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studied. Perfusion analysis is based on administration of a contrast agent (nanoparticles
in the case of OCT) into the bloodstream, where during time it specifically changes the
image contrast. Through analysing the concentration-intensity curves we are then able
to find out further information about the examined tissue.

Methods: We have designed and manufactured a tissue mimicking phantom that
provides the possibility of measuring dilution curves in OCT sequence with flow rates
200, 500, 1000 and 2000 yL/min. The methodology comprised of using bolus of 50 pL
of gold nanorods as a contrast agent (with flow rate 5000 pL/min) and continuous
imaging by an OCT system. After data acquisition, dilution curves were extracted from
OCT intensity images and were subjected to a deconvolution method using an input—
output system description. The aim of this was to obtain impulse response characteris-
tics for our model phantom within the tissue mimicking environment. Four mathemati-
cal tissue models were used and compared: exponential, gamma, lagged and LDRW.

Results: We have shown that every model has a linearly dependent parameter on
flow (R? values from 0.4914 to 0.9996). We have also shown that using different models
can lead to a better understanding of the examined model or tissue. The lagged model
surpassed other models in terms of the minimisation criterion and R? value.

Conclusions: We used a tissue mimicking phantom in our study and showed that
OCT can be used for advanced perfusion analysis using mathematical model and
deconvolution approach. The lagged model with three parameters is the most appro-
priate model. Nevertheless, further research have to be performed, particularly with
real tissue.

Keywords: Optical coherence tomography, Perfusion analysis, Deconvolution, Model,
Phantom, Impulse response

Background

Optical coherence tomography (OCT) is a well established imaging technique used in
different fields of clinical medicine, preclinical research or biology. The main capability
of this technique is its ability to noninvasively create images of tissue on a micrometre
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scale and to perform so-called “optical biopsy” During this process, information about
tissue can be obtained from imaging. Several functional OCT techniques have been
developed during the last decade, including Doppler OCT, polarisation-sensitive OCT
and spectroscopic OCT. These techniques examine different properties of tissue and/or
blood. In this study we describe a new application of functional OCT in the field of per-
fusion imaging, using nanoparticles as a contrast agent.

In general, perfusion is the process of delivering blood to capillaries in examined bio-
logical tissues. Perfusion analysis can be classified as a method of functional imaging
and it forms an important part of the diagnosis of many diseases. Tissue perfusion can
be evaluated by various modalities, including nuclear magnetic resonance (NMR), com-
puted tomography (CT), positron emission tomography (PET) and ultrasound tomogra-
phy. Conventional methods of perfusion analysis utilise the administration of a contrast
agent into the bloodstream, where it specifically changes the image contrast. It is thus
possible to monitor the amount (i.e. concentration) of contrast agent in a tissue that is
supplied by a feeding artery.

Generally, it is possible to divide contrast agents into categories according to their
behaviour. Intravascular contrast agents remain in the bloodstream, whereas extravas-
cular contrast agents pass through the capillary walls into the extracellular space. For
example, basic NMR brain perfusion models operate solely with intravascular contrast
agents [1]. This is due to the impermeability of the blood—brain barrier [2]. Functional
CTs generally operate with extravascular contrast agents and analyse the distribution of
contrast in blood vessels and extravascular space of the tissue [3]. In the case of OCT,
contrast agents may be intravascular as well as extravascular. This depends on their size,
surface charge, and on the pore size of the tumour capillary endothelium [4].

It has recently been stated by Park [5] that “transport of nanoparticles after they have
extravagated through tumour blood vessels has not been sufficiently described” This
transport has been described in different applications. For example, Aktas et al. [6] used
modified chitosan-polyethylene glycol nanospheres to overcome a blood—brain barrier.
Polymeric-based nanoparticles have recently received attention as a promising carrier
for brain targeting [7, 8]. Lee et al. [9] found that single silver nanoparticles (5-46 nm)
can be transported into and out of a zebrafish embryo through chorion membrane. In
tissue bioreactors, the penetration of nanoparticles through the porous wall of the fibre
can be used for controlled cell behaviour. This works particularly well in the application
of magnetic forces to drive nanoparticles—for example, when fabricating fibrin gel with
the appropriate nanostructure [10]. In such applications, advanced perfusion analysis
can be used in order to obtain relevant information about perfused tissue/environment
properties.

The development of every imaging modality is bound to phantoms simulating specific
properties of living tissue. OCT phantom constructions vary from a simple water-based
form, where it is possible to tune optical properties by adding a scattering substances
(metallic particles, real blood cells, lipid emulsion etc.), [11] to a multilayer phantom
with an embedded capillary system [12]. In our previous papers [13, 14], we presented
single fibre perfusion phantom and proved the potential of the application of dilution
theory in OCT modality. Here we describe a new phantom setup, which is convenient
for perfusion analysis.
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The goal of this study is to apply and test basic perfusion theory to OCT modality. To
our knowledge, this has not previously been applied. For this purpose, a simple perfusion
tissue mimicking phantom has been created and a bolus-based perfusion approach has
been applied during OCT scanning. The acquired images were processed by methods
that use tissue convolution models. A similar setup is used in many preclinical research
fields, for example, in general organ perfusion, and stroke or cancer research. Animal
models are being used in these applications, particularly in cancer research. Tumour
perfusion is influenced by the formation of new blood vessels within a tumour. This
development of new vessels (e.g. angiogenesis) changes the image intensity and contrast
of the tumour during an imaging procedure, when a contrast agent is employed that is
specific to the imaging modality being used. OCT has only been used for the purpose of
increasing tumour contrast without any advanced analysis (see i.e. [15, 16]) in spite of
its availability and low cost in comparison to other imaging modalities (CT, NMR, PET
or ultrasound). The advantages of OCT imaging are obvious—it is low cost, easy to use,
and provides a sufficient spatial and temporal resolution for these kind of applications.

This paper is organised as followed. “Methods” section describes the convolution
model, with different tissue impulse response functions. This is used on data acquired
from the tissue mimicking phantom model (that will also be described in this section).
The nanoparticles with two different sizes are used as a contrast agent. “Results and dis-
cussion” sections discuss the main findings of the deconvolution analysis. Finally, this
study closes with some concluding remarks.

Methods

Perfusion analysis

The basic model of tissue blood supply is shown in Fig. 1—c,(¢) is concentration in the
input artery [also referred to as arterial input function (AIF)] and ¢, (¢) is concentration
in the output vein. In indicator dilution theory, tissues are described as a “black box’,
without making any assumptions on transport processes and internal structures. Thus,
contrast agent concentrations c,(¢) and ¢, (¢) are related by a convolution

ey(t) = ca(t) x4 (), (1)

where ¢(t) is the impulse response function characterising the system, contrast agent

and interactions.

Input artery Output vein

Fig. 1 Physiological model of tissue blood supply. A simple model used in our experiment considers one
feeding artery and one output artery, where the concentration on the contrast agent is measured
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If ¢, (¢t) and ¢, (¢) are known (measured), the impulse response function ¢(£) can be cal-
culated by deconvolution methods.

In this paper, we have applied an approach where the impulse response function is
modelled and estimated by optimisation techniques. Applied models of impulse
response are described below. From the input concentration curve ¢, (¢) and modelled
impulse response function g(t), the output concentration curve ¢, ¢4, (£) = c4(t) * g(t) is
calculated. The impulse response model parameters are adjusted during minimisation in
order to minimise the residual function [17]

min ; lca(t) % q(t,p) — ¢, ()12, )

where c,(¢), ¢,(t), mentioned above, are measured input and output concentration
curves, g(t, p) is estimated impulse response function and p is a vector of its adjustable
parameters. These have to be estimated during optimisation.

Models

Applied models cover different types of approaches used for tissue perfusion modelling.
The exponential and gamma models are compartment models, where the modelled sys-
tem is considered as a series of compartments describing specific parts of a system. The
lagged model belongs to mathematical models based on their similarity, with some spe-
cific mathematical function employed for data fitting. The category of physical models
represents the local density random walk (LDRW) model, taking into account the physi-
cal behaviour of the contrast particles.

Exponential model
This model is the simplest type of compartment models. It consists of the single mixing
compartment and it is described by the exponential function [17].

fexp(£) = AUCae ™™, 3)

where ¢ is the contrast agent concentration at time t = 0, and 7 = 1/« is a time con-
stant depending on the flow rate and the compartment volume. AUC represents the area
under the curve. It is a common parameter for all presented models and we have modi-
fied their representation to contain AUC. This allows for easier comparability.

Gamma model

The second compartment model is derived from the Erlang model [18], which is based
on the assumption that constant blood flow can be modelled as a series of k mixing
homogeneous compartments. If the constraint of an integer number of compartments is
relaxed, we obtain Gamma model given by [19, 20].

E)k_l

t
e T
fGamma @) = AUC(ir
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where I" (k) represents the Gamma function.
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Lagged model

In general, the lagged model is derived as a convolution of Gaussian function with one
or more exponentials. The simple form of the lagged model can also be considered as a
compartment model with two compartments—where the first compartment is a large
vessel characterised by a Gaussian dispersion and the second is a microvascular bed
which is a homogeneous mixing compartment described by a single exponential func-
tion [18]. The convolution integral has the form

t
SLagged (t) = / f(D)g(t —1)dr, &)
where
1 N2 2
f(t) = —=e =727 5o < £ < 00,
2o (6)

gty=Je ™, t=o0.
The lagged model can thus be expressed as

AUC
Siaggea(t) = — KL+ erf(L)], (7)

where

_ 112,52
1( — }ve ).£+).M+Z/L o ,

_t—,u—io2 3

202

L

and erf() is the Error function.

The parameter A represents a rate constant of exponential mixing compartment and
parameters 1 and o2 are the mean transit time and the transit time variance of the com-
partment represented by the Gaussian distribution, respectively.

LDRW model

Diffusion with drift models describes the movement of indicator particles which is
regarded as a longitudinal diffusion superimposed on a linear convection [18]. The
LDRW model is

AUCe* [u A _1ym,t
Jiprw () = \[ T ooe 2405+, )
uw t 2w

where 4 = Pe/2. Pe is a Peclet number equal to the ratio between convection and diffu-

sion in the dilution system [18]. Further, A~! is the skewness or asymmetry of the curve.
The parameter u is the transit time of the median indicator particle [21].

Tissue phantom

The phantom used in this study is a specially shaped chamber produced by a 3D printer
(Felix 3.1 dual extruder, FELIXrobotics). Polylactid acid (PLA) was used for print-
ing, with 0.1 mm layer thickness. The phantom structure is shown in Fig. 2 and it was
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designed to match the physiological model of the tissue blood supply that is used in per-
fusion imaging (Fig. 1). The main dimensions of the phantom body (without fixing pads)
are 25 x 25 x 13.5 mm. The inner chamber is filled with NanobioMatrix Scaffold Sheet
(PCL—Polycaprolactone, random fibres, thickness 3 mm; Synthecon, inc., Houston)
that mimics a perfused tissue, its dimensions are 10 x 3 x 5 mm. Two tubes lead to this
chamber, simulating the input and output vessels (Fig. 1). An additional tube connected
to the input tube is designed to deliver a bolus of contrast agent. The top is covered with
a coverslip glued by transparent silicone sealant.

Contrast agents

As a contrast agent in this experiment, two types of gold nanorods were utilised. Gold
nanorods (Nanopartz Inc., A12N-10-1400 and A12N-25-1400) are in a form of colloidal
suspension with water. Their parameters are summarised in Table 1. Both types have
plasmon-resonant peak (1400 nm) matching the wavelength of our OCT system. Gener-
ally, gold nanorods are widely used for various biomedical applications, from imaging to
therapeutical applications. They are very promising due to their tuneable optical proper-
ties and good biocompatibility [22—-24]. Two sizes were used, because we want to simu-
late their different behaviours (i.e. perfusion) in our experimental setup. This could also
be simulated by different properties of the scaffold sheets, but these were not available.

OCT system
For this experiment, a Swept Source OCT system (Thorlabs, OCS1300SS, centre wave-
length 1325 nm, other parameters are summarised in Table 2) was employed. Details

about this OCT jtype and its advantages can be found in [25]. Our system provides

&

Inner chamber dimensions
K 10 mm

Fig. 2 3D model of presented phantom. The inner chamber is filled with a NanobioMatrix Scaffold Sheet,
represented in the figure by the colour red for better visibility. The top right figure shows the cut of the phan-
tom model where the OCT tomographic ROl is illustrated by a dashed line. The bottom right figure shows the
dimensions of the inner chamber; the diameter of input and output tubes is depicted as well

()

5mm

3mm

Table 1 Properties of gold nanorods, Nanopartz Inc.

Nanorods type Plasmon-resonant peak (nm) Diameter (nm) Length (hnm) Concentration (mg/mL)

A12N-10-1400 1400 10 102 0.035
A12N-25-1400 1400 25 245 0.05
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Parameter Value Parameter Value

Central wavelength 1325 nm Coherence length 6.0 mm

Maximal imaging size 4000 x 512 pixels Maximal volume size 10 x 10 x 3mm
Spectral Bandwidth (FWHM) >100 nm Average output power 10 mW

Maximal imaging width 10 mm Transverse resolution 25um

Axial scan rate 16 kHz Sensitivity 100 dB

Maximal imaging depth 3.0 mm Axial resolution 12/9um (air/water)

RAW measurement data that was exploited in further processing and analysis. In the

experiment presented, the acquisition rate was 10 images per second, proportions of the

imaged area were set to the following values: image width 6 mm, image depth 3 mm and

image resolution 1024 x 512 pixels.

Measurement methodology

The principal scheme of the experiment setup is depicted in Fig. 3. The phantom is con-

nected with two syringe pumps (New Era NE-1010) by a silicon tubing system. While

the first syringe pump ensures a constant flow through the phantom, the second syringe

pump provides a bolus of contrast agent.

((Main syringe pump))|

Contrast agent L

( —ﬂ:ﬂ:—% —Perfusion phantom

(Secondary s. pump)| |

Fig. 3 Principal scheme of experiment setup. The main syringe pump ensures a constant flow during a
single experiment. The secondary syringe pump is used for fast bolus administration. The perfusion phantom
is no-circulating, placed at the main OCT stage. The OCT system transfers data via a data acquisition (DAQ)
board into the PC. A photography shows actual experiment setup and detail of the phantom
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The experiment procedure itself consists of three phases. In the first phase, the constant
flow rate (200, 500, 1000, 2000 puL/min) through the phantom is set by the main syringe
pump. After this, the second syringe pump is activated with the flow rate 5000 puL/min
to generate a bolus of contrast agent. The bolus volume is 50 pL. In the third phase, the
same constant flow rate (200—-2000 pL/min) continues until the end of the experiment.
All these three phases are continuously imaged by the OCT system in one cross-section
of the phantom (the plane of cross-section is illustrated in Fig. 2). The output is an image
sequence with a rate of 10 images per second.

The procedure described was employed three times for each flow rate, within the
above mentioned range, and with two types of gold nanorods.

Data processing

Raw interference data produced by the OCT system without any processing has been
used for processing in MATLAB (version R2012b; Optimisation, Curve Fitting and
Image Processing Toolbox). An example of one intensity image from the sequence is in
Fig. 4. There are two regions of interest (ROI) outlined in the image. The first indicates
the area from where the input dilution curve is calculated, and the second corresponds
to output dilution curve. ROIs were chosen in places right before and after the area,
which corresponds to the matrix scaffold sheet, dimensions of both ROIs are approxi-
mately 170 x 200 pixels (1.00 x 1.17 mm). The idea was to describe the tissue mimick-
ing sheet. This was done by perfusion analysis performed on the data obtained from the
areas closest to the material, but not inside it. The ROIs are also closest to the surface to
eliminate the influence of attenuation.

The dilution curve is calculated as a median of pixels in ROL Thus, it corresponds to
median signal intensity. Figure 5 depicts an example of a dilution curve. The idea for
median value extraction came from one of the speckle reduction methods [26]. The
deconvolution method was applied to the measured curves from input and correspond-
ing output ROIs. The goal of this procedure was to compare different models of impulse
response ¢(t), and to found the best model for producing computed output curves
Cy,calc(t) that correctly fit the measured curves.

© InputROI -

Fig. 4 OCT intensity image with selected ROIs. The whole image corresponds to a dashed rectangle in Fig. 3.
The inner chamber of the phantom presented is filled with a NanobioMatrix Scaffold Sheet, visible in the mid-
dle part of the image between the marked ROIs
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Fig. 5 Example of dilution curves for nanorods A12N-10-1400 and flow rate 1000 pL/min. Solid lines illustrate
measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Results for other flow rates are in Additional file 1: Figure S1, Additional file 2: Figure S2, Additional file 3:
Figure S3, Additional file 4: Figure S4, Additional file 5: Figure S5, Additional file 6: Figure S6, Additional file 7:
Figure S7, Additional file 8: Figure S8

To solve the deconvolution problem of unconstrained nonlinear optimisation, the sim-
plex search method [27] was applied. It is a direct search method that uses only func-
tion values, without any derivative information. The initial values of model parameters
were randomly selected from ranges listed in Table 3. The minimisation was repeated
20 times to eliminate problems with the local maximum. The best result of the model
parameters was chosen according to its lowest criterion value (Eq. 2).

All models and their parameters were analysed with respect to their dependency on
the flow rate. Results are presented in the next section.

Results and discussion

The results of the impulse response optimisation are evaluated and discussed in the sub-
section bellow. The relation between model parameters and flow rates is analysed and
discussed in the next subsection. The influence of both nanorods is also discussed.

Optimization results
As an example, Fig. 5 illustrates the dilution curves measured and calculated for flow rate
1000 pL/min and all the models that have been applied. The input curve is represented

Table 3 Parameters initial values

Model Parameter Initial value range
Exponential o 01to1s™!
Gamma k 0.1t03

T 0.1t03s
Lagged ) 01to5s™!

" 01t02s

o 01to2s
LDRW " 01t05s

2 01to5

The range for each model has been determined by analysis of the influence of each parameter on the shape, taking into
account the temporal properties of measured concentration curves
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by solid red, the measured output curve is illustrated as a solid green line, and the mod-
elled and calculated output curves have dashed lines.

As can be seen, the fitting is not perfect, but the results are different for different mod-
els and different values of flow rates. The best results, with respect to the optimisation
criterion, were achieved with the lagged model in the entire range of the applied flow
rates (Table 4). The values in the brackets represent a variation of the minimisation crite-
rion for 20 random repetitions with different initialisations.

It can be seen that criterion value is higher for lower flow rates, which implies that
selected models and methodology is more convenient for higher flow rates. We also
observed that the shape of the output curves is usually fitted better in ascending part
than descending part. Another problematic part is fitting the shape around maximum of
the curves.

The optimisation results were also evaluated by R? values, which measure the good-
ness of fit (Table 5). This value has been calculated between ¢, ., and ¢, jueqs. The highest
values (the best fit) has achieved a lagged model.

Another model comparison was done from the point of view of perfusion parameters.
We compared two perfusion parameters AUC and MTT (mean transit time), again
obtained from ¢, i and ¢y sueqs. Results are shown in Table 5. The italic letters represent
values, which are closer to the measured values (also italic). The lagged model achieved
the best results up to the AUC value for flow rate 1000 puL/min. This implies the supe-
riority of the lagged model over the other tested models. The only disadvantage of this
model is its dependence on the initial parameter values, which is probably caused by
three model parameters (other models have one or two parameters).

Parameters of models

Modelled impulse response functions for the models tested are illustrated in Fig. 6
(nanorods A12N-10-1400; the median value from three measurements has been used for
plotting this image, see below). As can be seen, the width of the impulse response curves

Table 4 The best values of minimisation criterion for different models and flow rates

Flow rate (uL/min)

200 500 1000 2000
A12N-10-1400
Model
Exponential 1.78 (£0.00) 1.27 (£0.00) 1.18 (£0.00) 0.35 (£0.00)
Gamma 1.75 (£0.00) 1.08 (£0.00) 0.79 (£0.00) 0.27 (£0.00)
Lagged 1.27 (£3.90) 0.65 (£0.79) 0.51 (£0.38) 9(£0.35)
LDRW 1.35 (£0.00) 1.25 (£0.00) 1.00 (£0.00) 0.34 (£0.00)
A12N-25-1400
Model
Exponential 9.21 (£0.00) 4.97 (£0.00) 3.37 (£0.00) 2.68 (£0.00)
Gamma 9.20 (£0.00) 4.56 (£0.00) 2.59 (+0.00) 1.70 (£0.00)
Lagged 8(£11.25) 3.57(£2.91) 78 (£0.84) 35(£0.22)
LDRW 10.75 (0.00) 5.66 (+0.00) 3.30 (+0.00) 1.99 (£0.00)

The number in brackets represents the variability of optimisation results. If the value is 0.00, the optimisation resulted with
identical solution in each repetition

The best result is highlighted by italic



Stohanzlova and Kolar BioMed Eng OnLine (2017) 16:27

Page 11 of 16

Table 5 Goodness of fit characterised by R? values, mean transit time (MTT) and area
under the curve (AUC) for each model and flow rate (uL/min)

Flow rate Exponential Gamma Lagged LDRW Measured
R2
200 0919 0.922 0.939 0.885 -
500 0.884 0.943 0.973 0.907 -
1000 0.863 0.932 0.965 0.898 -
2000 0.860 0.879 0.906 0.848 -
MTT
200 14.93 14.93 13.78 15.59 12.46
500 841 8.15 7.92 835 6.18
1000 5.78 5.58 545 5.70 3.74
2000 3.27 3.19 3.10 3.27 2.36
AUC
200 14547 139.88 136.56 139.11 134.57
500 6341 59.11 58.06 58.84 56.23
1000 34.09 32.53 32,66 32.08 28.16
2000 8.59 8.28 8.14 829 7.58

Italics values correspond to the best results. For R?it is the highest value. For AUC and MTT it is the value closest to
measured curve value

Exponential model Gamma model
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Fig. 6 Impulse responses for nanorods A12N-10-1400, all tested models and flow rates. This figure illustrates
the dependency of impulse responses on the flow rate for each model. Low flow rates correspond to a
slower contrast agent washing out, resulting in a wider impulse response

depends on the flow rate; for lower flow rates a higher width of impulse responses can be
observed. These curves represent how, if an ideal bolus is applied, the tissue mimicking
model transfers the (concentration of) nanoparticles.

Further, we examined the relation between model parameters, flow rates and nanopar-
ticle size (see Fig. 7). In every figure, the median value of three performed measurements
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Fig. 7 Parameter values and their dependency on flow rate. The red line is for nanorods A12N-10-1400 and
blue for greater nanorods A12N-25-1400. At least one parameter of each model exhibits a dependency on the

flow rate (@ exponencial model, b gamma model, ¢ Lagged model, d LDRW model)

is shown. The models used in our analysis have different parameters, but the param-
eter related to flow can be found in every model. The next parameters of specific models
refer to some other physical property of the tissue mimicking environment.

The only parameter of the exponential model is « and influences the width of the
curve, implying its dependency on the flow rate. From Fig. 7a, this linear trend is evi-
dent. This increasing tendency is consistent with the assumptions, because an increase

Page 12 of 16
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in the value of the exponent causes a narrowing of the curve. There is no statistical dif-
ference between nanorods types.

The gamma model has two parameters v and k. Parameter 7 is inversely proportional
to the parameter « of the exponential model, and it also has a dependency on the flow
rate. Thus, its reciprocal value is displayed in Fig. 7b for easier comparison of these two
models. The linearity can be also seen for 7 like in an exponential model, with saturation
for small nanoparticles and higher flow rates. Parameter k expresses the number of com-
partments. In our case, parameter k assumes values in the range approximately 1-2.5,
which is adequate for the presented model. The main compartment is the tissue model.
The influence of the second compartment can be interpreted as a nanoparticle mixing in
the volume where the bolus is injected (the input artery). For higher flow rates, higher
mixing with tendency to turbulence can be expected. For smaller particles, the k value
decreases with a higher flow rate; this implies that the whole system behaves as a single
compartment.

The first parameter of the lagged model is a parameter A that represents the rate con-
stant of the exponential mixing compartment; therefore it is comparable with the rate
constant in the exponential model. Thus, its dependency on flow rate is very similar to
previous models (Fig. 7c). The second two parameters p and o relate to the Gaussian
compartment, representing the mixing before the tissue model. Parameter o influences
the width of the curve and consequently it is dependent on the flow rate. Higher sigma
values correspond to slower mixing for low flow rates, and vice versa. Parameter u has
the meaning of Gaussian mean value and determines the position of the curve peak.
The range of u values is almost from zero to 1.4 s, which is very small in comparison to
experiment duration. Also, no recognisable dependence on the flow rate can be seen.
Therefore, we can consider this parameter as insignificant.

The model tested last is the LDRW model with parameters u and A. The parameter
is also linearly dependent on the flow rate (Fig. 7d) and can be compared with the corre-
sponding flow rate-related parameters from other models. The parameter 4 provides an
indication of the relative importance of diffusion and convection. It should increase with
increasing flow rates as the convection dominates. This can be only seen for the larger
nanoparticles. The curve for smaller nanoparticles shows saturation and small decrease.
This is related to changes in convection/diffusion influences that are due to turbulence.
Figure 7 reveals an interesting correspondence between the parameter A from the LDRW
model and parameter k from the gamma model, representing the number of compart-
ments. As A prw is proportional to the Peclet number, this correspondence with kGamma
indicates that diffusion prevails over convection.

We have shown that, irrespective of the model, the flow-related parameter has a linear
relation to flow, which has been tested by linear regression and R? values. This had the
range 0.4914-0.9996, with the best results for the exponential and lagged model, and the
worst for the gamma model. This parameter can therefore be used as a flow indicator
in bolus-based perfusion analysis. Furthermore, the gamma model provides parameter
k (non-integer number of compartments), which can be used for characterising, or for
better understanding the examined tissue. The lagged model provides the best fits over
all flow rates, with respect to the minimisation criterion (see Table 4). The LDRW model
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can help us to better understand the physical processes connected to diffusion/convec-
tion processes in capillaries.

The parameters of each model have some specific physical meaning. The flow-related
parameter can be found in each model; therefore the tissue perfusion can be estimated
when used in a real setting. The other parameters have different meanings of describing
the tissue. Another two commonly used perfusion parameters (MTT, AUC) can also be
obtained for the examined tissue. MTT is the mean time taken by blood to pass through
the capillary network. These parameters depend on tissue perfusion and the volume of
blood flow in the tissue. They are usually computed from the tissue concentration curve,
which is influenced by AIF. This approach allows us to reduce the impact of AIF and to
directly extract AUC and MTT from the estimated model functions.

Conclusion

We have demonstrated a new application of OCT for perfusion analysis using a bolus-
based approach. The results presented are based on a tissue mimicking model; a simple
model of capillary tissue. The mimicking of tissue is of course limited. In a real tissue,
different behaviour can be expected due to different interactions between nanoparticles,
blood vessel walls and blood components. The used nanoparticles can be both, intravas-
cular or extravascular/extracellular, depending mainly on their size and surface charge
and also on pore size of (tumour) vessels [4]. Currently, in OCT, modified chitosan-
polyethylene glycol nanospheres has been used to overcame a blood brain barrier [6].
The transport of silver nanoparticles (5-46 nm) into and out of the zebrafish embryo
through chorion membrane has been observed using OCT [9]. These are examples of
applications where the presented approach can be used to quantify examined tissues.

Application of our simple phantom is a first step in this quantitative OCT contrast
imaging area. The basic principle of this deconvolution-based perfusion theory can be
tested and evaluated using this setup. The properties of a nanofibre scaffold sheet allow
us to use only limited values of flow rates, which can influence the optimisation and
analysis of the model. However, the lagged model has three free parameters. This allow
us to set different properties (or shapes), and therefore fit to different conditions. Inter-
preting the parameters is also relatively straightforward. We showed that each model
contains parameters linearly related to flow rate. We used two types of nanoparticles in
order to simulate different behaviours, but this has only been proved for the k parameter
from the gamma model and the parameter 4 from the LDRW model. These two latter
models are relatively complex and their parameters can describe, from different perspec-
tives, the properties of tissue being examined.

One step that can be taken in the future is to test this approach on real tissue (e.g.
tumour tissue on animal model). To make this method applicable in real preclinical, or
even clinical settings (e.g. skin tumours), the attenuation problem must be solved. The
whole signal attenuation consists of tissue attenuation and nanoparticles attenuation.
Several methods on this topic have already been published [28, 29]. The recirculation
of nanoparticles is another issue. Nevertheless, the single-pass can be approximate, or
the convolution model can be more complex, in order to simulate the second pass. A
final important issue is motion compensation, which occurs during animal breathing by
image registration method.



Stohanzlova and Kolar BioMed Eng OnLine (2017) 16:27

Additional files

Additional file 1: Figure S1. Dilution curves for nanorods A12N-10-1400 and flow rate 200 uL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Additional file 2: Figure S2. Dilution curves for nanorods A12N-10-1400 and flow rate 500 pL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Additional file 3: Figure S3. Dilution curves for nanorods A12N-10-1400 and flow rate 1000 uL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Additional file 4: Figure S4. Dilution curves for nanorods A12N-10-1400 and flow rate 2000 uL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Additional file 5: Figure S5. Dilution curves for nanorods A12N-25-1400 and flow rate 200 yL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Additional file 6: Figure S6. Dilution curves for nanorods A12N-25-1400 and flow rate 500 uL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Additional file 7: Figure S7. Dilution curves for nanorods A12N-25-1400 and flow rate 1000 uL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.
Additional file 8: Figure S8. Dilution curves for nanorods A12N-25-1400 and flow rate 2000 uL/min. Solid lines
illustrate measured dilution curves (input and output), while dashed lines depict the estimated output curves using
four different models. The lagged model provides the best results in terms of fitting the shape of the curve.

Abbreviations

OCT: optical coherence tomography; NMR: nuclear magnetic resonance; CT: computed tomography; PET: positron
emission tomography; AlF: arterial input function; AUC: area under the curve; LDRW: local density random walk; PLA:
polyactid acid; PCL: polycaprolactone; ROI: region of interest; MTT: mean transit time.
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