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Background
Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder. 
This syndrome is characterized by repetitive episodes of upper airway obstruction and 
commonly connected with a reduction in blood oxygen saturation. OSA is associated 
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PSG. The purpose of this research was to develop a four-OSA severity classification 
model using a patient’s breathing sounds.

Methods:  Breathing sounds were recorded from 83 subjects during a PSG test. 
There was no exclusive experimental protocol or additional recording instruments 
use throughout the sound recording procedure. Based on the Apnea-Hypopnea 
Index (AHI), which indicates the severity of sleep apnea, the subjects’ sound data were 
divided into four-OSA severity classes. From the individual sound data, we proposed 
two novel methods which were not attempted in previous OSA severity classification 
studies. First, the total transition probability of approximated sound energy in time 
series, and second, the statistical properties derived from the dimension-reduced cyclic 
spectral density. In addition, feature selection was conducted to achieve better results 
with a more relevant subset of features. Then, the classification model was trained 
using support vector machines and evaluated using leave-one-out cross-validation.

Results:  The overall results show that our classification model is better than existing 
multiple OSA severity classification method using breathing sounds. The proposed 
method demonstrated 79.52% accuracy for the four-class classification task. Addition‑
ally, it demonstrated 98.0% sensitivity, 75.0% specificity, and 92.78% accuracy for OSA 
subject detection classification with AHI threshold 5.

Conclusions:  The results show that our proposed method can be used as part of an 
OSA screening test, which can provide the subject with detailed OSA severity results 
from only breathing sounds.
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with a characteristic snoring pattern and consists of loud snores or short gasps that 
alternate with events of silence that typically last for 20–30 s.

Obstructive sleep apnea can induce various dangerous events or personal complaints 
in everyday life. For example, severe daytime sleepiness of patients caused by OSA could 
be a causative factor in a large number of motor vehicle accidents. Gastroesophageal 
reflux can occur as a result of the effort made to reestablish breathing. A loss of both 
libido and erectile ability could occur in patients with OSA. Cardiac arrhythmias also 
commonly occur during sleep in OSA patients. In this case, bradycardia alternates with 
tachycardia during the apneic phase and termination phase of the obstruction, respec-
tively. Even more severe, tachyarrhythmias most commonly occur when a patient tries 
to reestablish breathing following the apneic phase and may increase the risk of sudden 
death during sleep.

Many population-based studies have reported a high prevalence of OSA in adults 
[1]. In the case of the United States, OSA has increased over the past two decades and 
its prevalence rate in adults between 30 and 70 years old has reached 26% [2]. Despite 
the seriousness and increased cases of OSA, related research has reported that 93% of 
women and 82% of men remain underdiagnosed [3]. The main reason for the high num-
ber of underdiagnosed individuals is that it is difficult to recognize the intensity of their 
pathological breathing during sleep. Even if they are aware of the symptoms, an expen-
sive and uncomfortable examination prevents them from visiting hospital.

Polysomnography (PSG) is currently the gold standard for the diagnosis of OSA. To 
make an OSA severity diagnosis, PSG provides an Apnea-Hypopnea Index (AHI) that 
contains the number of apnea and hypopnea occurrences per hour of sleep. According 
to the American Association of Sleep Medicine (AASM), when a subject has more than 
five obstructive apneas over 10 s per hour of sleep, the individual could be suspected of 
having OSA syndrome [4]. However, the test should be conducted overnight and its cost 
is expensive. Moreover, the measurement is inconvenient because various physiological 
sensors must be attached to the body [5]. Because of these limitations of PSG, it is not 
suitable for mass examination and occasionally, obtaining reliable results is impossible 
because the patient has trouble sleeping. Recently, portable PSG has been developed 
and used in personal home care related to sleep disorders. However, this technology 
still requires multiple uncomfortable sensors and measurements for various physio-
logical parameters, such as blood saturation and nasal airflow. Therefore, a preliminary 
screening test is necessary for suspected subjects who are concerned about the financial 
burden and measurement inconvenience. The test should be as simple as possible and 
should be capable of repeatedly measuring patient’s data for mass examinations.

Breathing sounds can be measured more easily than other known physiological signals 
during sleep. Conventional sensors can be used to take measurements in a body-contact 
manner, but the breathing signal can be recorded using non-contact sound recording 
devices. Moreover, most recent personal smartphones have a microphone that is suf-
ficient to record an individual’s breathing sounds in the vicinity of the bed; thus; breath-
ing sounds can be measured without any help from specialists or technicians. Moreover, 
many studies show that sleep breathing sounds are related to sleep disorders [6–13]. 
These studies could be representative examples of the medical advantages of being able 
to examine some symptoms related to sleep disorders without additional bio-signal 
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sensors when high-quality sleep breathing sounds can be obtained from patients. There-
fore, sleep breathing sounds can be regarded as acoustic physiological signals that can be 
measured by anyone.

However, most recent studies have focused on snoring segment detection, snore/non-
snore classification, or OSA/non-OSA patient group classification. The sensitivity result 
of OSA classification, which has shown that a percentage of people with OSA are cor-
rectly identified as having the symptom, ranges from 60 to 80% in related studies [7, 8, 
13]. For an efficient OSA screening test, OSA severity should be able to report results 
based on a clinical standard. According to the AASM, AHI values are categorized into 
four severity labels: normal, mild, moderate, and severe sleep apnea. Moreover, many 
studies have used body-contact microphones, for example, microphones attached to a 
surrounding area of the neck [6, 7, 12] or face [13]. These contact microphones easily 
cause inconvenience for patients and make it difficult to make simple measurements. 
Additionally, numerous studies have acquired breathing sounds using expensive pro-
fessional microphones that typically hang from the ceiling at a short distance from the 
patient. More detailed information on the algorithms of previous studies is presented in 
a discussion section comparing the results of other studies with those of the proposed 
study.

The aim of this study is to develop a new approach of multiple OSA severity classi-
fication using breathing sounds during sleep. Two novel methods, the total transition 
probability of approximated sound energy in a time series and the statistical properties 
which are derived from dimension-reduced cyclic spectral density, are proposed for our 
object. To the best of our knowledge, so far, no approach has utilized a combined feature 
set, which was made with foregoing methods, for multiple OSA severity classification. In 
contrast to related studies [6, 7, 12, 13], breathing sounds are recorded using an ordinary 
microphone that is placed at a long distance from the patient and not intended to record 
special sounds, such as the patient’s breathing. Moreover, we focus on breathing sounds 
during non-rapid eye movement (NREM) sleep: stages 2 and 3 sleep. We know that sleep 
apnea-related snoring is most likely to occur during REM sleep. However, because we 
use an ordinary subject’s breathing sounds, we concentrate on the aforementioned two 
sleep stages in which conventional snoring is most likely to occur. Furthermore, body 
movement or other complex behaviors rarely occur during these stages, hence we can 
minimize the noise that is unrelated to breathing sounds. Additionally, we attempt to 
extract succinct characteristics from relatively long audio recordings without any par-
ticular event detection method or random event selection in contrast to previous studies 
[6, 7, 9, 11, 12]. The major contribution of this study is to find a new combined feature 
set of sleep breathing sounds for multiple OSA severity classification, which includes 
energy transition probability of audio signal and statistical data derived from cyclosta-
tionary analysis.

Methods
To develop an OSA severity classification method, the recorded breathing sounds were 
divided into four OSA severity groups. All breathing sounds were acquired from PSG 
room monitoring video clips that were included in the clinical diagnostic tool. The 
spectral subtraction technique which is popular for the enhancement of noisy speech 
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signal was applied in the preprocessing [14]. Then, the total transition probability of the 
approximated sound energy and the statistical properties of the modified cyclic spec-
tral density features were extracted from the preprocessed breathing sounds. Using 
these features, we trained an OSA severity classification model using machine learning 
techniques and validated its accuracy. In this section, we first describe our participant 
subjects, physical recording environment, and sound acquisition method. Second, we 
explain the details of the two aforementioned feature extraction methods. Finally, we 
describe the training and validation method for the classification model.

Breathing sound database

A total of 83 adult subjects (27 females and 56 males with a mean age of 48.7 (±17.5) 
years, mean body mass index of 25.6 (±4.1), and mean AHI of 23.6 (±25.3)) were 
enrolled from the sleep laboratory of the Seoul National University Bundang Hospital 
(SNUBH), South Korea. The study was approved by the institutional review boards at 
SNUBH and informed consent was obtained from all patients or their guardians on their 
behalf. The PSG room contained a video camera and auxiliary microphone (SURP-102, 
YIANDA electronics Co., Ltd, ShenZhen, China; 20–2  kHz frequency range, −40  dB 
sensitivity) for monitoring the test for the entire night. The video clips were synchro-
nized with various physiological signals of the PSG and stored using the sleep laborato-
ry’s sleep diagnostic software (REM-Logic, Natus Medical Inc. CA, USA). The auxiliary 
microphone was located on the ceiling above the patient’s bed at a distance of 1.7 m. This 
microphone was originally installed in the PSG room and was not specially equipped for 
our experiments. Additionally, it was not special sound equipment intended for clini-
cal purposes. Because the unimpressive, omnidirectional microphone was relatively far 
away from the patient, almost attached to the ceiling, various environmental sounds in 
the room were recorded together with breathing sounds. Since this recording environ-
ment has a poor SNR (signal-to-noise ration) of the audio signal than the general envi-
ronment where the personal portable device is placed near the user’s sleep position (for 
example, around the head), we assumed that the sounds recorded in this study are simi-
lar to or worse than those recorded with personal devices that do not take into account 
the source location of the sound in the user’s general bedroom. The left-hand side of 
Fig. 1 shows the actual setup of the PSG room. From the video clips, the all-night breath-
ing sounds of each subject were extracted using a multimedia converting tool (FFmpeg) 
[15] and saved as a wave format file with an 8 kHz sampling frequency. Then, accord-
ing to each patient’s AHI value from the PSG test result, wave files were categorized 
into four OSA severity groups: normal (0 ≤ AHI ≤  4), mild (5 ≤ AHI ≤  14), moder-
ate (15 ≤ AHI ≤ 29), and severe (AHI ≥ 30). The normal group included 20 breathing 
sounds and all other OSA groups contained 21 sounds. The average time of the breath-
ing sounds was 7 h 10 min 30 s.

Preprocessing

Since the microphone was not specifically chosen for sound analysis experiments, and 
was intended to monitor the PSG room’s test environment, there was a lot of back-
ground noise, such as white noise, hum or hiss when we checked the audio signals. We 
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considered that these noises’ spectrums did not substantially change the target signal; 
thus, we adapted a spectral subtraction method [14], which is a computationally cheap 
and effective method for this situation. We assumed that subject’s ordinary breathing 
during sleep could be used to estimate OSA severity. When we checked the typical 
hypnograms of adults, stage 2 and 3 NREM sleep comprised most of the sleep, with a 
minimum of 60% [16]. During these sleep stages, the subject is typically stationary and 
the respiratory pattern is regular. Therefore, we assumed that regular breathing sounds 
could be obtained and various noise associated with the subject’s body movement and 
arousal could also be minimized during these stages. Thus, we focused on sleep breath-
ing sounds during stages 2 and 3 NREM sleep and extracted this data from the original 
breathing sound database. Breathing sound data were simultaneously stored with physi-
ological data from the PSG test and synchronized. Additionally, sleep stages were labeled 
within the clinical sleep diagnostic software by sleep specialists or physicians. Therefore, 
we could extract breathing sounds based on the time-stamped sleep stage information 
from the software. The average time of all extracted breathing sounds related to stages 
2 and 3 NREM was 4 h 1 min 55 s (±1 h 34 min 59 s), which was significantly reduced 
sound data compared with the original sound database.

The right-hand side of Fig. 1 shows the preprocessing procedure used in the present 
study. The event detection method was not adapted to breathing sound analysis, in con-
trast to previous related studies [6, 7, 9, 11, 12]. This was to reduce possible errors and 
computational costs during the pre-detection process of targeted events. Additionally, 
our proposed method could use most respiratory sounds associated with normal breath-
ing, snoring, and other disorders. The breathing sound was simply divided into window 
units of predetermined window length and sequentially entered into the following fea-
ture extraction methods.

Fig. 1  Sound acquisition and preprocessing in the PSG room. Audio data were extracted from the PSG moni‑
toring video and then the two filtering methods were applied for 83 patients
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Feature extraction methods

We considered the two main features related to time and spectral domains. The time 
domain feature has the advantage of a great deal of information about the direct tempo-
ral characteristics of OSA and other breathing events. Additionally, the spectral domain 
feature provides good information because it represents the hidden properties of each 
sound unit; thus, it could identify the target data that could not be recognized through 
the time domain features. The first feature in this study is the total transition probabil-
ity of approximated breathing sound energies in the time domain. The second feature is 
derived from the cyclostationarity-based information of breathing sounds, which pre-
sents hidden spectral characteristics using the periodicity of the signal’s autocorrelation. 
This was simplified and transformed into a statistical representation. All features were 
calculated using signal processing and statistical functions of MATLAB 2015a (Math-
Works, Inc., MA, USA) on a Windows PC (Intel Xeon 3.3 GHz, 16 GB RAM, Windows 
10 Pro). Next, we describe the details of the two feature extraction methods.

Time domain analysis

The sequential property change of the PSG data in the time domain is the basic refer-
ence for diagnosing sleep apnea in a clinic, for example, an episode of more than 20 s 
respiratory arrest is an important indicator of apnea during sleep [4]. We assumed that 
as the frequency of obstructive sleep apnea increased, the frequency and length of silent 
intervals between breathing sounds would be increased, so that the sequential amplitude 
changes of breathing sounds during sleep could represent the incidence of obstructive 
sleep apnea. Using this characteristic, we summarized the signal transition informa-
tion of the subject’s breathing sound as features for OSA severity classification. Using a 
0.5-second Hanning window with 80% overlap, each subject’s breathing sound was seg-
mented. Each segment was transformed into energy values and then approximated into 
three simple energy levels using thresholds (level 1: silence, level 2: lower energy level, 
and level 3: higher energy level).

Snoring has two dominant patterns of simple and complex waveforms. The complex-
waveform snore is associated with palatal snoring and may represents actual airway 
obstruction through colliding of the airway walls. The simple-waveform snore does 
not actually obstruct the lumen, but it is generated by the oscillation around its neu-
tral position and is associated with tongue-based snoring. Previous study shows that the 
palatal snoring has a higher ratio of peak sound amplitude to effective average sound 
amplitude than nonpalatal snoring [17]. Based on these facts, we assumed that level 2 
could be represented energy level of general breathing events, including simple snoring, 
and level 3 included energy level of more louder snoring related to OSA events. Two 
dynamic thresholds were applied to divide the energy signal into two levels, that were 
sequentially updated from a predefined ratio of the most frequent energy peak range in 
each window segment. To eliminate some ripples, which were produced by an accumu-
lation of the low energy values of the energy conversion process, we calculated another 
threshold, which was the proportion of actual signal energy within the area of a window. 
For instance, if the maximum energy value in a certain energy window was higher than 
the lower threshold and its energy proportion was more than 50%, this window was sim-
plified as level 2. This window frame would only be level 1 if the energy proportion was 
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lower than 50%. The threshold was applied to the early energy conversion process and 
reduced the errors of the energy approximation process.

During the second stage of this analysis, the OSA suspected sections were searched 
using the length of level 1 (silence) and the occurrence of other levels around level 1. 
When the level 1 section lasted for more than 20  s and was located between levels 2 
and 3, this silent section was changed to level 4, which was an extra weight for the OSA 
suspected section; that is, level 4 particularly indicated that this section was an OSA 
candidate.

During the third stage of analysis, the aforementioned approximated and weighted 
signal was transformed into a transition matrix. Because the signal had four levels, the 
matrix was 4 ×  4 and 16 cases of the transition were accumulated as the matrix ele-
ments. By normalizing the matrix, the cumulative numbers in the elements were trans-
formed to probability values, which represented the tendency of the subject’s breathing 
sound energy transition. As a result, these 16 probability values were features of the time 
domain analysis in this study. Figure 2 shows a representative example of this method.

Nonstationary analysis based on cyclostationarity

We did not consider specific sound analysis based on event detection methods. There-
fore, a window, the basic unit of analysis, included unspecific waveforms or noise. 
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Fig. 2  Representative example of the time domain analysis of sleep sound. a A raw audio data example of 
the OSA severe group and b its quantized signal’s energy. c The 4 × 4 transition matrix including probability 
values, which is calculated by (b). d–f Example results of the OSA mild group
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Furthermore, the dominant signal in a window was considered as a nonstationary signal, 
which included repetitive and complex waveforms such as breathing or snoring. Thus, 
characteristic properties representing not only the window’s basic properties but also 
an overall summary were required for our goal. In the case of snoring, it is the result of 
an obstruction of air flows in the respiratory tract during sleep and provokes repetitive 
vibrations of the tissues of the throat [18]. Therefore, the snoring sound could be con-
sidered as including two main types of waveform. The first is a complex waveform with 
a low frequency sound that is generated as a result of the collision of opposing airway 
walls during passing periods of airway obstruction. The second is a simple waveform 
sound with a quasi-sinusoidal pattern that could be considered as a result of the air-
way walls’ vibration around a neutral position without an obstruction of the respiratory 
tract lumen [19]. To obtain a valuable insight using the untapped reserves of the analysis 
method, we attempted to extract the cyclostationary properties from the sleep breathing 
sounds. It is possible to deduce that a signal is cyclostationary when it is nonstation-
ary and its statistical characteristics vary periodically in the time domain [20]; that is, if 
the signals can decompose to the several sinusoidal wave components through a non-
linear transformation of order n, the signals are defined as an n-th order cyclostationary 
process. In the present study, an autocorrelation function, a second order statistic, was 
used for the nonlinear transformation of the signals. Therefore, if the second-order sta-
tistic of the signal was periodic, it was second-order cyclostationary. We first calculated 
a bivariate autocorrelation function Cxx(t,τ) for each window of breathing sound x(t), 
with time(t) and time lag(τ). Then, we converted this function using a two-dimensional 
Fourier transform and the result was the spectral density. The spectral density Sxx(α,f) 
must consist of two frequency variables: frequency f and cyclic frequency α. Only if f and 
α frequencies were related to some hidden frequencies was the spectral density Sxx(α,f) 
continuous over f, while simultaneously a discrete function over α with non-zero values 
[21]. This non-zero spectral density, called the cyclic spectrum, and the spectral density 
Sxx(α,f) are commonly known as the cyclic spectral density (CSD):

where * denotes the complex conjugate,

To derive the overall cyclostationary features of a full night’s sleep breathing sounds, 
the real-time mean of CSD, rmSxx(α,f), was calculated using the current CSD and a pre-
vious mean value for every 60-second window, where rmSxx(α,f) is described as follows:

where k = 1,2,3,…,N and N is the total number of windows. The number of steps in the f 
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matrix, with the magnitudes of rmSxx(α,f) as the elements. However, it was not sufficient 
to use the complete matrix of rmSxx(α,f) as a feature because of the widespread zero val-
ues. For dimensionality reduction, first, a threshold using Otsu’s method was applied 
to the rmSxx(α,f) matrix to eliminate unnecessary zero regions. Second, a non-negative 
matrix factorization (NMF) technique was applied to the previous matrix. NMF can 
analyze large quantities of data through the approximated decomposition of target data 
V into non-negative factors, which consist of a basis matrix W that includes inherent 
properties of data, and a coefficient or activation matrix H [22]. To obtain a representa-
tive basis matrix, a total of 83 previous rmSxx(α,f) matrices were sequentially merged into 
an input matrix and the basis matrix was calculated using NMF with 45 rank. The rank 
was heuristically determined by repetitive tests. This basis matrix was used as an ini-
tial basis matrix to calculate the activation matrix H of each rmSxx(α,f) matrix. Because 
a cyclostationary component-related basis matrix should be obtained, the transposed 
rmSxx(α,f) matrices were used in the aforementioned process, that is, the representative 
basis matrix contained inherent properties of cyclostationarity and we could extract a 
feature set consisting of the H matrices:

Because WH is an approximated matrix of V, the factors W and H were chosen using 
the minimization of the root mean squared (RMS) residual between V and WH. Through 
these procedures, rmSxx(α,f) (54 × 889) of a full night’s breathing sound was transformed 
into an NMF activation matrix (45 × 54). Based on the dimension-reduced matrix, we 
calculated seven basic statistics, maximum, minimum, median, standard deviation, vari-
ance, kurtosis, and skewness, according to the rows and columns of H. As a result, these 
693 (45*7 + 54*7) statistical values are the features of nonstationary analysis based on 
cyclostationarity and we defined this statistical data set as the second feature in this 
study. This feature can analyze the statistics of the activity of the cyclic spectrum magni-
tude based on the spectral or cycle frequency domain. Figure 3 shows the second feature 
extraction process.

Feature selection

For better classification performance, we conducted a feature selection process that 
eliminated redundant data in the aforementioned two features. We used the wrapper 
subset evaluation method, which is a flexible supervised attribute selector. We used a 
support vector machine (SVM) as a classifier of the evaluator and linear forward selec-
tion as an attribute search method. This process was performed using the WEKA frame-
work [23], which embedded various attribute selection methods. Above-mentioned 
linear forward selection technique can find smaller optimal attribute subsets from full 
attributes and can reduce a risk of overfitting, finally it can provide higher classification 
accuracy [24]. This technique initially ranks all attributes and selects top-k ranked attrib-
utes by their scores that are obtained using a foregoing wrapper evaluator. Using limited 
number of attributes and m-fold cross-validation, this search technique finds the opti-
mal subset size. Therefore, a result subset has an explicit size, and this is final feature set 
as input to classifier.

(4)V ≡ WH
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Sleep breathing sound classification

Using the selected subset features, we performed three classification tests. For two types 
of features, we performed the individual classification test using related subset features. 
Then we conducted the final classification test with all subset features to validate the 
performance of multiple OSA severity classification.

All the classification tests provided the accuracy of the four OSA severity classifica-
tions using leave-one-out cross-validation (LOOCV). Additionally, we calculated the 
sensitivity specifically based on the four OSA severity classification results to compare 
classification performance. In this section, all tasks were conducted using the WEKA 
framework [23], which provides various feature selection methods and machine learning 
classifiers.

Results
Subset features for OSA severity classification

Using the feature selection method, we obtained 18 features from two types of features. 
Three were selected from the temporal analysis features and the remainder were selected 
from the nonstationary features. Table 1 shows the full subset feature list. In this table, 
we show the results for the rank, base, observation, statistics, and sequence number. 
“Rank” was determined using an attribute search method: wrapper subset evaluation 
feature selection method. A higher rank means that the associated feature is more sig-
nificant for the classification task. In this study, the final nonstationary analysis feature 
space, called an NMF activation matrix, has a 45 × 54 dimension. Its x-axis represents 

Windowing
(1sec)

Cyclic spectrum 
density (CSD) ∑ Mean CSD

(54-by-889)
A nocturnal 

breathing sound
83 nocturnal 

breathing sounds
(> 4h)

83 Mean CSDs
83∙(889 -by-54)

NNMF (45 rank) Representative basis W REP
(889-by-45)

Calculate the representative basis matrix using mean cyclic spectrum density

83 Activation Hact
(45-by-54)

Calculate the activation matrix using W REP

NNMF

Initial basis W 0

83 Mean CSDs
83∙(889 -by-54)

Max
Mean

Median
STD
VAR

Kurtosis
Skewness

Feature set

Classification model estimation

Feature selection Final feature set
Leave-one-out CV 

using SVM

OSA severity 
classification model 

estimation

Fig. 3  Feature extraction and classification based on nonstationary analysis. Statistical cyclostationary prop‑
erties were extracted using the mean cyclic spectral density (CSD) and the non-negative matrix factorization 
(NMF) for dimension reduction
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the spectral domain and the y-axis represents the dimension-reduced cycle frequency 
(α) domain. Based on this matrix, seven basic statistical values were calculated accord-
ing to each axis: α and f index. “Base” indicates a base axis for observing the statisti-
cal activation status of the other axis, which is presented in the “Observation” column. 
“Statistics” represents the type of statistics that were calculated for the observation axis. 
“Sequence number” represents an index of a particular base axis. For example, if the 
base is α, observation is f, statistics is maximum, and sequence number is 40, then we 
use a maximum of the f index domain’s activation statuses associated with the 40th index 
of the dimension-reduced cycle frequency index domain as a feature. An example of this 
analysis procedure is illustrated in Fig. 4. Various statistical values were selected from 
the original feature space. Because the statistical results were calculated from one col-
umn or row of a matrix, and the distribution of activations was important, the subset 
features included many statistical descriptors of the shape of a distribution, such as kur-
tosis or skewness. Figure 5 shows the averaged four NMF activation matrices based on 
these 15 nonstationary subset features. To observe the overall distribution of the magni-
tudes corresponding to each dimension-reduced cycle frequency α and spectral f index 
pair, we calculated the average matrices, including the 15 nonstationary subset features 
of all subjects, and adapted a Gaussian filter to contour the view of each matrix.

Table 1  Final subset features selected from the original feature set. From the original fea-
ture set that consisted of temporal analysis and nonstationary analysis features, a dimen-
sion reduction technique and  feature selection method were adapted for  more efficient 
subset feature and classification accuracy

Nonstationary analysis subset features

Rank Base Observation Statistics Sequence number

1 α f Maximum 40

2 α f Maximum 42

3 α f Variance 34

4 α f Kurtosis 8

5 f α Kurtosis 42

6 f α Maximum 24

7 f α Standard deviation 42

8 f α Variance 24

9 f α Median 24

10 f α Median 45

11 f α Median 46

12 f α Mean 7

13 f α Kurtosis 1

14 f α Kurtosis 2

15 f α Skewness 2

Temporal analysis subset features

Rank Energy level transition information

16 (1 x 1) from Level 1 to Level 1

17 (3 x 4) from Level 3 to Level 4

18 (4 x 1) from Level 4 to Level 1
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According to Fig.  5, the averaged four NMF activation matrices have different dis-
tributions with regard to OSA severity. The normal group demonstrates more wide-
spread spectral activations associated with a dimension-reduced cycle frequency index 

Fig. 4  Feature selection from the NMF activation matrix. x-axis represents the spectral domain and the y-axis 
represents the dimension-reduced cycle frequency (α) domain. Based on this matrix, seven basic statistical 
values were calculated along each axis: α and f index
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Fig. 5  Averaged four NMF activation matrices based on the final nonstationary subset features. Dimension-
reduced nonstationary features, the NMF activation matrices show different distributions of corresponding 
magnitudes for each dimension-reduced cycle frequency α and spectral f index pair: a normal b mild OSA, c 
moderate OSA, and d severe OSA
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domain than the others. The mild group’s distribution is relatively sparser than any 
other groups, in particular, it has no evident cyclic activations related to a low range 
of the spectral index. The activation distribution of the moderate group demonstrates 
relatively high cyclic activation at a low range of the spectral index. The severe group’s 
distribution demonstrates higher spectral activations at a high range of cyclic indices 
and higher cyclic activations at a high range of spectral indices when compared with the 
other groups. Moreover, the significant highest activation regions of the NMF activation 
matrices are all different according to the OSA severity. Based on these observations, 
we can assume that our nonstationary feature set is useful for classifying the breathing 
sounds into four OSA severity groups.

Regarding temporal analysis subset features, three features were selected from the 
original set and they represented the transition probability of the approximated breath-
ing sound’s energy values. The selected transition information indicated that the silent 
section and those associated with a predefined OSA candidate were important for OSA 
severity classification in this feature set. With these temporal analysis features, we were 
able to perform statistical analysis to check the differences between four OSA severity 
classes. Using analysis of variance (ANOVA) and Tukey’s honest significance differ-
ence (HSD) test, we verified that all three temporal analysis features were significant 
(p < 0.05), and most class-pairs (normal-mild, normal-severe, normal-moderate, mild-
severe, and moderate-severe), with the exception of the moderate-mild class-pair, dem-
onstrated a significant difference (p < 0.05) regarding these features. The analysis results 
are shown in Table 2.

Classification test with the subset features

Using the subset features, we performed the four-OSA severity classification test. We 
trained the classification model using an SVM [25–27] with a linear kernel and con-
firmed the model’s performance using LOOCV. All the experiments were conducted 
using a WEKA-implemented classifier and validation tools, and their configuration set-
tings initialized with default values. Also, in order to select the best classifier, classifi-
cation experiments were performed using various classifiers built in WEKA framework 
such as random forest, bayes network, logistics and the SVM was finally selected among 
them. The detailed results of cross-validation are shown in Table 3. The moderate OSA 

Table 2  Results of temporal analysis subset features

** (0.001 < p < 0.01)

*** (p < 0.001)

n/s not significant

Temporal analysis feature 1 × 1 3 × 4 4 × 1

ANOVA *** *** ***

Tukey HSD Moderate-mild n/s n/s n/s

Normal-mild ** n/s n/s

Severe-mild *** *** ***

Normal-moderate *** n/s **

Severe-moderate ** *** ***

Severe-normal *** *** ***
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group has the lowest true positive (TP) rate, while the severe group has the highest TP 
rate.

The classification accuracy of the four-OSA severity classification test was 79.52%. 
Table  4 shows the classification result as a confusion matrix. In the moderate OSA 
group, it showed classification errors with respect to the mild OSA group. Moreover, 
the majority of the normal subject group’s classification error is related to the mild OSA 
group. Using Table 4, we can also obtain the binary classification result to classify nor-
mal subjects (AHI ≤  5) and OSA patients (AHI ≥  5). The binary classification results 
show that the sensitivity is 98.0%; specifically, it is 75.0% and the classification accuracy 
is 92.78%.

With reference to the comparison proposed in a related study [12], in Table 5, we com-
pared our method with other studies in terms of the number of subjects, microphone’s 
location, number of OSA groups, and performance.

Since there is no standardized performance comparison framework for studies 
using sleep breathing sounds [12], our study may not be evaluated as being objectively 

Table 3  Detailed results of cross-validation

Group True positive 
rate

False positive 
rate

Precision Recall F-measure ROC area PRC area

Normal 0.75 0.02 0.94 0.75 0.83 0.93 0.81

Mild OSA 0.86 0.16 0.64 0.86 0.74 0.81 0.59

Moderate OSA 0.67 0.08 0.74 0.67 0.70 0.77 0.58

Severe OSA 0.91 0.02 0.95 0.91 0.93 0.98 0.92

Weighted aver‑
age

0.80 0.07 0.82 0.80 0.80 0.87 0.72

Table 4  Four-OSA severity classification result with leave-one-out cross-validation

Classified as

Normal Mild OSA Moderate OSA Severe OSA

Normal 15 4 1 0

Mild OSA 1 18 2 0

Moderate OSA 0 6 14 1

Severe OSA 0 0 2 19

Table 5  Method comparison between related studies using snoring sounds

Method Subjects Microphone’s location Number of OSA groups Sensitivity Specificity
Accuracy (%)

Nakano [7] 383 Neck (contact) Two 93 67

Abeyrantne [8] 16 Patient vicinity (40–70 cm) Two 100 50

Azarbarzin [12] 57 Neck (contact) Two 92.9 100

Four 77.2

Behar [13] 856 Face (contact) Two 69.5 83.7

Proposed 83 Patient vicinity (170 cm) Two 98.0 75.0

Four 79.52



Page 15 of 18Kim et al. BioMed Eng OnLine  (2017) 16:6 

superior. However, this table is presented to check our research performance level 
against the previous related studies.

Discussion
In this study, we have demonstrated that our new sleep breathing sound analysis method 
can provide relatively high performance for multiple OSA severity classification. We 
hypothesized that the energy transitions related to the general breathing sounds, snores, 
and silence in a time series, and the cyclostationarity-based nonstationary characteris-
tics of the sounds associated with obstruction and vibration in the upper airway could 
be used as significant features that represent a full night of breathing sounds of a subject. 
This hypothesis was tested using experiments that classified the sleep breathing sounds 
into OSA severity classes based on the AHI.

In this study, we extracted nonstationary features using an entirely new approach. We 
calculated an average CSD from a subject’s sleep breathing sounds, for which the aver-
age time was over 4 h. Then the NMF method was adapted for drastic dimension reduc-
tion, and a feature selection strategy was also applied to search core subset features. 
This is the first attempt at this approach for breathing sound analysis. The results of this 
method show that cyclostationary activation, which represents a hidden periodicity 
of data related to particular spectral bands, could be a special feature for sleep breath-
ing sounds. Using this approach, we summarized all the nocturnal breathing sounds of 
each subject, with particular properties that were associated with the spectral charac-
teristics and hidden periodicity of the sounds. We verified that this feature represented 
significant differences between breathing sounds, which were grouped according to the 
OSA severity class, as shown in Fig. 5. For the normal group, the NMF activation matrix 
showed that a wide spectral band area was associated with the narrow high indexed 
cycle frequency band area. By contrast, the moderate and severe OSA groups presented 
different characteristics. For these groups, a wide cycle frequency band area associated 
with a particularly high indexed spectral area was activated in the matrix. We found that 
these properties reflected the special spectral characteristics of representative breathing 
sounds of each subject’s nocturnal breathing sounds.

The temporal analysis features were the transition probability of breathing sound 
energy in the time series. We adapted basic OSA detection criteria that are related to 
the silent interval between snoring sounds, for example, apneic events greater than 10 s 
in duration [4]. In Table 1, the final temporal analysis subset feature consisted of three 
types of transition information: (1 × 1)—silence level (3x4)—energy transition from the 
high energy level to the OSA candidate level, and (4x1)—energy transition from the OSA 
candidate level to the silence. We showed that all the features were statistically signifi-
cant in Table 2 in which the appearance rates of purely silent sections and the sections of 
energy transition to silence could be a significant feature for the OSA severity classifica-
tion task.

The aforementioned two features could be influenced by the sound recording qual-
ity with respect to the recording performance or location of the microphone. In this 
study, we used an ordinary microphone that was not specifically installed to record or 
analysis breathing sounds and was located far away from the subject (almost 2 m); thus, 
we judged that the breathing sounds used in our experiments already had a low sound 
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recording quality. In a typical experiment or real application, the recording equipment 
will be located near the user, so the recording quality will be similar or better than the 
sound used in our experiment. Therefore, we expect our features to perform well in an 
individual space, such as private bedroom with an ordinary sound recording device.

In Table 5, we compared our study with previous research. Nakano et al. [7] recorded 
the tracheal sound using a body-contact microphone and calculated a transient fall (TS-
dip) of the power spectra’s moving average in the time series. With this feature, they 
obtained the tracheal sound-respiratory disturbance index (i.e., the number of TS-dips 
per hour) and compared it with existing AHI values from PSG. The result of OSA subject 
detection using their feature (AHI threshold 5) was 93% sensitivity and 67% specificity. 
Abeyratne et al. [8] detected segments of snore-related sounds (SRS) detected automati-
cally and categorized SRS into pure breathing, silence, and voiced/unvoiced snoring seg-
ments. From these segments, they extracted the intra-snore pitch periods feature, which 
was characterized by discontinuities called intra-snore-pitch-jumps. Using this feature, 
they obtained an OSA detection result with 100% sensitivity and 50% specificity, where 
the AHI threshold was 5. Azarbarzin et  al. [12] recorded sleep breathing sounds with 
a special microphone that was placed over the suprasternal notch of the trachea, and 
extracted three types of segment: non-apneic, hypopneic, and post-apneic. From these 
segments, they calculated the total variation norms of the zero crossing rate and peak 
frequency, and used them as features. They obtained 77.2% accuracy from the four-OSA 
severity classification test and an additional OSA detection result of 92.9% sensitivity 
and 100% specificity with AHI threshold 5. Behar et al. [13] detected OSA subjects using 
breathing sounds and additional information from sensors such as actigraphy, body 
position assessment, and photoplethysmography. For breathing sound recording, they 
used a particular microphone attached to the subject’s face, and extracted the multiscale 
entropy values from the audio. The OSA subject detection result based on audio was 
69.5% sensitivity and 83.7% specificity for training using SVM. Unlike previous studies, 
our proposed method did not use a special body contact-type microphone and did not 
perform any snoring segmentation with breathing sounds recorded at long distance. We 
only divided the sleep breathing sound into predefined window lengths and generated 
the feature matrix using the aforementioned two features from all the windows. Because 
we intend to use this method for a screening test system that can provide information on 
OSA risk or notification for a PSG test for individuals operated using a personal mobile 
device, we suppose that our proposed method, environment setup, and result are suit-
able for our purpose.

Conclusions
In this study, we proposed an OSA severity classification technique for a preliminary 
PSG test using particular features of nocturnal sleep breathing sounds. Unlike recent 
studies, this research did not use any of the conventional features that were used in 
existing sound analysis domain. Instead, we used only the audio signal’s energy transi-
tion probability information in the time domain, and the cyclostationarity-based non-
stationary characteristics in the spectral and cycle frequency domains. Using these two 
features, the proposed method showed the most competitive classification performance 
of 79.52% for the four OSA severity classification and 92.78% for OSA patient detection 
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test. These results indicate that a proposed method could be a promising approach to 
identify the multiple OSA severity of suspected patients and provide proper information 
to individuals for a preliminary PSG screening test.

The limitations of conventional PSG, such as the high cost, inconvenience, complex 
measurement method, and difficulty of ensuring sleep variability because of the single 
night’s test, lead to an increased demand for a preliminary PSG screening test in various 
environments, such as the home. In the proposed method, the sounds were recorded 
only in the clinical test rooms, so it can be considered that the experiment did not con-
sider the actual environments. However, since the general private bedroom environment 
is not much different from the PSG room, and the sounds were not recorded under par-
ticular controlled conditions, the proposed algorithm is expected to perform reasonably 
well in universal circumstances.

The proposed method has some limitations. For more practical applications, there 
is a need to apply various noise reduction and cancellation techniques to the acquired 
sounds or framework of research. Additionally, experiments with many more patients 
should be conducted to make our method more robust and reliable. Furthermore, to 
obtain more accurate classification performance, additional algorithms can be consid-
ered in the preprocessing or feature extraction step. In particular, the properties related 
to cyclostationarity can be good input data of feature learning techniques for a deep 
neural network; thus, we will consider this in a future study.

The present study will contribute to the development of screening technology for 
a specific medical inspection using restricted data, and we expect that this technique 
will be applied within various mobile healthcare platforms to supplement a preliminary 
home examination of sleep disorders.
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