vital signs.

Non-contact methods based on iPPG provide a low-cost and comfortable way to meas-
ure vital signs. For example, Takano and Ohta [7] used a time-lapse image acquired from a 
CCD camera to extract cardiorespiratory signals of stationary subjects under different illu-
mination levels. They used image processing techniques, including auto-regressive (AR) 
spectral analysis combined with a 1st-order derivative and a 2 Hz low pass filter to analyse 
changes in the image brightness of the region of interest (ROI) around the cheek in the 
facial area which allowed detection of both heart and respiratory rates. Later, Verkruysse 
et al. [8] could remotely extract PPG signals from the RGB channels obtained from a digi-
tal camera under ambient light conditions. They used a fast Fourier transform (FFT) and 
band-pass digital filtering on the PPG signal extracted from the human face to detect heart 
and respiratory rates. Similarly, in [9, 10] Poh et al. reported on the development of a non-
contact and automated method for measuring of the cardiac pulse from the human face 
recorded using a built-in webcam. They applied a blind source separation (BSS) method 
based on independent component analysis (ICA) on the RGB channels intensity to obtain 
three components and used Fourier transformer and band-pass filtering on these compo-
nents to extract the signal of interest. According to their outcomes, the green component 
was the best component to extract the cardiac pulse signal. Later, a study by Lewandowska 
et al. [11] proposed a contactless method for heart pulse monitoring with a webcam based 
on principle component analysis (PCA) to reduce computational complexity compared to 
ICA used by [9, 10]. Similarly to Poh’s methodology, Kwon et al. [12] used the front-facing 
camera of a smartphone to extract cardiac pulse signal based on the frequency analysis of 
the PPG signal. As claimed in previous studies, the main challenges using iPPG method 
were illumination variations (caused by the lighting conditions of indoor or outdoor 
environments, intrinsic camera noise and changes in the skin tone) and subject’s move-
ment (of the entire head, but also facial expressions, eye blinking and speech) during the 
measurements. Research has been performed to solve these limitations. For instance, to 
remove the challenges of illumination variations, some investigations [13–16] used head 
motion generated from the blood cycle from the heart to the head via the carotid arteries 
to extract the cardiac pulse signal based on a ICA [13], PCA [14, 15] and a frame sub-
traction method [16]. However, the subjects’ motion remained the main challenge in their 
results. Another example regarding only to improve subject’s motion, Haan and Jeanne 
[17] extracted the cardiac pulse signals directly from RGB face image sequences captured 
from a digital camera using a chrominance based iPPG method for a subject exercising 
on a stationary exercise bicycle and a stepping machine. According to their outcomes, 
the proposed method was better than ICA used in [9, 10] and PCA used in [11] for both 



Page 3 of 20Al‑Naji et al. BioMed Eng OnLine  (2017) 16:101 

stationary and moving subjects. Another study by Li et al. [18] proposed a novel heart rate 
measurement method to reduce the noise in the cardiac pulse signal from the recording 
of face video caused by both illumination variations and subjects’ motions. They used a 
Normalized Least Mean Squares (NLMS) filter [19] to deal with noise caused by illumi-
nation variations and both the Discriminative Response Map Fitting (DRMF) [20] and 
the Kanade-Lucas-Tomasi (KLT) algorithms [21] to reduce the noise caused by subjects’ 
motion. Although their method has shown promising results for heart rate under realistic 
human-computer interaction situations, it led to a higher computational complexity than 
other methods. Feng et al. [22] used an optical iPPG signal model to remove noise caused 
by motion artefacts from the PPG signal based on the optical properties of human skin. 
They proposed an adaptive colour difference method between the red and green channels 
acquired from a digital camera and used an adaptive bandpass filter (ABF) based on the 
spectral characteristics of the PPG signal to extract cardiac pulse signal and reduce motion 
artefacts in the facial ROI. However, more advanced signal processing techniques are 
needed to improve their results because a colour difference method and ABF may be inef-
ficient when the noise signal falls within the frequency band of interest. Also, the perfor-
mance of the optical analysis method may be affected by periodic illumination variations. 
Recently, Chen et al. [23] used a reflectance decomposition method on the green channel 
and ensemble empirical mode decomposition (EEMD) to separate the real cardiac pulse 
signal from the environmental illumination noise in the PPG signal from digital camera 
video of a human face. Their proposed approach outperformed the current state of the art 
methods [9, 10]. However, subject respiration can affect the decomposition of facial reflec-
tance and thus distort the signal of interest. A study by Cheng et al. [24] demonstrated 
the feasibility of removing the illumination variation noise from the cardiac pulse signal in 
the facial ROI (green channel) from webcam videos using a joint blind source separation 
(JBSS) and EEMD. The main limitations in their study were that all subjects were asked to 
keep stationary and both facial ROI and background ROI were assumed to have the same 
illumination variations. In addition, most of the previous studies had considered only the 
motion artefacts resulting from the subject movement and not those resulting from cam-
era movement. Therefore, to remove the effects of illumination variations, subject’s move-
ment and camera movement, we proposed a combination of a complete ensemble EMD 
with adaptive noise (CEEMDAN) and a canonical correlation analysis (CCA) to remove 
noise acquired from these effects in the PPG signal and thus present a robust non-contact 
method to remotely extract cardiorespiratory signals (heart rate and respiratory rate) using 
video sequences captured by a hovering UAV.

Methods
Experimental setup and data acquisition

Fifteen healthy participants (10 males–5 females) with ages ranging from 2 to 40 years 
were enrolled in the experiment. The ethical approval was granted by the UniSA Human 
Research Ethics Committee and it was carried out following the rules of the Declara-
tion of Helsinki of 1975. A written informed consent was obtained from each participant 
before commencing in the experiment. The experiment was performed in the outdoor 
and indoor environments, where each subject is standing at a distance of 3 m from the 
front of the UAV camera as shown in Fig. 1. Several videos were acquired for each subject 
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using a hovering UAV (3DR solo) with a GoPro Hero 4k camera at different times of day 
with different illumination levels. We used a replacement lens (10MP, 5.4  mm GoPro 
Lens) instead of the original camera lens in order to reduce a fish-eye distortion. Each 
video was captured at 60 frames per second with a resolution of 1920 × 1080. The video 
acquisition time was set to 1 min. However, only the last 30 s was chosen for analysis in 
Matlab program (R2015b). Control measurement of the reference heart and respiratory 
rates was performed using a finger pulse oximeter (Rossmax SA210) [25] and Piezo res-
piratory belt transducer (MLT1132) [26] for validation purpose.

Pre‑processing and data analysis

The system framework is composed of five steps as shown in Fig. 2.
In the first step, we used an enhanced video magnification technique [27] to magnify 

skin colour variation since the variation caused by the cardiac pulse signal is very weak. 
Although the digital camera can reveal the iPPG signal, there was substantial noise asso-
ciated with this signal caused by effecting of illumination variations, subject’s movement 
and camera movement. We also evaluated the results to examine whether the proposed 
system with and without magnification process is more efficient than the conventional 
measurement methods and to improve an importance this process to enhance the iPPG 
signal. Some examples for iPPG signals acquired from different conditions are given in 
Fig. 3.

In the second step, to select facial ROI and deal with the problems associated with 
head movement, we used an enhanced face detection method proposed by Chen et al. 
[28] instead of Viola–Jones method [29] used in the most previous measurement meth-
ods because it was more effective with inclined or angled. Also, the Chen et al. method 

Fig. 1  Experimental setup and data acquisition
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has a better performance than conventional face detection methods [18, 22, 28]. The raw 
iPPG signal was then obtained by averaging all the image pixel values within the facial 
ROI of the green channel as follows:

(1)iPPG(t) =

∑
x,y∈ROI I

(
x, y, t

)

|ROI |

Fig. 2  System overview of the proposed

Fig. 3  The iPPG signals for facial ROI (green channel) for a subject in case of a stationary b stationary with 
15× magnification, c different face expressions, d talking, and e different illumination conditions
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where I(x, y) is the pixel value at image location (x, y), at a time (t) and |ROI| is the size of 
the facial ROI.

In the third step, we used a complete ensemble EMD with adaptive noise (CEEM-
DAN) [30], to reduce noise interferences caused by illumination variations from the 
iPPG signal. CEEMDAN is an advanced signal processing method proposed by Colomi-
nas et al. [30] to improve performance of EMD [31] and EEMD [32] by reducing noise 
from the intrinsic mode functions (IMFs) with more physical meaning. Similar to EMD, 
CEEMDAN decomposes the original signal into IMFs with instantaneous amplitude and 
frequency data. An example of eight IMFs decomposition with number of iterations of 
200 for iPPG(t) is provided in Fig. 4.

Three IMFs (IMF5, IMF6 and IMF7) were be chosen for estimating cardiorespiratory 
signals based on their frequency spectra that correspond to the best range of cardiac 
pulse frequency band as shown in Fig. 5.

Figure 5 shows the spectrum of all IMFs and which IMF has the best frequency bands 
of interest. It is clear that the frequency bands of IMF5, IMF6 and IMF7 fall within 
0.2–4  Hz, corresponding to 12–240  beats/min, whereas the frequency bands of other 
IMFs fall outside this range. Therefore, just IMF5, IMF6 and IMF7 have been selected as 
inputs for the next step because they have maximum frequency spectra of 2.7, 1.34 and 
1.2 Hz which correspond to 162, 80 and 72 beats respectively.

In the fourth step, CCA technique is then applied on the selected IMFs to remove the 
motion artefacts components from the iPPG signal. The CCA technique can be used 
as a blind source separation (BSS) for separating a number of mixed signals [33–35]. 
This technique is based on second-order statistics to generate components derived from 
their uncorrelated signals rather than independence components used in ICA. CCA can 

Fig. 4  An example of CEEMDAN decomposition of the iPPG signal in the facial ROI
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achieve better performance for BBS than ICA and it has less computational complexity 
than ICA [36–38].

To understand how CCA works as a BSS method, j and k are two multi-dimensional 
random signals. Consider the linear combinations of these signals, known as the canoni-
cal variates as follows [33]:

where Wj and Wk are weighting matrices of j and k. The correlation, ρ, between these 
linear combinations is given by

where Cjj and Ckk are the nonsingular within-set covariance matrices and Cjk is the 
between-sets covariance matrix. The largest canonical variates can be found with the 
maximum value of ρ with respect to Wj and Wk.

The original green channel signal (a) is converted into a multichannel signal (A) using 
the CEEMDAN algorithm. The IMFs determined to be outside frequency bands of inter-
est are removed, and then the remaining IMFs determined to be within frequency bands 
of interest are used as inputs with the un-mixing matrix W of the CCA algorithm. The 
original multichannel signal Ã is then reconstructed without unwanted IMFs (artefact 
components) using the inverse of the un-mixing matrix W−1. Now, the target single-
channel signal ã without the noises resulting from the effects of illumination variations, 
subject’s movement and camera movement can be determined by adding the new IMFs 
components in the Ã matrix.

(2)j = WT
j

[
j − j

]
, k = WT

k

[
k − k

]

(3)ρ =
WT

j CjkWk√
WT

j CjjWjW
T
k CkkWk

Fig. 5  The frequency spectrum of decomposed IMFs



Page 8 of 20Al‑Naji et al. BioMed Eng OnLine  (2017) 16:101 

In the next step, a fast Fourier transformer (FFT) is applied to transform the ã sig-
nal from the time domain to the frequency domain. Two ideal band pass filters are then 
used on this signal with selected frequencies of 0.5–4 and 0.2–0.5 Hz corresponding to 
30–240 beats/min and 12–30 breaths/min respectively. The inverse FFT is then applied 
to the result of filtering to obtain the cardiorespiratory signals. Finally, the heart and res-
piratory rates are measured by using the peak detection algorithm [39].

Experiments
The experimental results obtained from 15 subjects were set in four scenarios. The first 
scenario is a stationary scenario, where the subject was standing in front of the UAV 
without any movement. The second scenario is when the subject was asked to do dis-
play different facial expressions during the imagery task with some head rotation. In 
the third scenario the subject was asked to remain stationary and talk normally during 
the imagery capture. These three scenarios were set up in outdoor and indoor environ-
ments under ambient light conditions. The last scenario is when the imagery sessions 
were in the indoor environment under different illumination levels. The motion artefacts 
resulting from a flying UAV camera were included in all proposed scenarios. The frame 
sequences obtained from the UAV camera for all scenarios were processed through the 
proposed system with and without the magnification process. We evaluated the perfor-
mance of the proposed system for heart and respiratory rate measurements with and 
without the magnification process and compared them with the measurements obtained 
from ICA [9, 10] and PCA [11] in four scenarios. Also, the statistical analysis based on 
Bland–Altman method [40] was used to quantify the degree of agreement between these 
systems and the reference methods (Rossmax Pulse oximeter and Piezo respiratory belt). 
The mean bias and standard deviation (SD) of the differences, 95% limits of agreement 
(±1.96 SD), the squared correlation coefficients (CC2), root mean squared error (RMSE) 
and mean error rate (ME) were calculated for the estimated heart and respiratory rates 
from the proposed systems and the reference methods for all proposed scenarios.

Heart rate measurements

In the first scenario, the statistical agreement based on Bland–Altman plots of all meas-
uring systems against the reference method (Rossmax Pulse oximeter) is shown in Fig. 6, 
where the x-axis indicates the mean of the measurements and y-axis is the difference 
between the measurements.

The Bland–Altman plot based on the proposed system with the magnification process 
(see Fig. 6a) showed a mean bias of 0.069 beats/min with a lower limit of −0.52 beats/
min and an upper 95% limit of +0.66 beats/min with a CC2 of 0.9991 and a RMSE of 
0.31  beats/min, whereas the Bland–Altman plot based on the proposed system with-
out the magnification process (see Fig.  6b) led a mean bias of 0.072 beats/min with a 
lower limit of −1 beats/min and an upper 95% limit of +1.2 beats/min with a CC2 of 
0.9966 and a RMSE of 0.57  beats/min. When the agreement between the heart rate 
measurements based on ICA was evaluated (Fig. 6c), a mean bias was 0.27 beats/min 
with 95% limits of agreement −2.1 to 2.6 beats/min, and CC2 was 0.9843 with a RMSE 
of 1.22 beats/min, whereas the statistics were 0.3 beats/min of a mean bias with −2.9 
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to 3.5  beats/min of 95% limits of agreement, CC2 of 0.9712, RMSE of 1.64  beats/min 
(Fig. 6d) when PCA was used instead.

The Bland–Altman plots for the second scenario are shown in Fig. 7.
As shown in Fig. 7a, a mean bias was 0.14 beats/min and 95% limits of agreement were 

−1.3 and +1.5 beats/min with a CC2 of 0.9945 and a RMSE of 0.73 beats/min. Figure 7b 
showed that a mean bias was 0.19  beats/min and 95% limits of agreement were −1.8 
and +2.2 beats/min with a CC2 of 0.9891 and a RMSE of 1.02 beats/min. Using ICA (see 
Fig. 7c), a mean bias was 0.47 beats/min with 95% limits of agreement −3.5 to 4.4 beats/
min and CC2 was 0.9559 and RMSE was 2.05  beats/min, while when PCA was used 
instead, the statistics were 0.59 beats/min of a mean bias with −4.1 to 5.3 beats/min of 
95% limits of agreement, CC2 of 0.9383, a RMSE of 2.44 beats/min (see Fig. 7d).

The Bland–Altman plots for the third scenario are shown in Fig. 8.
Figure 8a revealed a mean bias of 0.11 beats/min with 95% limits of agreement −0.87 

to 1.1 beats/min, CC2 of 0.9973 and RMSE of 0.51 beats/min, while (Fig. 8) revealed a 
mean bias of 0.15 beats/min with 95% limits of agreement −1.5 to 1.8 beats/min, CC2 
of 0.9926 and RMSE of 0.84 beats/min. Based on ICA and PCA, the statistics were 0.38; 

Fig. 6  Bland–Altman plots between heart rate measurements obtained by the reference method and heart 
rates measured by a the proposed system with magnification, b the proposed system without magnification, 
c ICA and d PCA for the first scenario
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−2.5 to 3.3; 0.9759; 1.53 beats/min based ICA (see Fig. 8c) and 0.4; −3.1 to 3.9; 0.965; 
1.83 beats/min based on PCA (see Fig. 8d) for the main bias, limits of agreement, CC2 
and RMSE respectively. The Bland–Altman plots for the last scenario are shown in Fig. 9.

The Bland–Altman plot (Fig. 9a) showed the statistics were 0.17, −1.6 to 1.9, 0.9917 
and 0.89 beats/min for the mean bias, limits of agreement, CC2 and RMSE respectively 
when the proposed system with magnification process was used, while Fig. 9b showed 
the statistics were 0.24, −2.1 to 2.6, 0.9848 and 1.2 beats/min respectively when the pro-
posed system without magnification process was used instead. The statistics based on 
ICA were 0.58, −5.1 to 6.3, 0.9089 and 2.94 beats/min (see Fig. 9c), whereas they were 
0.6, −5.7 to 6.9, 0.8887 and 3.24 beats/min based on PCA (see Fig. 9d).

A performance comparison of various measuring systems based on their RMSE value 
for the detection of heart rate for all proposed scenarios is shown in Fig. 10.

Fig. 7  Bland-Altman plots between heart rate measurements obtained by the reference method and heart 
rates measured by a the proposed system with magnification, b the proposed system without magnification, 
c ICA and d PCA for the second scenario
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Respiratory rate measurements

Figure  11 demonstrates a Bland–Altman plots of the respiratory rate measurements 
in the first scenario. The Bland–Altman plot (Fig.  11a) revealed a strong agreement 
between the difference between heart rate measurements by the proposed system using 
the magnification process and the reference measurements by the Piezo respiratory belt. 
The mean bias was 0.066 breaths/min and 95% limit of agreement range between −0.3 
and 0.43 breaths/min with a CC2 of 0.9978 and a RMSE of 0.2 breaths/min. Bland–Alt-
man plot (Fig. 11b) revealed a mean bias of 0.13 breaths/min, agreement range between 
−0.66 and 0.93 breaths/min, a CC2 of 0.9898 and a RMSE of 0.42 breaths/min when the 
proposed system without magnification process was used instead. Using ICA as shown 
in Fig. 11c, the main bias was 0.44 breaths/min with agreement range between −1.9 and 
2.8 breaths/min. The CC2 was 0.918 and the RMSE was 1.26 breaths/min. Using PCA as 
shown in Fig. 11d, the main bias was 0.62 breaths/min with agreement range between 
−2.4 and 3.7 breaths/min. The CC2 was 0.8661 and the RMSE was 1.66 breaths/min.

Fig. 8  Bland-Altman plots between heart rate measurements obtained by the reference method and heart 
rates measured by a the proposed system with magnification, b the proposed system without magnification, 
c ICA and d PCA for the third scenario
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Fig. 9  Bland-Altman plots between heart rate measurements obtained by the reference method and heart 
rates measured by a the proposed system with magnification, b the proposed system without magnification, 
c ICA and d PCA for the fourth scenario

Fig. 10  RMSE performance of various heart rate measuring systems for all proposed scenarios
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In the second scenario, Fig.  12a revealed a mean bias of 0.12  breaths/min with 
agreement range between −0.62 to 0.85 breaths/min, a CC2 of 0.9913 and a RMSE of 
0.39  breaths/min, while Fig.  12b revealed a mean bias of 0.2  breaths/min with agree-
ment range between −0.93 to 1.3 breaths/min, CC2 of 0.9799 and RMSE of 0.6 breaths/
min. Using ICA as shown in Fig. 12c, the statistics were 0.57 breaths/min of a mean bias; 
−2.3 to 3.4  breaths/min agreement range; 0.8833 of CC2; 1.54  breaths/min of RMSE, 
whereas when PCA was used, the statistics were 0.94 breaths/min; −2.5 to 4.4 breaths/
min agreement range; 0.8358 of CC2; 1.98 breaths/min of RMSE as shown in Fig. 12d.

In the third scenario, Fig. 13a showed a mean bias of 0.091 breaths/min with agree-
ment range between −0.47 to 0.65  breaths/min, a CC2 of 0.995 and a RMSE of 
0.3 breaths/min, while Fig. 13b showed a mean bias of 0.17 breaths/min with agreement 
range between −0.79 to 1.1 breaths/min, CC2 of 0.9853 and RMSE of 0.52 breaths/min. 
Using ICA as shown in Fig. 13c, the statistics were 0.51 breaths/min of a mean bias; −2 
to 3 breaths/min agreement range; 0.9028 of CC2; 1.38 breaths/min of RMSE, whereas 

Fig. 11  Bland–Altman plots between respiratory rate measurements obtained by reference method and 
respiratory rates measured by a the proposed system with magnification, b the proposed system without 
magnification, c ICA and d PCA for the first scenario
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when PCA was used, the statistics were 0.87; −2.3 to 4 breaths/min agreement range; 
0.8558 of CC2; 1.83 breaths/min of RMSE as shown in Fig. 13d.

In the fourth scenario, Fig.  14a indicated a mean bias of 0.16  breaths/min with 
agreement range between −0.84 to 1.2  breaths/min, a CC2 of 0.9838 and a RMSE of 
0.53  breaths/min, while Fig.  14b showed a mean bias of 0.21  breaths/min with agree-
ment range between −0.91 to 1.3 breaths/min, CC2 of 0.98 and RMSE of 0.6 breaths/
min. Using ICA as shown in Fig.  14c, the statistics were 0.74  breaths/min of a mean 
bias; −3.8 to 5.2 breaths/min agreement range; 0.7531of CC2; 2.4 breaths/min of RMSE, 
whereas when PCA was used, the statistics were 1.1; −3.8 to 5.9 breaths/min agreement 
range; 0.7366 of CC2; 2.69 breaths/min of RMSE as shown in Fig. 14d.

A performance comparison of various measuring systems based on their RMSE value 
for the detection of respiratory rate for all proposed scenarios is shown in Fig. 15.

Fig. 12  Bland–Altman plots between respiratory rate measurements obtained by reference method and 
respiratory rates measured by a the proposed system with magnification, b the proposed system without 
magnification, c ICA and d PCA for the second scenario
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Discussion
The results show that PPG can be successfully performed from a hovering UAV if a suit-
ably selective spatiotemporal motion detection scheme is used. The experimental results 
on many video sequences show that the estimated heart and respiratory rates had high 
agreement with the reference methods and outperformed the state of the art methods 
(ICA and PCA) in four different proposed scenarios.

In the stationary scenario, the proposed system with the magnification pro-
cess showed an excellent agreement with the reference method [CC2  =  0.9991, 
RMSE = 0.31 beats/min and mean error (ME) = 0.29%] with respect to the heart rate 
measurements and (CC2 =  0.9978, RMSE =  0.2  breaths/min and ME =  0.18%) with 
respect to the respiratory rate measurements. Our proposed system without the mag-
nification process could also measure these vital signs with a very good agreement 
(CC2 = 0.9966, RMSE = 0.57 beats/min, and ME = 0.54% for heart rate measurements 
and CC2 = 0.9898, RMSE = 0.42 breaths/min, and ME = 0.41% for the respiratory rate 
measurements). It clear that our system with and without the magnification process 
reduced the mean bias, limit of agreement and RMSE as well as increased the correlation 

Fig. 13  Bland–Altman plots between respiratory rate measurements obtained by reference method and 
respiratory rates measured by a the proposed system with magnification, b the proposed system without 
magnification, c ICA and d PCA for the third scenario
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Fig. 14  Bland–Altman plots between respiratory rate measurements obtained by reference method and 
respiratory rates measured by a the proposed system with magnification, b the proposed system without 
magnification, c ICA and d PCA for the fourth scenario

Fig. 15  RMSE performance of various respiratory rate measuring systems for all proposed scenarios
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level compared to when ICA and PCA were used instead to extract vital signs from the 
full face area. ICA under the first scenario had a ME of 1.18% for heart rate and 1.22% for 
respiratory rate, whereas PCA had a ME of 1.54% for heart rate and 1.58% for respiratory 
rate.

In the second scenario (face expression and head rotation), the proposed system with 
the magnification process also had very good agreement with the reference method 
(CC2 = 0.9944, RMSE = 0.73 beats/min, and ME = 0.72%) with respect to the heart rate 
measurements and (CC2 = 0.9913, RMSE = 0.39 breaths/min, and ME = 0.38%) with 
respect to the respiratory rate measurements which were slightly better than when we 
used our system without the magnification process (CC2 = 0.989, RMSE = 1.02 beats/
min, and ME  =  0.99% for heart rate measurements and CC2  =  0.9799, 
RMSE = 0.6 breaths/min, and ME = 0.59% for the respiratory rate measurements). This 
is significantly better than the statistics achieved when ICA and PCA were used instead. 
ICA under the second scenario had a ME of 1.98% for heart rate and 1.49% for respira-
tory rate, whereas PCA had a ME of 2.37% for heart rate and 1.89% for respiratory rate.

In the third scenario (talking), our results with and without magnification process 
also had a better correlation than those obtained from the ICA and PCA. The statis-
tics (CC2, RMSE, and ME) with the magnification process were 0.9973, 0.51 beats/min 
and 0.5% respectively for heart rate and 0.995, 0.3 breaths/min and 0.29% for respiratory 
rate, whereas without using the magnification process, they were 0.9926, 0.84 beats/min 
and 0.82% for the heart rate and 0.9853, 0.52 breaths/min and 0.5% for the respiratory 
rate. Under this scenario, ME based-ICA was 1.5% for the heart rate and 1.34% for the 
respiratory rate, whereas ME based-PCA was 1.79% for the heart rate and 1.75% for the 
respiratory rate.

Our results with and without the magnification process under the last scenario (light-
ing condition) also exhibited very good correlation and low RMSE compared to ICA and 
PCA which might fail in extracting the heart and respiratory rates with low correlation 
levels and high RMSE. The statistics (CC2, RMSE, and ME) based on the magnification 
process were 0.9917, 0.89 beats/min and 0.88% for heart rate, and 0.9838, 0.53 breaths/
min and 0.52% for respiratory rate, whereas they were 0.9848, 1.2 beats/min and 1.18% 
for heart rate and 0.98, 0.6 breaths/min and 0.59% for respiratory rate without the mag-
nification process. ICA under the fourth scenario had a ME of 2.78% for heart rate and 
2.17% for respiratory rate, whereas PCA had a ME of 3.05% for heart rate and 2.49% for 
respiratory rate.

For the all proposed scenarios, our system with the magnification process presented 
a CC2 of 0.9956, RMSE of 0.65 beats/min, and ME of 0.6% for heart rate measurements 
and a CC2 of 0.9919, RMSE of 0.38 breaths/min, and ME of 0.34% for respiratory rate 
measurements, whereas the results obtained without magnification process produced a 
CC2 of 0.9907, RMSE of 0.94 beats/min and ME of 0.88% for heart rate measurements 
and a CC2 of 0.9837, RMSE of 0.5  breaths/min, and ME of 0.52% for respiratory rate 
measurements. Using ICA, the statistics (CC2, RMSE, and ME) were 0.956, 2.04 beats/
min and 1.86% respectively for heart rate measurements, and 0.8188, 1.97 breaths/min, 
and 1.77% respectively for respiratory rate measurements, whereas when PCA was 
used instead, they were 0.9405, 2.37  beats/min and 2.19% respectively for heart rate 
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measurements, and 0.8164, 2.07 breaths/min, and 1.93% respectively for respiratory rate 
measurements.

We also tested the computational time of the proposed noise artifact removal method 
based on CEEMDAN-CCA against the ICA and PCA. The mean computational time for 
CEEMDAN-CCA with 200 iterations for 30 s iPPG signal was 1.22 s, while the means 
for ICA and PCA were 0.86 and 0.79 s respectively. The implementation was carried out 
in the MATLAB program (2015b) and run under Microsoft Windows 10 (64 bits) on a 
computer with Intel Quad Core i5-4570 3.20 GHz CPU and 8.00 GB of RAM. The com-
putational time cost is acceptable for noise artifact removal from the iPPG signal, which 
makes it suitable for real-time applications. It also noted that our proposed system does 
not require extra hardware to stream the video since the UAV contains some software 
modules to facilitate communications through Wi-Fi and provides logging capability 
which makes real-time processing more flexible and feasible.

The potential estimation of other important vital signs such as heart rate variability 
and blood oxygen saturation level (SpO2) is an important future work. The SpO2 can be 
extracted from the iPPG signal captured by a digital camera at two different wavelengths 
based on ac/dc component analysis instead of direct image intensity analysis of the iPPG 
signal used in this study.

Conclusion
For the first time, we have shown that video from a hovering UAV can be used to meas-
ure cardiorespiratory signals. We have used a combination of both CEEMDAN and 
CCA techniques to remove noise acquired from the illumination variations, subject’s 
movement and camera movement. Also, we have demonstrated that the heart and res-
piratory rates can efficiently be extracted based on the proposed system with and with-
out the developed video magnification system. The experimental results obtained from 
15 subjects in different scenarios showed that the estimated heart and respiratory rates 
were very close to the reference methods (finger pulse oximeter and Piezo respiratory 
belt transducer) with very low RMES and ME. Furthermore, the proposed system sig-
nificantly outperformed the state-of-the-art methods such as ICA and PCA. Therefore, 
the proposed system is a feasible solution to remove the noise effects resulting from the 
illumination variations, subject’s movement and camera movement from the iPPG sig-
nals and may be a promising approach in realistic non-contact vital signs measurement 
applications. Future work will consider techniques that may be more robust in the pres-
ence of UAV and target locomotion and changes in pose.
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