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Abstract

The combination of computational models and biophysical simulations can help to
interpret an array of experimental data and contribute to the understanding,
diagnosis and treatment of complex diseases such as cardiac arrhythmias. For this
reason, three-dimensional (3D) cardiac computational modelling is currently a rising
field of research. The advance of medical imaging technology over the last decades
has allowed the evolution from generic to patient-specific 3D cardiac models that
faithfully represent the anatomy and different cardiac features of a given alive subject.
Here we analyse sixty representative 3D cardiac computational models developed and
published during the last fifty years, describing their information sources, features,
development methods and online availability. This paper also reviews the necessary
components to build a 3D computational model of the heart aimed at biophysical
simulation, paying especial attention to cardiac electrophysiology (EP), and the existing
approaches to incorporate those components. We assess the challenges associated to
the different steps of the building process, from the processing of raw clinical or
biological data to the final application, including image segmentation, inclusion of
substructures and meshing among others. We briefly outline the personalisation
approaches that are currently available in 3D cardiac computational modelling.
Finally, we present examples of several specific applications, mainly related to
cardiac EP simulation and model-based image analysis, showing the potential
usefulness of 3D cardiac computational modelling into clinical environments as
a tool to aid in the prevention, diagnosis and treatment of cardiac diseases.

Keywords: Cardiac modelling, Three-dimensional (3D) modelling, Computational
modelling, Fibre orientation, Cardiac conduction system (CCS), Cardiac image
segmentation, Biophysical simulation, Personalisation, Patient-specific modelling
Introduction
Some decades ago, three-dimensional (3D) cardiac computational models were only

used for very simple computational simulations of cardiac electrophysiology (EP) or

cardiac mechanics analysis. Nowadays, 3D cardiac models are becoming increasingly

complex and are currently used in other areas such as cardiac image segmentation,

statistical modelling of cardiac anatomy, patient risk stratification or surgical planning.

These models are starting to be used in clinical environments for 3D image analysis or

therapy guidance in procedures such as radiofrequency ablation (RFA). Due to the in-

tensive research in this field and the evolution of computing resources, the introduc-

tion of 3D advanced computational simulations of cardiac EP and/or mechanics and
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model-based cardiac image analysis in clinical environments are becoming more

feasible.

This paper presents a review of the methods used to construct 3D cardiac computa-

tional models since their earliest developments (about fifty years ago) until today, and

discusses their advantages and applicability to different areas. To carry out our system-

atic review, sixty representative computational models were taken from the literature

and were analysed in order to explore the evolution of the methods used to develop 3D

cardiac models over the last fifty years. As a main result, we crafted a wide summary

table (see Additional file 1: Table S1) that provides information about the main features

of the reviewed 3D cardiac models and the particular methods used to build each of

them.

This article is organised as follows. We first discuss the information contained in

(Additional file 1: Table S1) and its intended usefulness for the readers. Later, we

outline the evolution of 3D cardiac models from the “early era” to the present days,

highlighting the methods used for the computational reconstruction of cardiac anat-

omy. The next section addresses the different stages of the development process of a

3D cardiac model (3D reconstruction of cardiac anatomy, meshing, etc.) and reviews

the available methods to construct a model and to include certain heart features (fibre

orientation, cardiac conduction system, ischaemic scars, etc.) in a computational model

aimed at biophysical simulation with especial attention to cardiac EP. The following section

briefly describes the available personalisation approaches in cardiac computational model-

ling. Finally, the paper addresses the main applications of 3D cardiac models by presenting

examples related to several specific applications, focusing on cardiac EP simulation and

model-based image segmentation.
Table of 3D cardiac computational models
Reviewing the entire literature related to the development of 3D cardiac models would

be virtually impossible. For this reason, we chose sixty models from the literature as a

representative set suitable to outline the evolution of 3D cardiac computational model-

ling from its beginning. In order to show this evolution we list them in chronological

order in (see Additional file 1: Table S1).

Additional file 1: Table S1, crafted as a main result of this review work, was designed

to provide a complete summary about the reviewed models. It shows information about

the data source and methods used to develop each of the sixty reviewed 3D cardiac

models as well as their main features, final application and online availability, in case

the reader is interested in downloading any of them. The information provided by each

column of Additional file 1: Table S1 is later addressed in a specific subsection of the

Elements of a 3D cardiac computational model section, discussing why certain features

or methods are needed or convenient for particular applications. We intend for readers

to use Additional file 1: Table S1 as a reference tool along the entire article since it con-

tains examples of models including the different cardiac features addressed or models

that were developed using some of the methods mentioned in the text. Therefore, it

can be used to find several models sharing a particular purpose or certain feature/

method in which the reader might be especially interested or to compare different

models in a quick and straightforward manner.
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Evolution of 3D models of cardiac anatomy
The first step of the development process of a 3D cardiac model is the computational

reconstruction of the anatomy of the heart by generating a 3D cardiac geometry. In this

section, a brief survey of the evolution of 3D cardiac models is presented focusing on

the methods used to build the computational reconstruction of cardiac anatomy and

the achieved level of anatomical detail.
Generic models

The first developed 3D computational models of cardiac anatomy were simplistic

models based on geometric shapes. Most of them only included the left ventricle (LV), rep-

resented by two concentric ellipsoids truncated at the base level to roughly approximate

the shape of the LV [1-5]. However, this approach is still in use for specific applications in

which the anatomical realism is not crucial for the purpose of the model [6,7].

Later, anatomical models were established. They aimed to represent cardiac anatomy

in a more realistic fashion but still with a low level of anatomical detail due to the poor

quality of the data used to build them. They were usually constructed by manual draw-

ing from histo-anatomical slices [8-11] or from measurements taken on explanted

hearts [12,13] or by segmenting pictures of histo-anatomical slices [14-17]. The most

representative ones are two bi-ventricular models highly referenced and reused: the

rabbit model from University of California San Diego [11] and the canine model from

University of Auckland [12]. Their main contribution was the inclusion of realistic fibre

orientation obtained from experimental measurements.

The development of computer-aided design (CAD) tools enabled the construction of

3D cardiac models without any direct source of anatomical information [18-21]. Some

anatomical details, such as chambers volumes or wall thickness were just taken from

the literature in order to virtually generate the geometry of the model.

3D atrial models began proliferating later than ventricular ones for several reasons,

such as the higher lethality of ventricular disorders or the challenges associated to its

3D reconstruction due to the high complexity and inter-subject variability of atrial

anatomy. Nevertheless, all kinds of model described above are present among reviewed

3D atrial models: geometric models [22], CAD models [19,21] and anatomical models

from histo-anatomical slices [23-25].

Medical image-based models

The evolution of medical imaging technology gave the possibility of building realistic

3D cardiac models from either in-vivo or ex-vivo images, as demonstrated by early

works [26] and [27], respectively. Medical image-based 3D cardiac models have prolif-

erated over the last 15 years due to the advance and consolidation of techniques such

as magnetic resonance imaging (MRI) [28-34] and computed tomography (CT) [35,36],

leading to the rise of 3D cardiac computational modelling. As will be discussed below,

the development of new imaging modalities capable of providing structural and func-

tional information of cardiac tissue was also a major breakthrough in 3D cardiac com-

putational modelling.

The increasing availability of in-vivo cardiac images together with the rising trend to-

wards personalised medicine resulted in the definition of patient-specific models. They
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model the cardiac anatomy of a specific human subject from in-vivo images, usually

MRI [37-39] or CT [40,41]. Figure 1 shows a patient-specific bi-ventricular model built

from in-vivo MRI [39]. Building this kind of model requires imaging techniques syn-

chronised with the ECG and breathing in order to overcome the noise and motion arte-

facts due to the cardiac cycle and breathing movements. This has also enabled building

dynamic models that include the intra-subject anatomical variations of the heart due to

the cardiac cycle [37,38].

Cardiac atlases also emerged thanks to the increasing availability of in-vivo images.

They are assembled by averaging several 3D cardiac image datasets from a population

of subjects, thus generating a mean 3D cardiac image or shape (for further details about

cardiac atlases see Cardiac image segmentation section). For instance, the cardiac atlas

developed in [42] was constructed from 14 manually segmented cine-MRI images and

in [43] in-vivo multislice-CTs (MS-CT) from 100 subjects were used.

There are a few highly-detailed bi-ventricular models built from very high resolution

ex-vivo MRI datasets (~25 μm per slice) from small mammalian hearts, which show an

outstanding level of anatomical detail including papillary muscles and endocardial tra-

beculations. Some of them even take into account detailed information at tissue level

provided by histological slices with specific staining [44,45]. Figure 2 shows an example

of a highly-detailed rabbit bi-ventricular model [46].
Elements of a 3D cardiac computational model
In addition to the 3D geometry representing part of the cardiac anatomy, every 3D car-

diac computational model may also require other elements, such as the structure of the

cardiac tissue, biophysical models of the heart (EP and/or mechanical), pathologies that

affect the myocardium, etc. In this section we review the data sources and computa-

tional methods used to include those elements into a model, also specifying which of

them are necessary depending on the final purpose of the model. Figure 3 shows a

flowchart depicting the full development pipeline of a 3D cardiac computational model

aimed at biophysical simulation, showing the main stages of the building process and

the relationships between them. These steps will be addressed in the following sections,
Figure 1 Patient-specific bi-ventricular model. (a) In-vivo cardiac MRI slices showing manually segmented
epicardial contour. (b) 3D cardiac model overlaid on the MRI stack. (c) Finite-element mesh with tri-cubic
Hermite elements showing the main direction of fibre orientation at epicardium (yellow), midwall (green)
and endocardium (purple). Reproduced with permission from [39]



Figure 2 Highly-detailed rabbit bi-ventricular model. (a) Very high resolution ex-vivo MRI. (b) 3D rendering
of the model showing a high level of anatomical detail. (c) Detail of tetrahedral finite-element mesh showing
the papillary muscles (green) and chordae tendineae (blue). Adapted with permission from [46].
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mainly focusing on cardiac EP simulation and providing an extended diagram specific

to each step.
Geometry

As shown in Figure 3, the generation of a 3D cardiac geometry, usually represented by

a 3D surface mesh, is the very first step of the construction process of a 3D cardiac

model. The geometry of the heart is a key feature that must be represented by 3D car-

diac models accurately and realistically. In general, the geometry of a 3D model repre-

sents one or several cardiac chambers (LV, bi-ventricular, atrial or whole-heart models)

and can also include other details such as the great cardiac vessels including outflow

and/or inflow tracts [17,47,48], the fibrous annulus of atrioventricular valves [49,50],

part of the coronary tree, or some endocardial details such as papillary muscles and tra-

beculae carneae for ventricles or crista terminalis, pectinate muscles and fossa ovalis



Figure 3 Full pipeline to build a 3D cardiac computational model aimed at biophysical simulation. Summarised
flowchart showing the main stages of the construction of a 3D cardiac model aimed at biophysical simulation: 3D
cardiac geometry generation, meshing, CCS generation, myocardial structure generation, biophysical modelling
(cardiac EP and biomechanics) and cardiac pathology modelling. Lines and arrows depict the relationships
between the different stages by means of partial results (grey boxes) and coupling steps (yellow boxes). For
pathology modelling, the diagram shows the different types (orange boxes) and subtypes (brown boxes) of cardiac
pathology that can be included in a cardiac computational model and the stage in which each type of pathology
must be taken into account.
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for atria [21,24,25]. However, it is important to note that the completeness and the

anatomical realism and accuracy required by a particular 3D cardiac model will

strongly depend on its final application. In [46] it was concluded that structurally

simplified models (without endocardial details or vessels) are well suited for a large

range of 3D cardiac modelling applications aimed at EP simulation, although the

presence of trabeculae provides shortcut paths for excitation causing regional

differences in electrical activation patterns after pacing compared to anatomically

non-detailed models.

The level of anatomical detail achieved by a given model also depends strongly on

the source of anatomical information and the methodology used to build it, as shown

in Figure 4. Geometric or CAD models, whose geometry shows a coarse representation

of cardiac anatomy, are built from population-based data just taking into account

some measurements of cardiac chambers volume or wall thickness [4,18]. They are

normally used when no direct source of anatomical information is available or when

the simplicity of the geometry is preferred to the anatomical realism for the purpose of

the model [6,7,22]. Histo-anatomical slices can provide highly detailed anatomical [25]
Figure 4 3D cardiac geometry generation stage of the development process of a 3D cardiac computational
model. Diagram depicting the main alternatives to generate the 3D surface mesh that represents the cardiac
geometry, showing the sources of anatomical information (blue boxes) and the methods (green boxes) with their
possible options (brown boxes) used for this task, as well as the kind of model (orange boxes) obtained by
each method.
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and also histological information [44,45]. However, there is usually a large gap between

adjacent slices what leads to the loss of great amount of information out of plane

[9,10,14], although it can be mitigated by means of interpolation techniques.

Medical image-based models can include patient-specific details obtained from

clinical imaging data and/or population-based properties collected from ex-vivo

datasets (see Figure 4). Clinical imaging protocols usually provide sparse datasets with

large gaps between slices, as in the case of most MRI modalities (e.g. [38,49,51]), what

often leads to the use of interpolation schemes. Nonetheless, due to the advance of the

imaging techniques this approach can require the segmentation of large stacks of

tomographic images, especially for high-resolution ex-vivo datasets (e.g. [32,35,36,46])

or cardiac atlases whose construction involves segmenting numerous in-vivo datasets

(e.g. [43,52]). Manual segmentation requires expertise and is very time consuming,

while automatic segmentation of cardiac images is still challenging, especially for

in-vivo datasets. Despite this, clinical imaging techniques (mainly MRI and CT) are

today the source of anatomical information most commonly used to generate the

geometry of 3D cardiac models.

Ex-vivo cardiac images can provide much higher spatial resolution than in-vivo

datasets for several reasons: absence of motion artefacts, removal of surrounding

tissue before the scan and lack of the limitations imposed by alive subjects (either

human or non-human) regarding the acquisition time and the ionizing radiation dose

(in the case of CT modalities). It allows detailed reconstructions of cardiac geometry,

including structures very difficult to observe in in-vivo images such as Bachmann’s

bundle or pectinate muscles in the atria and endocardial trabeculations in the ventri-

cles [31,45] or leaflets of the cardiac valves and the chordae tendineae [46]. Recently,

ex-vivo micro-CT with iodine staining has allowed reconstructing structures such as

the atrioventricular node and atrial preferential conducting bundles [36]. Among the

reviewed works, the segmentation of ex-vivo images was usually performed by bi-

dimensional (2D) semi-automatic approaches (slice by slice) by combining classical

image processing methods such as region growing [31,35], snakes [28,30] or level sets

[32,34]. However, manual correction was needed in most cases after the automatic seg-

mentation process [30,31,34,35]. For those models based on very high resolution ex-

vivo MRI, 2D semi-automatic segmentation was also applied but with a lower level of

manual interaction, e.g. using thresholding and morphological operators [44] or com-

plex pipelines based on level sets [45,46,53].

In-vivo images can provide both anatomical and temporal patient-specific informa-

tion, thus enabling the characterisation of cardiac motion [52,54]. The reviewed

patient-specific models based on in-vivo MRI were mostly assembled by manual

segmentation [37,39]. Images provided by certain MRI modalities, such as cine-MRI,

can be segmented by 2D automatic approaches combining morphological operators and

snakes [38]. 2D semi-automatic approaches based on snakes/level sets [40] and even 3D

automatic methods [41] were applied to in-vivo MS-CT. Some cardiac atlases were

also assembled from manually segmented MRI [51,55]. Nevertheless, to facilitate the

segmentation of large amount of datasets, more complex approaches have been applied

to assemble cardiac atlases: fitting of a deformable model based on geometrical shapes

followed by manual correction [56], adaption of an initial mesh by piecewise affine
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transformation [47] or non-rigid registration with a previously manually segmented

image [43,52,54].

In conclusion, high-resolution ex-vivo datasets enable much more detailed recon-

structions of cardiac anatomy than in-vivo ones. However, in addition to the explant-

ation of the heart, the organ must undergo a whole process of tissue preparation

(fixation, chambers filling, etc.) before the acquisition of ex-vivo cardiac datasets, either

ex-vivo images or histological slices. This process could alter several features of cardiac

structures, such as shape, size, volume, etc., especially in the case of histological sec-

tions due to the deformation caused by the slicing process [57-59]. Therefore, even

though it is undoubtedly a good approximation, today it still remains unclear to what

extent an ex-vivo derived geometry is relevant to the in-vivo function of the heart, as

posed in [26]. To our knowledge, there is no literature addressing this issue thoroughly,

so it is something to take into account when a 3D cardiac model is used to carry out

computational simulation studies with potential clinical relevance.

Cardiac models can also include the coronary tree, which is often virtually generated

from the anatomical knowledge, manually segmented from pictures of histo-anatomical

slices [17] or fitted from a previous model [56]. The full coronary tree can be seg-

mented from very high resolution ex-vivo MRI [44,46,53]. Using complex segmentation

pipelines the main coronary arteries can be reconstructed from in-vivo MRI [37]. How-

ever, high-resolution MS-CT has become the modality for in-vivo assessment of the

structure of the coronary tree since it allows segmenting part of the patient-specific car-

diac vascular network [43,52]. There are some applications in which the coronary tree

might have a central role in the model, such as cardiac resynchronisation therapy

(CRT) where the implanted leads are spatially restricted to the lumen of some specific

veins [60,61]. Other authors have also studied the role played by blood vessels (e.g. fibre

orientation changes around vessels) within the heart in stabilising arrhythmias, report-

ing changes in wavefront curvature around the blood vessels [62].

Meshing

Although simple heart models still play an important role for certain applications that

focus on mechanistic enquiry, current trends are moving towards patient-specific com-

plex anatomical models. Both simple and detailed anatomical heart models are com-

monly represented by 3D elements resulting from a meshing process. Figure 5 shows

an overview of the most common meshing options for 3D cardiac models. The hom-

ogenisation of discrete tissue components and the adoption of advanced spatial discret-

isation techniques based on the finite-element method (FEM) have enabled the

resolution of complex biophysical problems. As shown in Figure 3 and Figure 5, ana-

tomical models are usually represented by discrete 3D surface meshes resulting from

the geometry generation stage, which will serve as an input for a volumetric mesh

generator software (e.g. Tetgen, NetGen, Tarantula). The most common alternative to

FEM method is based on grid-based meshes, which can operate directly from a

segmented image stack to discretise the volume [45] (see Figure 5).

For EP simulations, unstructured volumetric FEM meshes are commonly used con-

sisting of linear elements that are usually tetrahedral [46], hexahedral or a combination

of both [63]. The use of hexahedral elements is desirable to decrease the number of de-

grees of freedom of FEM models, at the cost of a poorer representation of cardiac



Figure 5 Meshing stage of the development process of a 3D cardiac computational model. Diagram describing
the most common methods (green boxes) and options (brown boxes) to build the 3D volumetric mesh of a
cardiac model using the 3D surface mesh or the 3D segmented image resulting from the cardiac geometry
generation as a starting point for the meshing process.
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anatomy [33,64]. Another extended representation of cardiac anatomy uses cubic

Hermite elements, which provide a smooth representation of the model geometry that

is well-suited to simulate large deformation mechanics [65]. Although that representa-

tion fails to faithfully represent the subtle anatomical details present on the heart, it

shows a higher numerical accuracy for mechanical simulations than linear interpolation

schemes in models based on tetrahedral or hexahedral elements [66]. Indeed, models

aimed at electromechanical simulations usually include two coupled FEM volumetric

meshes: one based on linear elements to solve the electrical component and one based

on higher order elements [6] or Hermite interpolation functions [34] for the mechan-

ical problem.

The equations to be solved on FEM models impose strong restrictions on mesh

elements. In addition, the inclusion of fine anatomical structures (Purkinje, trabeculae,

vascularisation) to faithfully represent the cardiac anatomy also increases the number

of degrees of freedom of a model. Spatial (ds) and temporal discretisation (dt)

constraints are imposed when biophysical models are used, which are in the order of

ds = 0.1-0.5 mm and dt = 0.05-0.005 ms [67]. The main reason is the fast upstroke of

cellular depolarisation, which produces a step-like wavefront over a small spatial extent

[68]. For the case of phenomenological models, such as Eikonal ones, spatial and temporal

discretisation is less demanding (order of ds = 0.5 mm, dt = 1 ms), resulting in faster

computation times.
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Myocardial structure

Cardiac myocytes are elongated cells arranged in a laminar sheet organisation to form

the ventricular myocardium [69,70]. The direction of the longitudinal axis of cardiac

myocytes, known as fibre orientation, strongly determines the electrical activation

pattern of myocardium since the electrical propagation is 3 to 4 times faster along this

axis than in the transversal one [71]. Furthermore, myocardial contraction is charac-

terised by a shrinkage along the longitudinal axis of myocytes, so fibre orientation has

also a great influence on the mechanical behaviour of cardiac tissue. Thus, fibre

orientation must be included in models aimed at performing realistic EP and/or

mechanical computational simulations. Once the 3D volumetric mesh resulting from

the meshing stage is built, the fibre orientation may be included in the 3D model by

setting the direction of the longitudinal axis as a property of every volume mesh

element (see Figure 3).

Figure 6 shows a schematic summary of the methods most commonly used to obtain

the fibre orientation of myocardial tissue. The most usual approach is based on rule-

based algorithms that estimate the fibre orientation associated to each element of the

volumetric mesh of a model from pre-established patterns [5,6,41,43], most of them

derived from Streeter’s findings [72]. Fibre orientation can also be obtained from

measurements taken on explanted hearts [12,35], by analysing histological sections

under microscope [11] or by digital processing (structure tensor method) of volume

images assembled from high-resolution pictures of very thin histological slices [25,44].

Diffusion tensor-MRI (DT-MRI), also called diffusion tensor imaging (DTI), is a MRI

modality capable of showing the diffusion of water molecules within the biological

tissues. For cardiac DTI, it is well known that the direction of the primary eigenvector

associated to each voxel of the acquired images matches the longitudinal axis of cardiac
Figure 6 Myocardial structure generation stage of the development process of a 3D cardiac computational
model. Diagram showing the main sources of structural information at tissue level (blue boxes) and the methods
(green boxes) used to obtain the fibre orientation to be included in a 3D cardiac model.
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myocytes [73-75]. This information can be mapped onto the volumetric mesh of a 3D

cardiac model to include fibre orientation [31,34,45,76]. In [77] a statistical atlas that

characterises the variability of fibre orientation was constructed using ex-vivo DTI from

nine canine hearts. In recent works there have been proposed approaches to estimate

the patient-specific fibre orientation of the LV from sparse in-vivo 2D DTI slices [78,79]

benefiting from the aforementioned fibre statistical atlas [77]. Ex-vivo cardiac DTI can

also provide anatomical information, thus avoiding the need to merge different image

modalities to construct a 3D cardiac model including fibre orientation [30,33].

However, due to its high sensitivity to motion artefacts, in-vivo cardiac DTI is not

capable of providing the full patient-specific fibre orientation of the whole heart yet. In

[80] it was shown that global electrical activation patterns obtained by computational

simulation from a model with fibre orientation based on a rule-based linear approach

were very similar to those based on DTI for the same geometry, thus demonstrating

the robustness of the former method for EP simulation studies. Likewise, in [81] a

novel rule-based algorithm was compared to DTI-derived fibre orientation (see

Figure 7) reaching similar conclusions. Micro-CT with iodine staining is another image

modality recently used to assess the fibre orientation in certain critical regions of atrial

tissue by structure tensor method [36]. Nevertheless, in-vivo micro-CT is not feasible

because of the needed high dose of ionizing radiation. In conclusion, currently there is

no in-vivo technique capable of providing the full patient-specific fibre orientation of

the whole heart.
Figure 7 Different methods to include the fibre orientation in 3D bi-ventricular models. Comparison between
(a) rule-based method (Laplace-Dirichlet) and (b) DTI-based estimation of the myocardial fibre orientation for a
3D model of canine ventricles. Adapted with permission from [81].
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Cardiac conduction system

The electrical activation of the ventricles is triggered by a heterogeneous complex 3D

structure network that combines subendocardial and free-running fibres forming the

so-called cardiac conduction system (CCS). The ventricular portion of the CCS ensures

the coordinated activation of the ventricular myocardium to achieve the most efficient

pumping activity [82]. The His-Purkinje system is highly specialised for a rapid con-

duction (~2-4 m/s) of the action potential (AP). The CCS is isolated from surrounding

myocardium by connective tissue sheaths along its path with the exception of the

terminal portion, allowing AP to propagate to ventricular working myocardium at the

Purkinje-myocardium junctions (PMJs) [83]. The location of these PMJs plays a key

role since they are the source points of the activation of the ventricles [82]. A number

of EP computational studies have already integrated CCS models to analyse their role

in non-physiological scenarios such as during ventricular tachy-arrhythmias [84,85],

ventricular pacing [41] or administration of antiarrhythmic drugs [64]. All these

studies reproduce Purkinje cell EP using tailored AP models [86,87] that capture their

main electrical behaviour. The most recently developed Purkinje EP models include the

Ca2+ subsystem spatial organisation and receptors distribution that are unique to

Purkinje cells [88], allowing a more accurate modelling of arrhythmias.

Figure 8 shows the main steps and alternatives to generate a model of the CCS that

can be coupled to a 3D cardiac model, as shown in Figure 3. The CCS can be visualised

using ex-vivo microscopic images with specific markers such as stains or connexin

antibodies, but cannot be reconstructed from in-vivo imaging techniques since its

structures are under the level of resolution of current clinical imaging systems. The

methods to include the CCS function in computational models are often based on

altered endocardial properties that emulate faster activations [89], the setup of a num-

ber of early activation points obtained from the literature (e.g. from [90]) or electrical

recordings [91], or simplified models that aim to emulate the structure of the CCS

network. The latter models can be constructed using different techniques such as

manual delineation of CCS on the endocardial surfaces of a 3D cardiac model [41],

fractal tree-like representations [92], or algorithms based on the characterisation of the

main features of the CCS structure obtained from ex-vivo population data by means of

histological studies of animal hearts (rat, rabbit, dog or lamb) [93]. Very high resolution

ex-vivo MRI has allowed locating a number of free-running Purkinje fibres by visual

inspection [53,94] and recently ex-vivo micro-CT with iodine staining has enabled an

image-based semi-automatic reconstruction of the full CCS [95], all in small mamma-

lian hearts.

It is important to highlight that due to the special inhomogeneous coupling between

CCS and ventricular working myocardium at PMJs, specific computational models are

required for the PMJ coupling (see Figure 3). Those models try to reproduce the

propagation delay at PMJs in healthy and pathological conditions, adding transitional

regions or resistor elements to couple both cell types [84,96-98]. However, it is still very

difficult to determine the location and density of PMJs, and therefore computational

studies can provide insights into this important matter in normal and pathological

scenarios [85]. Recently, novel methods to estimate the location of PMJs clusters and the

structure of the CCS from in-vivo electroanatomical maps (EAMs) have appeared

[99,100].



Figure 8 CCS generation stage of the development process of a 3D cardiac computational model. Diagram
outlining several ways to generate a model of the CCS to be coupled to a 3D cardiac model. It shows the
information sources (blues boxes), the partial results obtained (grey boxes) and the methods (green boxes)
used to generate different kinds of model of CCS (orange boxes).
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Electrophysiology

For models aimed at EP computational simulation, once the anatomy and structure of

the heart have been defined, a mathematical model that simulates the EP behaviour of

the myocardium must be plugged in. Figure 9 briefly summarises the main methods

and options to model the cardiac EP using EP models. In the 70s and the 80s, these

models usually had the form of cellular automatas [10,101], but these rule-based

models were progressively substituted by equation-based ones that consist of two parts:

the cellular-level equations and the tissue-level equations (see Figure 9). The cellular-

level equations are based on the well-known Hodgkin and Huxley (HH) formalism

established more than 60 years ago [102]. According to this formalism, the cellular AP

and the underlying ionic currents are described by a system of non-linear first order

ordinary differential equations (ODEs) that models the kinetics of individual ionic

channels, pumps and exchangers and the electrical interaction thereof [103]. While

these currents are still formulated using the HH formalism, a new paradigm based on

Markov-type models is also being adopted to build more biophysically-based models of

ion channels [104]. Over the past decades, extensive patch-clamp experiments that

reveal the dynamic properties of ionic channels [105] have provided data to formulate

comprehensive mathematical descriptions of ionic currents of different animal species,

heart portions and pathophysiological conditions. EP models are now highly specific



Figure 9 Cardiac electrophysiology modelling stage of the development process of a 3D cardiac computational
model. Diagram summarizing very briefly the main methods (green boxes) and options (brown boxes) to model
the cardiac EP by means of EP models from EP data (blue box) provided by electrical activation maps at tissue
level and patch-clamp experiments at cellular level.
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and include human atrial [106], ventricular [107] and Purkinje cells [87] in normal or

diseased conditions (see [103] and [108] for review).

The ventricular wall is not homogeneous, as cardiac myocytes in different portions of

the ventricles exhibit different ionic currents and APs. Electrophysiological hetero-

geneities in the ventricles include epicardial-endocardial [109], apico-basal [110] and

left-right [111] differences in ion channels and thus in APs. Recent AP models include

some of these regional differences; for instance, the last human AP model by O’Hara

et al. includes different formulations for endocardial, epicardial and midmyocardial

cells [107]. Although there is no experimental evidence on the boundaries of these

different regions in the heart anatomy, transmural and other regional differences (e.g.

Bachmann’s bundle, crista terminalis or pectinate muscles in the atria) in the EP level

have been roughly included in some 3D cardiac models [33,112,113].

Myocardial cells are electrically coupled so that current can flow from one cell to

neighbouring ones. Thus, the above mentioned cellular models must be accompanied

by a tissue-level model in which axial currents flow between cells through low-

resistance gap junctions. Such model should take into account the anisotropy inherent

to the myocardium, and also the fact that the muscle tissue includes both intracellular
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and extracellular media (domains) separated by cell membranes. A mathematical

homogenisation of this concept leads to the so-called bidomain model, which was

developed in the late 70s [10]. This model consists of two partial differential equations

(PDEs) from which extracellular and intracellular potentials can be derived. Because

membrane potentials depend on ionic currents, the tissue-level equations are coupled

to the cellular-level ones, so the complete model is formed by a system of two PDEs

and a certain number of ODEs, which are strongly non-linear.

The two PDEs include the intracellular and the extracellular conductivity tensors

determined by fibre orientation. If equal anisotropy ratios are assumed for the intra-

cellular and extracellular domains (i.e. the two tensors are related by a constant), then

the bidomain formulation is reduced to the so-called monodomain approach and the

two PDEs become uncoupled [114]. One of the PDEs is of the reaction-diffusion type

and includes all the ionic current ODEs in its independent term. Membrane potentials

can be obtained by solving this system, while extracellular potentials can be derived

directly from the second ODE once membrane potentials are known.

The number of state variables in the ionic AP models (and thus the number of

ODEs) can be as high as 48 [107]. The systems of PDEs plus ODEs pose a mathematic-

ally challenging problem which must be solved using numerical methods, e.g. FEM

method, and which is highly computationally demanding. As a result of these

demands, high performance computing techniques are ordinarily used to implement

these models. To overcome this limitation, simpler alternatives have been proposed at

the cost of losing realism in the mathematical description, such as using the so-called

phenomenological models, which reduce the number of state-variables substituting the

actual ionic current descriptions by simple mathematical equations. Historically, the

first of these simplified models was developed in 1961 by FitzHugh [115], and this

approach was further improved and adapted to cardiac AP [116,117]. The mathemat-

ical terms of these models have no biophysical correlates in the form of ionic currents,

and thus are not feasible to simulate complex dynamical patterns of excitation and

repolarisation of cardiac tissue (e.g. rapid pacing and reentrant activity). The so-called

minimal models, an evolution of the purely phenomenological models, try to partially

overcome this limitation by associating each term to actual but simplified ionic

currents [118,119]. A different simplification that affects the propagation part of the

phenomenon can be adopted by using the so-called Eikonal approximation, which

replaces the reaction-diffusion equation with an eikonal equation that is simpler and

based on a Huygens approach [120,121]. Recently, a new strategy that combines both

assumptions (minimal plus Eikonal models) has been proposed [122]. This approach

gives rise to a hybrid framework which may combine models with different levels of

detail (including detailed biophysical models) whilst maintaining relatively low

computational demands [123].
Electromechanical coupling

Although mentioned, modelling of cardiac mechanics is not addressed in a specific sec-

tion of this work. Very briefly, it involves the use of biomechanical models at organ

level, using the equations of continuum mechanics to describe the deformation of the

organ produced by the active tension generated by the myocytes, and models of
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myocyte contraction at cellular level that include myofilaments models at subcellular

level depicting the actin-myosin interactions and its calcium-based activation system

(e.g. [124,125]) (see [126] for a review).

However, it is important to highlight that every 3D cardiac model aimed at electro-

mechanical (EM) computational simulation must include the EM coupling, also

known as excitation-contraction coupling [127,128], as shown in Figure 3. The

electrical activation of myocytes is the event that triggers their mechanical contraction

by means of the Ca2+ cycling (the release and reuptake process of intracellular Ca2+),

which is the responsible for the initiation of actin-myosin interactions that ultimately

lead to myocyte shortening [129]. On the other hand, EM simulation-oriented models

can also include the mechanoelectric feedback (see Figure 3). Acute changes in

ventricular mechanics can affect cardiac EP [129,130] due to mechanisms such as

stretch-activated ion channels [131,132] or mechanical modulation of cell calcium

handling, even causing mechanically triggered arrhythmias [133].
Pathology

There are many diseases that cause structural and/or functional cardiac remodelling,

which affects cardiac electrical and/or mechanical performance. Thus, models aimed

at studying the effects of those diseases by means of computational simulation should

include both types of remodelling. As shown in Figure 3, functional remodelling

(electrical or mechanical) may be included in computational simulation-oriented

models by adapting the biophysical models that reproduce the behaviour at cell or tis-

sue level. This generally implies altering certain parameters in the equations of the

ionic currents to account for the modifications exerted by the remodelling of cardiac

tissue [134], or the altered values of certain parameters obtained by patch-clamp ex-

periments at cellular level. A similar approach is used in the case of genetic muta-

tions: their effects on cardiac EP can be mimicked by changing the maximum

conductance or the kinetic parameters of the ionic currents directly affected by the

mutation [135]. Functional remodelling can also affect the EM coupling. In heart fail-

ure, for instance, Ca2+ cycling is altered resulting in impaired contractility [129,136],

what increases the risk of extrasystoles and arrhythmia due to the mechanoelectric

feedback [137,138]. These arrhythmogenic mechanisms may be studied by 3D com-

putational simulations [139].

Structural remodelling can affect cardiac anatomy at organ or tissue level. A

pathological variation of cardiac anatomy, which could affect the volume, shape

and/or wall thickness of any cardiac chamber, can be taken into account by the

geometry of a model, as shown in Figure 3. There are examples of models showing

left atrium dilation due to sustained atrial fibrillation [21], right ventricle (RV)

hypertrophy [33], hypertrophic and dilated cardiomyopathy in LV [41] or LV wall

thinning because of ischaemic injuries [50]. On the other hand, some cardiac path-

ologies can also alter the myocardial structure and function at tissue level (see

Figure 3), which affects the electrical propagation patterns and the mechanical per-

formance. For instance, a 3D cardiac model can include left bundle branch block

(LBBB) as a functional alteration at tissue level [140]. Myocardial structure remod-

elling at tissue level, such as fibre orientation disarray associated to ischaemic
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regions [141], may be also included into a model from ex-vivo DTI [31,53] or

histology data [142].

Chronic or healed ischaemic injuries resulting from myocardial infarctions (in-

farct scars) can be included in order to assess its influence on cardiac performance.

These fibrotic lesions are usually segmented from ex-vivo DTI by means of frac-

tional anisotropy [31,53], from anatomical MRI based on wall thinning [50] or more

frequently from in-vivo delayed enhancement-MRI (DE-MRI) [143]. Image-based

segmentation provides information about the extension and location of an ischae-

mic injury within the geometry of a given 3D model and also allows differentiating

between the core (fibrotic scar) and the border zone (BZ), i.e., the remodelled but

still working tissue. However, the associated functional remodelling must be taken

into account by the mathematical models used to perform computational simula-

tions, e.g. ionic models for electrical remodelling in the case of EP studies.

Cardiac tissue can also undergo diffuse myocardial fibrosis, which is related to a

broad variety of disorders: hypertension, diabetes, dilated and hypertrophic cardio-

myopathy, chronic renal insufficiency, atrial fibrillation, etc. The progress of diffuse

fibrosis can lead to systolic and diastolic dysfunction [144] and turns the myocar-

dium into a more arrhythmogenic substrate [145]. Therefore, models can include

this kind of fibrosis in order to study its influence on the cardiac performance by

computational simulation.
Example of a 3D cardiac computational model

Figure 10 shows an example of a 3D bi-ventricular computational model that in-

cludes all the components previously described in this section. The geometry of the

ventricles and the scar region are patient-specific, both segmented from the same

in-vivo DE-MRI stack. The cardiac geometry was manually segmented with a high

level of anatomical detail (see Figure 10a), whilst the infarct scar was semi-

automatically delineated by the standard deviation (SD) from remote method [146].

On the contrary, the CCS, the fibre orientation and the biophysical models are gen-

eric, i.e., based on population data. The fibre orientation was included by a rule-

based algorithm [147] based on the Streeter’s findings [72]. An anatomical model of

the CCS was generated and coupled to the endocardial surfaces of the bi-ventricular

model using an automatic algorithm implemented from dissection data [93]. The

FEM volumetric mesh was built using regular hexahedral elements (element size

(ds) of 0.4 mm) in order to decrease the number of degrees of freedom of the

model, yielding a mesh composed by 3.2 million elements and 3.5 million vertices.

The final application of this model was computational simulation of cardiac EP

using a specific FEM solver called ELVIRA [148], with a time step (dt) of 20 μs, and

different ionic models for myocardium (including transmural heterogeneity) [68]

and CCS [87] at cellular level, and monodomian approach [114] at tissue level.
Personalisation of 3D cardiac computational models
Patient-specific models can open up a new avenue of possibilities in cardiology since

they are able to integrate anatomical and functional information of a given patient

provided by a variety of techniques (different imaging modalities, invasive electrical



Figure 10 Elements and final application of a 3D bi-ventricular patient-specific computational model. (a)
Geometry of human ventricles with highly detailed endocardium showing details such as the septal
papillary muscle (red arrow) and the moderator band (black arrow) in the RV. (b) Fibre orientation from
a rule-based algorithm. (c) Anatomical model of the CCS. (d) Infarct scar showing the core (red) and the
BZ (blue). (e) FEM volumetric mesh with regular hexahedral elements. (f) Biophysical computational
simulation of cardiac EP.
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recordings, etc.) in a very comprehensive fashion. This could be very helpful in therapy

planning, guidance and follow-up. However, currently only a few cardiac features can

be completely personalised. Table 1 summarises the current personalisation possibil-

ities in cardiac computational modelling, which are discussed below.

The anatomy, including pathological anatomical variations, can be personalised for a

specific subject by developing a patient-specific model from in-vivo images. Some types

of structural remodelling at tissue level can also be personalised, such as the location

and extension of infarct scars which can be reconstructed from in-vivo images (e.g. DE-

MRI) [143] or from EAMs recorded during RFA procedures. T1 mapping is an

emerging MRI modality able to quantitatively assess in-vivo the level of diffuse fibrosis

[149,150]. This novel technique could allow including the patient-specific level of

diffuse fibrosis in a 3D cardiac model in a quantitative fashion.

There are two important features that cannot be completely personalised yet: the

CCS and the fibre orientation. EAMs can provide the location of some PMJs allowing

an inverse estimation of a CCS model that tries to reproduce the patient-specific

electrical activation pattern [99,100]. Nonetheless, currently there is no in-vivo image

modality with enough spatial resolution to enable a detailed visualisation of the CCS

structure. For fibre orientation, only sparse 2D DTI slices can be acquired in-vivo to

estimate the patient-specific fibre orientation of the LV [78,79].

Regarding cardiac EP, the patient-specific transmembrane current dynamics cannot

be measured and hence the mathematical models (e.g. ionic models) that reproduce



Table 1 Current personalisation possibilities in 3D cardiac computational modelling

Features Technique Invasiveness

Anatomy Segmentation of in-vivo image Non-invasive

Fibre orientation Image-based estimation (in-vivo DTI) Non-invasive

Cardiac conduction system PMJs from EAMs Invasive

Pathology
(Structural remodelling)

Anatomical variations Clinical image-based Non-invasive

Localised fibrosis
Image-based (e.g. DE-MRI) Non-invasive

EAMs Invasive

Diffuse fibrosis Image-based (T1 mapping MRI) Non-invasive

Electrophysiology

Action potential NO

Heterogeneity NO

Electrical remodelling NO

Genetic mutations NO

Conduction velocities
Global: ECG Non-invasive

Local: EAMs Invasive

APD restitution curve EAMs Invasive

Extracellular ion concentrations
Blood test (electrolyte
concentrations) (time-variant)

Invasive

Activation pattern
ECG or BSPM Non-invasive

EAMs Invasive

Cardiac mechanics

Biomechanical model Dynamic image-based Non-invasive

Material properties NO

Boundary conditions Dynamic image-based Non-invasive

This table shows the techniques that can be currently used to personalise the different features and components of a 3D
cardiac computational model aimed at biophysical simulation, specifying whether the technique is invasive
or non-invasive.
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the AP at cellular level cannot be personalised. Due to the same reason, the electrical

heterogeneity between different regions (e.g. transmural heterogeneity in ventricular

walls), the electrical remodelling or the effects on cardiac EP of a genetic mutation

cannot be personalised. However, the EP model at cellular level that best matches the

patient’s pathology can be chosen from the existing models, obtaining a patient-group

instead of a patient-specific personalisation [151,152]. The patient-specific electrical

activation patterns and wave propagation conduction velocities (CV) in ventricular

myocardium can be estimated for the Eikonal model either globally from ECG or body

surface potential maps (BSPM), or locally (as spatially varying parameters) by means of

EAMs [153], even taking into account the uncertainty due to the sparsity and noise of

clinical data [154]. In [122] an approach to personalise CV and APD restitution curve

for bi-ventricular models was proposed by estimating certain EP parameters of a

simplified AP model [117] from the patient’s ECG and the isochrones provided by

in-vivo non-contact endocardial LV mapping [155]. EAMs can also allow locating

electrical pathways for a certain subject, such as the main inter-atrial connection

[151,152] or the reentrant channels responsible for an infarct-derived ventricular

tachycardia (VT) [156,157]. Finally, extracellular ion concentrations can be estimated

and set into a model from the measurement of blood electrolyte concentrations,

although they are highly time-variant [151,152].
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For cardiac mechanics, the most feasible personalisation approach consists of

adjusting some parameters of a biomechanical model using the information obtained

by segmenting dynamic images (e.g. cine-MRI, tagged-MRI, dynamic-CT), so that the

model is adapted in order to reproduce the patient-specific cardiac motion as

accurately as possible [153]. Boundary conditions can be estimated from dynamic

images as well.
Applications of 3D cardiac computational models
Computational clinical cardiology is currently a rising field of research with a large

number of potential applications. Cardiac image analysis/segmentation and computa-

tional simulation of cardiac physics are two well-established applications of 3D cardiac

models. Cardiac EP simulation, for instance, is becoming a powerful tool to gain

insight into the electrical cardiac disorders at tissue/organ level. It allows performing

in-silico experiments by computational simulation in which all variables are under

control and that, in many cases, cannot be carried out in-vivo due to unacceptable risk

for the patient, ethical reasons, inability to control all variables, etc. In this section we

expose the usefulness of these applications by presenting several examples from the

literature mainly related to cardiac EP simulation and model-based segmentation.

Cardiac image segmentation

One of the most challenging tasks in the development of patient-specific models is the

segmentation of in-vivo cardiac images. A wide variety of methods have been

developed (see e.g. [158]) but the most advanced approach for the automation of this

task is the model-based segmentation. This paradigm has been widely applied to

in-vivo cardiac image segmentation and analysis [159]. It requires the use of a

reference model so that several kinds of model especially aimed at this purpose have

appeared.

Deformable models are based on a template that resembles the target objects, i.e. the

cardiac structures to be segmented, which is used as an initialisation of the segmenta-

tion process. This template, called initial mesh, can be built using any methodology:

ellipsoid-based model [7], image-based model [49,76], assembled from dissection data

[160], etc. Briefly, the initial mesh is overlapped to the cardiac image stack to be seg-

mented and then it is deformed driven by the image intensity levels in an iterative

process until reaching a given optimum point with the ultimate goal of fitting the ini-

tial mesh to the patient-specific geometry.

The mean shape/image resulting from a cardiac atlas can also be used as a segmenta-

tion tool by fitting it to the target image, e.g. by non-rigid registration [42]. The so-called

statistical cardiac models (or statistical atlases) appeared as an evolution of cardiac atlases.

They are a wide range of models mainly represented by statistical shape models

[51,52,54,55], although there are other types such as active appearance models [161,162]

or active shape models [163]. This model-based segmentation approach relies on an a

priori statistical knowledge about cardiac anatomy and/or certain features of cardiac im-

ages. This knowledge comes from a statistical characterisation of the anatomical variations

(and/or image features) included in the population used to construct a given atlas, usually

including both healthy volunteers (normal shaped hearts) and patients with different
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variations of cardiac anatomy. Figure 11 shows the mean shape and the statistical charac-

terisation of a whole-heart statistical atlas [52]. The dimensionality of the resulting vari-

ance and co-variance matrix is usually limited using principal components analysis (PCA)

[47,51,54,55]. The resulting prior knowledge is used in order to enhance the accuracy of

the segmentation or analysis process on a specific image modality and to increase its ro-

bustness when certain information in the image is poor or missing (see [164] for a review).

A mixed approach is the shape-constrained deformable model developed in [47], which in-

cludes prior anatomical knowledge provided by a point distribution model (PDM) derived

from a cardiac atlas. Although the particular method can vary depending on the type of

model, in general the segmentation process is guided by the image information but con-

strained by the prior knowledge. That is why a statistical model does not consider feasible

those anatomical variations that were not learned from the training set. Therefore, the

power of a statistical atlas as a segmentation tool strongly depends on the population

chosen for the atlas development. Furthermore, most of the statistical models take into ac-

count the endocardial surfaces of all cardiac chambers included in the model but only the

epicardium of the LV [47,51,52]. This is because of the high complexity and variability of

the anatomy of the RV and the atria together with the thinness of their walls, what compli-

cates the statistical characterisation of these cardiac chambers. The Cardiac Atlas Project

[165], led by the University of Auckland, must be highlighted in this section. It provides a

wide database of cardiac images available online which aims to promote a collabora-

tive development of anatomical and functional statistical atlases both for healthy and

pathological hearts.
Simulation of acute ischaemia

In the first 10-15 minutes after coronary artery occlusion (acute ischaemia), changes in

ionic currents and concentrations, AP and tissue structure, along with the heteroge-

neous nature of these changes, predispose the ventricular myocardium to potentially le-

thal reentrant arrhythmias [166]. In the past decades, the intimate mechanisms of the

arrhythmogenicity of acute myocardial ischaemia have been theoretically studied using

model-based computational simulation [167]. The effects of acute ischaemia are of
Figure 11 Whole-heart cardiac atlas constructed from in-vivo high-resolution MS-CT of 138 human subjects.
(a) Mean shape of the whole-heart atlas. (b) First two modes of variation at end diastole of the spatio-temporal

whole-heart statistical atlas (μ represents the mean shape and
ffiffi

λ
p

is the standard deviation). Adapted with
permission from [52].
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multiscale nature [168-173], and the whole-organ effects have recently been analysed

using 3D cardiac models.

In [174] a 3D heterogeneous model of regionally ischaemic human ventricles was

used to study the dynamics of ischaemic reentrant pathways. The simulation results

predicted the appearance of figure-of-eight reentrant wavefronts that cross the central

ischaemic zone. These wavefronts are formed in the epicardial surface due to the pro-

longed refractory period of midmyocardial layers. Also, focal activity experimentally ob-

served in the epicardium could be caused by reentrant wavefronts propagating in the

mid-myocardium which re-emerge in the heart surface. Finally, the thin survival layer

(wash-out zone) which appears in the endocardial ischaemic BZ protects the myocar-

dium against the perpetuation of reentrant wavefronts that cross the central ischaemic

zone.

Global ischaemia has been also simulated in 3D cardiac models in the context of car-

diac defibrillation. In [175] a 3D model of rabbit ventricles was used to study the effects

of ischaemia on the lower and upper limits of vulnerability to reentry induced by elec-

tric shocks. These studies stressed the importance of the transmural electrical events,

the spatial extent of the shock-end excitation wavefronts and the slower recovery from

shock-induced positive polarisation in the mechanisms responsible for the limits of

vulnerability.
Ablation of chronic myocardial infarction

When the acute phase of ischaemia ends, the ischaemic (now infarcted) tissue heals

and ventricular arrhythmias can take place weeks or months after the occlusion

[176]. Computer simulations are also of great interest in this chronic period of in-

farction to aid clinicians during ablation interventions. Examples of simulations of

infarcted 3D ventricles are discussed below.

In [177] reentrant mechanisms were simulated on a 3D image-based model of ca-

nine infarcted ventricles, including the scar and the BZ with electrical remodelling.

The mechanisms of defibrillation efficacy were studied in [178] using a model of

rabbit infarcted ventricles. The ability of computer simulations based on DTI im-

ages to predict the VT circuits measured in swine EP studies was shown in [179].

Similarly, electrically remodelled BZs and infarct cores were included in [180]

in a model of swine heart. VT was induced in different computational models and

proved that both infarct scars and peri-infarct zones are needed for VT generation.

Similar reentrant circuits were obtained both in computational and EP studies,

showing that image-based modelling might be helpful in planning RFA strategies.

Indeed, recently the feasibility of 3D simulation based on in-vivo DE-MRI images to

estimate ablation targets in human VT has been tested [143,181], emphasizing the

effectiveness of this computational tool.

Cardiac resynchronisation therapy

CRT has become an established therapy to treat certain patients with heart failure

suffering from conduction abnormalities such as LBBB. Clinical trials evaluating

CRT have demonstrated that 30% of patients with heart failure and wide QRS do

not respond to CRT, especially patients with myocardial infarcts. Computational
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models have been developed to provide insight into the complex mechanism that

governs CRT efficacy. In [140] a computer model was designed including different

degrees of LBBB (0%, 20% and 40%) for the optimisation of atrioventricular and inter-

ventricular (VV) delay, which are key parameters on the CRT device that require a

tailored set-up. In [182,183] the effect of the pacing site and infarct location (anterior,

inferior, posterolateral, diffuse fibrosis) on regional mechanics and global haemo-

dynamics was studied on an electromechanical dog heart model. They concluded that

in hearts with LBBB and large infarcted regions the response to CRT was poorer. The

effect of the ventricular morphology (normal, dilated, hypertrophy) on the VV delay in

order to obtain an optimal LV synchronisation was studied in [41]. They concluded

that the distance between the LV lead of the pacemaker and the CCS (related to

thickness of the LV lateral wall) introduces a large delay that needs to be compensated

by a pre-activation of the LV lead. In [184] a personalisation strategy for anatomy and

function was developed to predict the response to CRT in-silico. Personalised heart

models reproduced acute effects of pacing on pressure development for several pacing

conditions on two patients, achieving good agreement with invasive haemodynamic

measurements. All those computer models were designed with the aim of helping to

understand the pathophysiology of asynchrony to further improve CRT.
Conclusions
3D computational models of cardiac anatomy and function have benefited signifi-

cantly from the revolution of medical imaging systems. The development of tech-

niques able to build 3D personalised cardiac models is expected to have an impact on

diagnosis, therapy planning and prevention of cardiac disorders. The advances on pa-

tient-specific modelling have enabled the use of 3D heart models reconstructed from

clinical MRI or CT scans. Current 3D cardiac models have a remarkable structural

and biophysical detail, and provide a multi-parametric source of information that in-

tegrates multimodal images (ex-vivo and in-vivo), one-dimensional signals and bio-

physical data into a common spatio-temporal coordinate system, which will help to

gain insights into several cardiac disorders, e.g. into mechanisms of arrhythmia in

many disease settings. Incorporation of critical cardiac structures, such as the CCS,

fibre orientation and the coronary tree, will facilitate further biophysical modelling.

The next steps towards the translation of this technology into clinical environments

are the automation and scalability of model-building procedures, allowing to easily

process large-scale image databases, and the evolution of computing technologies

such as graphical processing units (GPUs) to speed up the solving process of biophys-

ical simulations.

Additional file

Additional file 1: Table of reviewed 3D cardiac computational models. Table S1. is a wide summary table
that lists the main features included in the sixty 3D cardiac computational models reviewed in this work as well as
the material and related methods. It also provides information about the purpose of each model and its online
availability. The sixty reviewed models appear in the table sorted by chronological order. Authors strongly
encourage the readers to download Additional file 1 in order to get all the information extracted from this review
and to be able to compare different models in a straightforward and easy manner. Table S2. shows the meaning
of the acronyms and abbreviations used to encode the information contained in Table S1. Additional file 1 also
includes some text explaining what kind of information is provided by each column in Table S1 [185-187].

http://www.biomedical-engineering-online.com/content/supplementary/s12938-015-0033-5-s1.pdf
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Abbreviations
2D: bi-dimensional; 3D: three-dimensional; AP: Action potential; APD: Action potential duration; BSPM: Body surface
potential maps; BZ: Border zone; CAD: Computer-aided design; CCS: Cardiac conduction system; CRT: Cardiac resynchronisation
therapy; CT: Computed tomography; CV: Conduction velocity; DE-MRI: Delayed enhancement-magnetic resonance imaging;
DTI: Diffusion tensor imaging; DT-MRI: Diffusion tensor-magnetic resonance imaging; EAMs: Electroanatomical maps;
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