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Abstract

Background: Interpreting and controlling bioelectromagnetic phenomena require
realistic physiological models and accurate numerical solvers. A semi-realistic model
often used in practise is the piecewise constant conductivity model, for which only
the interfaces have to be meshed. This simplified model makes it possible to use
Boundary Element Methods. Unfortunately, most Boundary Element solutions are
confronted with accuracy issues when the conductivity ratio between neighboring
tissues is high, as for instance the scalp/skull conductivity ratio in electro-
encephalography. To overcome this difficulty, we proposed a new method called the
symmetric BEM, which is implemented in the OpenMEEG software. The aim of this
paper is to present OpenMEEG, both from the theoretical and the practical point of
view, and to compare its performances with other competing software packages.

Methods: We have run a benchmark study in the field of electro- and magneto-
encephalography, in order to compare the accuracy of OpenMEEG with other freely
distributed forward solvers. We considered spherical models, for which analytical
solutions exist, and we designed randomized meshes to assess the variability of the
accuracy. Two measures were used to characterize the accuracy. the Relative
Difference Measure and the Magnitude ratio. The comparisons were run, either with
a constant number of mesh nodes, or a constant number of unknowns across
methods. Computing times were also compared.

Results: We observed more pronounced differences in accuracy in
electroencephalography than in magnetoencephalography. The methods could be
classified in three categories: the linear collocation methods, that run very fast but
with low accuracy, the linear collocation methods with isolated skull approach for
which the accuracy is improved, and OpenMEEG that clearly outperforms the others.
As far as speed is concerned, OpenMEEG is on par with the other methods for a
constant number of unknowns, and is hence faster for a prescribed accuracy level.

Conclusions: This study clearly shows that OpenMEEG represents the state of the art
for forward computations. Moreover, our software development strategies have
made it handy to use and to integrate with other packages. The bioelectromagnetic
research community should therefore be able to benefit from OpenMEEG with a
limited development effort.
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Introduction
Many devices used in the clinical or the cognitive science domain perform electromag-

netic measurements, or stimulation, on the human body. Devices measuring electric

fields include electro-encephalograms (EEG), -cardiograms (ECG), -myograms (EMG),

while magneto-encephalograms (MEG) or magneto-cardiograms (MCG) measure mag-

netic fields. Among stimulating devices, transcranial magnetic stimulation (TMS) uses

magnetic coils to stimulate brain regions, while functional electric stimulation (FES)

and electrical impedance tomography (EIT) impose an electric current or potential

through contact electrodes.

To interpret and control the bioelectromagnetic phenomena involved with these

devices, realistic physiological modeling is required, in terms of geometry and conduc-

tivity [1]. Accurate numerical solutions of the governing equations must be computed:

obtaining the best accuracy possible for a given computational model is one of the

goals of OpenMEEG, the opensource software package introduced in this article.

Electromagnetic propagation is governed by the Maxwell equations, coupling the

electrical and magnetic fields. This coupling simplifies when the relevant frequencies

are low enough for the quasistatic regime to hold. The electric potential is then

governed by the law of electrostatics

∇ ⋅ ∇ = ∇ ⋅( ) , V Jp (1)

Where s is the conductivity field, and Jp is a dipolar source distribution within the

domain. When considering brain activations, it represents average postsynaptic

currents within pyramidal cortical neurons. A boundary condition must be imposed,

typically controlling the normal current on the domain boundary:

∇ ⋅ =V jn . (2)

The electric potential can be computed independently from the magnetic field, by

solving (1) with boundary condition (2). The magnetic field B depends both on the

electric potential V and on the current source distribution Jp, through the Biot and

Savart law.
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written here in the case where j = 0 on the boundary.

A forward problem consists of simulating V and/or B when s, Jp, and boundary

current j are known. The forward electro- magnetostatics problem is well-posed, in

contrast to the far more difficult, ill-posed inverse problem of estimating s, or Jp, from
partial boundary data. Still, obtaining an accurate solution for the forward problem is

far from trivial. This paper presents a software package, OpenMEEG, that makes avail-

able to the community recent research efforts to improve the accuracy of forward

solvers.

Forward solutions provide the relationship between the quantities of interest and the

measurements. To obtain a good description of this relationship, one must model the

sources, the conductivity, and the sensors.
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The choice of conductivity model is especially delicate because it strongly constrains

the numerical solutions that can be used to solve the problem. In all generality, the

conductivity field s should be modeled as a tensor field, because composite tissues

such as bone and fibrous tissues have an effective conductivity that is anisotropic.

Realistic, anisotropic conductivity models can however be difficult to calibrate and han-

dle: simpler, semi-realistic, conductivity models assign a different constant conductivity

to each tissue, as depicted in Figure 1. There are three main types of conductivity

models, and associated numerical methods:

1. if the conductivity field can be described using simple geometries (with axilinear,

planar, cylindrical, spherical or ellipsoidal symmetry), analytical methods can be

derived, and fast algorithms have been proposed that converge to the analytical

solutions for EEG [2,3] and MEG [4];

2. for piecewise constant conductivity fields as in Figure 1, Boundary Element

Methods (BEMs) can be applied, resulting in a simplified description of the geome-

try only on the boundaries [5];

3. general non-homogeneous and anisotropic conductivity fields are handled by

volumic methods; Finite Element Methods and Finite Difference Methods belong to

this category.

This paper deals with Boundary Element Methods, whose advantage over volumic

methods is to use an economic representation of the conductivity field (a few conduc-

tivity parameters - one per tissue, and a few triangular meshes to represent the inter-

faces). Until recently, all Boundary Element Methods used in bio-electromagnetics

were based on a Green representation theorem, involving operators called single- and

double-layer potentials. In OpenMEEG the approach is to consider an extended

version of the Green representation theorem [6], involving more operators, and leading

to a new BEM formulation, called the Symmetric Boundary Element Method [7].

The structure of the paper is as follows: the applications targeted by OpenMEEG are

first presented, then some mathematical aspects of the Symmetric BEM are explained

(details are presented in an appendix). Then, to motivate the use of OpenMEEG, a

comparison study with four other solvers in the context of EEG forward modeling is

presented. The accuracy of the solvers is tested on multiple random sphere models.

The accuracy of OpenMEEG is also assessed by numerical experiments for MEG

forward modeling. Finally a section provides technical details on the OpenMEEG

Figure 1 Models for Boundary Elements Methods. Boundary Elements are well-suited for piecewise
constant isotropic conductivity models. OpenMEEG handles nested regions (left), and could in principle be
extended to more general, disjoint regions (right) as presented in [8].
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software package while giving sample code for using OpenMEEG via Python or via the

Fieldtrip Matlab toolbox. A more complete presentation of the usage of OpenMEEG

via a command line interface is available in Additional file 1.

Target applications of OpenMEEG

The main purpose of OpenMEEG is to solve the forward problems arising in magneto-

and electro-encephalography. OpenMEEG is therefore primarily developed in the field

of brain research, but its development could directly benefit to other problems dealing

with electromagnetic biosignals (see for example [8] in the context of electrocardiogra-

phy). A geometrical model of nested meshes representing tissue interfaces must be

provided to OpenMEEG, which does not perform any segmentation or meshing. Open-

MEEG handles nested regions, and could in principle be extended to more general,

disjoint regions [9]. The main output of a forward problem is a leadfield, i.e., the linear

application relating sources at specific locations to sensor measurements. Although the

principal target of OpenMEEG is magneto- and electro-encephalography, other types

of bioelectromagnetic problems have also been handled with OpenMEEG: we hereforth

describe its current scope.

Electroencephalography (EEG) is concerned with the variations of electric potential

on the scalp, due to sources within the brain. At frequencies of interest, the quasistatic

regime is valid, resulting in the electrostatics relation (1). The air surrounding the

scalp is supposed non-conductive, hence the normal current vanishes on the scalp:

j = 0 in boundary condition (2). The sources within the brain are represented by

dipoles: in equation (1), the sources are Jp =

q p where p is a dipole position and


q

the associated dipolar moment. OpenMEEG computes the electric potential and the

normal current on each interface between two homogeneous tissues, due to electric

sources within the brain. EEG sensors are electrodes, modeled in OpenMEEG as

discrete positions on the scalp at which the potential can be measured (infinite impe-

dance assumption). On these sensors, OpenMEEG computes the EEG leadfield, repre-

senting the linear relationship between source amplitude (for fixed position and

orientation) and sensor values.

Magnetoencephalography (MEG) is concerned with magnetic fields produced by

sources within the brain, which, like for EEG, are modeled as dipoles [10]. OpenMEEG

makes use of the Biot and Savart relation (3) to compute the magnetic field, and hence

requires the electric potential to be computed beforehand on all the interfaces [11].

Magnetometers or gradiometers can be modeled in OpenMEEG. Magnetometers are

defined by their position and the direction of the field they measure. Gradiometers and

more general sensors are handled by providing to OpenMEEG the positions, the orien-

tations and the weights of integration points. For example with axial gradiometers

present in CTF MEG systems, the forward field for a sensor is obtained by subtracting

the two leadfields computed at the locations of two nearby magnetometers.

Electrical Impedance Tomography (EIT) infers characteristics of a conductive

domain, by analyzing the potential resulting from the application of a current on the

boundary. This method has been applied to calibrate the conductivity of EEG head

models [12-14]. OpenMEEG computes the forward problem associated to EIT: given a

conductive domain Ω defined by the interfaces between homogeneous regions, and

their conductivity, and for a prescribed normal current j, OpenMEEG computes the
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potential V and the normal current s∂n V on each interface by solving (1) for Jp = 0,

and with boundary condition (2). The electrodes are modeled with a P0 approximation

over the triangles of the scalp; the injected current is assumed constant over a triangle.

Intracranial electric potentials are measured in certain clinical settings, either on

the surface (ElectroCorticography) or within the brain (intracranial EEG, or stereotaxic

EEG). OpenMEEG is able to compute leadfields for such intracranial electrodes, in rea-

listic head models.

Functional Electrical Stimulation (FES) provides a way to restore movement of paral-

yzed body regions by activating the efferent somatic axons. For this a current is applied to

a nerve sheath, using specially designed electrodes. The precise location and time course

of the applied current must be optimized in order to achieve the best selectivity, and to

minimize the current intensity for a desired outcome. Optimizing the stimulation para-

meter in a realistic nerve model requires a forward model for FES. OpenMEEG provides

such a tool, by combination of the concepts of EIT and of internal potential simulation

(see section on the applications targeted by OpenMEEG) [15,16].

Cortical Mapping is an inverse problem that aims to recover the potential and the

normal current occurring on the surface of the cortex (i.e., under the skull bone),

given EEG measurements on electrodes [17]. A particularly elegant solution to this

problem has been proposed with the symmetric BEM [18], making it possible e.g. to

solve further source localization problems.

Methods: implementation

OpenMEEG uses a Galerkin Boundary Element formulation, that jointly considers the

electric potential and the normal current on each interface as unknowns of the pro-

blem. A P1 (piecewise linear) approximation is used for the electric potential, whereas

the normal current  ∂
∂
V
n is approximated with P0 (piecewise constant) boundary ele-

ments. The most intricate part of the implementation concerns the assembly of the

system matrix, requiring singular kernel integration over triangles. Those are double

integrals. The inner integrals are computed with analytical schemes [19], whereas the

outer integrals are computed with a 7-point Gauss quadrature scheme [20]. An adap-

tive integration scheme recursively subdivides the triangles until the required precision

is achieved. This adaptive integration has an influence on the accuracy, as will be

exposed in the benchmark results further on.

Since the electric potential can only be computed up to a constant, the system

matrix is deflated to make it invertible. In practice, it consists of imposing the con-

straint that the integral of the potential over the external layer is 0.

The magnetic field is computed by using the Biot and Savart equation with the

Galerkin piecewise linear approximation for the potential [11].

As stated above, given a set of dipole positions and orientations, a set of sensors and

a head model defining homogeneous conductivity regions, the M/EEG forward pro-

blem produces as output the leadfield. OpenMEEG computes such lead fields with the

following procedure (see the tutorial in Additional file 1 for a detailed graphical repre-

sentation of this flowchart):

• assemble the system matrix involving boundary integral operators on the discre-

tized surfaces;
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• for a specified set of dipole positions and orientations, assemble a discretized,

source-related term;

• solve the linear system relating the two above matrices (providing V and  ∂
∂
V
n

on each interface)

• interpolate the scalp potential (for EEG) or apply the discretized Biot and Savart

relation (for MEG).

Mathematical details, as well as the practical usage of OpenMEEG can be found in

the Appendix.

Methods: benchmark comparison study

In order to motivate the use of the OpenMEEG software, we have conducted a set of

numerical experiments that compare the accuracy and the robustness of OpenMEEG

with alternative M/EEG forward solvers. The comparison in the context of EEG for-

ward modeling is run with the 4 alternative BEM solvers (see [21] for a comparison

with FEM). The precision of the MEG forward solver is demonstrated using known

analytical properties of the magnetic field when considering sphere models and with

two other solvers.

Publicly available M/EEG forward solvers

Several software projects have the ability to solve the M/EEG forward problems. MNE,

BrainStorm, EEGLAB (via the NFT Toolbox), Fieldtrip, Simbio, OpenMEEG and SPM,

which shares with Fieldtrip the same M/EEG forward solvers.

Fieldtrip and SPM offer two implementations of the BEM. The first one, called

Dipoli, was written by Oostendorp [22] and is not open source (only binary files for

UNIX systems are available), while the second one, called BEMCP, is opensource and

was written by Christophe Phillips during his PhD [23]. The Dipoli solver implements

a linear collocation method with Isolated Skull Approach (ISA) [24], whereas BEMCP

implements a simple linear collocation method. The Dipoli implementation details can

be found in [22]. Another implementation with linear collocation (with and without

ISA) can be found in the Matlab toolbox called Helsinki BEM [25]. The MNE package

written in pure C code by Hämäläinen also offers a linear collocation (with ISA) imple-

mentation of the BEM. The Brainstorm toolbox in its latest version uses only sphere

models for both EEG and MEG. Recently the EEGLAB toolbox also has provided a

package called NFT that is based on a BEM called METU [26]. Finally, the Simbio for-

ward solver also consists of a BEM with linear collocation and ISA.

Commercial software packages are not listed here. However, to our knowledge, com-

mercial products that provide a BEM solver for forward modeling implement a linear

collocation method with ISA. This is for example the case of ASA [27]. Note also that

beyond the field of brain research, alternative BEM implementation exist. The SCIRun/

BioPSE project contains for example a BEM implementation based on [19] that can

solve the forward problem of electrocardiography [28].

Accuracy measures

The accuracy of forward solvers can be assessed for simple geometries such as nested

spheres, by comparison with analytical results. The precision of a forward solution is
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tested with two measures. the RDM (Relative Difference Measure) and the MAG

(Magnitude ratio) [29].

The RDM between the forward field given by a numerical solver gn and the analytical

solution ga is defined as:

RDM g g
gn
gn

ga
ga

( , ) , ,n a = − ∈ [ ]0 2

while the MAG between the two forward fields is defined as:

MAG g
gn
ga

gn a( , ) .=

In both of these expression, the norm is the discrete ℓ
2 norm over the set of sensor

measurements. The closer to 0 (resp. to 1) the RDM (resp. the MAG), the better it is.

Geometrical models

The comparisons were made both on classic regular sphere meshes as in Figure 2, and on

random meshes. A random sphere mesh with unit radius and N vertices is obtained by

randomly sampling 10N 3D points, normalizing them, meshing their convex hull and dec-

imating the obtained triangular mesh from 10N to N vertices. This process guarantees an

irregular meshing while avoiding flat triangles. The BEM solvers are tested with three

nested sphere shells which model the inner and outer skull, and the skin. The radii of the

3 layers are set to 88, 92 and 100, while the conductivities of the 3 homogeneous volumes

are set to 1, 1/80 (skull) and 1. In this benchmark, the units are arbitrary, but in practice,

units should be expressed with the International System of Units (SI). For each randomly

generated head model, it was tested that they were no intersection between each mesh.

For every head model, solvers are tested with the same 5 dipoles positioned on the z-axis

with orientation (1,0,1) and various distances to the inner layer (cf. Figure 2). As expected,

the accuracy of the solvers decreases as this distance gets small.

Results
Results: accuracy of the electric potential simulations

The implementations tested for EEG are: OpenMEEG with and without adaptive

numerical integration (abbr. OM and OMNA), Simbio (abbr. SB), Helsinki BEM with

Figure 2 Head model made of 3 nested regular sphere meshes and 5 dipoles. Head model made of
3 nested regular sphere meshes with 5 dipoles close to the inner layer.
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and without ISA (abbr. HBI and HB), Dipoli (abbr. DP) and BEMCP (abbr. CP). The

METU solver was also tested but we were unable to obtain the precisions advertised in

[26], so it was decided not to include it in the comparison.

The results with regular sphere meshes are presented in Figure 3 for 3 different

point samplings on each interface. The coarsest sampling has only 42 vertices per

interface and 42 EEG electrodes, the intermediate one has 162 points per interface and

162 EEG electrodes, and the finest sampling has 642 points per interface and 642 EEG

electrodes. In this case, electrodes are simply located at mesh nodes.

From these simulations it can be observed that:

• HB and CP, that implement a simple linear collocation method, have similar

results and are clearly the less precise solvers.

• HBI, SB and DP, that implement a linear collocation method with ISA, have very

similar results. SB and HBI are however slightly more accurate than DP.

• OpenMEEG provides the most precise solutions even when no adaptive integra-

tion is used. The adaptive integration significantly improves the results, particularly

when the meshes are coarsely sampled (42 and 162 vertices per layer).

Simulations have also been run on a large number of randomly sampled sphere

meshes, in order to compare the robustness of the different solvers. Each result is

obtained by running all solvers on 100 random head models. The mean accuracy mea-

sures (RDM and MAG) are represented using boxplots, in order to display the variance

of the errors. Figure 4 presents the boxplots obtained by running the solvers on ran-

dom head models with either 600 or 800 vertices per interface. These results lead to

the same ranking of methods as those of Figure 3, if the average accuracy is consid-

ered. However the variances are also very informative, as they tell us about the preci-

sion. It can be observed that OM is not only very accurate, but also very precise

because of its very small variance, which is an appreciable feature. The OMNA solver

is also accurate but less precise. it has a larger variance. This demonstrates that the

adaptive integration makes the solver more robust to irregular meshing. SB and HBI

give, as expected, very similar results. One can also observe that the variances observed

for CP and HB are significantly larger than for the other solvers, meaning that the col-

location based BEM without ISA is very sensitive to irregular meshing.

As explained in the previous section, OpenMEEG considers as unknowns both the

potential at vertices, and the normal current at the centers of the triangles. For a fair

comparison with respect to numerical complexity, the previous experiments have been

repeated with the constraint that each solver should handle an equal number of

unknowns. This leads to considering meshes for OpenMEEG with less points than for

others solvers. A closed triangular mesh with n vertices contains 2n - 4 triangles and

the normal current is not discretized for the outer layer as it is fixed to be 0. For a

three-layer BEM, OpenMEEG therefore has to handle 7n - 8 unknowns, while for a

standard BEM this number is simply 3 n. For a fixed number nu of unknowns, the

number of vertices per layer nom for OpenMEEG is nom = (nu + 8)/7 while for a stan-

dard BEM the number of vertices nstd is nstd = nu/3. Results with 1500 and 3000

unknowns are presented in Figure 5. It can be observed that OpenMEEG with adaptive

integration still outperforms other solvers in term of mean accuracy as well as variance
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of the results. It is followed by DP, HBI and SB, that give also quite accurate solutions.

OpenMEEG without adaptive integration is in this simulation behind DP, HBI and SB

but remains more precise than HB and CP.

Results: accuracy of the magnetic field simulations

We next present results for MEG forward modeling. MEG manufacturers propose 3

kinds of sensors (magnetometers, axial gradiometers, and planar gradiometers), all of

which are oriented radially with respect to the helmet.

With a nested sphere model, Ohmic volume currents do not contribute to the radial

component of the magnetic field [4] (the term containing sΔV in (3) vanishes). The MEG

community commonly uses analytical solutions on spheres to compute MEG leadfields

although volume currents do have an influence on the magnetic field when considering

realistic head models [30]. OpenMEEG (as well as Simbio) uses the previously computed

electric potential on all surfaces to compute the contribution of the volume currents to

the magnetic field at sensors. These considerations lead to two different setups to validate

Figure 3 Accuracy comparison of the different BEM solvers for EEG. Forward EEG: accuracy
comparison of different BEM solvers with three-layers sphere head models. We observe that the Symmetric
BEM outperforms the other methods in term of precision.
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the MEG forward solutions provided by OpenMEEG. To do so, experiments have been

run with two types of sensors. a set of magnetometers all oriented in the Cartesian direc-

tion (1, 0, 1) and located at a distance of 120 from the center of the spheres, and a set of

magnetometers at the same locations but radially oriented. In these experiments, we com-

pared the analytical results with the solutions given by Simbio, by OpenMEEG with and

without adaptive integration (abbr. OM and OMNA). We used a 3-layer model, and also a

single layer model (the inner skull) as commonly done in practice. The single layer solu-

tion is abbreviated OM1L. The Fieldtrip Toolbox provides a solution to the MEG forward

problem on realistic volume conductors which is not based on the Biot and Savart law but

Helmholtz’s reciprocity principle [31]. This solver proposed by Nolte is abbreviated NT in

the comparison results. Figure 6 presents the results with non-radial magnetometers,

while Figure 7 presents the results obtained with radial magnetometers. From Figure 6 it

can be observed that OpenMEEG provides solutions that are considerably more precise

with the adaptive integration method. The results of Simbio and OpenMEEG with adapta-

tive integration are mesh-dependent, whereas Nolte’s solver outperforms OpenMEEG and

Simbio. In Figure 7, one can notice the correct cancellation of the volume current when

the mesh size increases (notice the change of scale on the vertical axis). The OpenMEEG

and Simbio solvers take the lead for radially oriented sensors with similar results for both.

Results: computation speed

We have compared the computation times of EEG forward solvers in two situations.

with a fixed number of vertices per layer, and with a fixed number of unknowns.

When the number of vertices is fixed, the higher number of unknowns in the

Figure 4 Accuracy comparison for EEG using random meshes with fixed number of vertices.
Forward EEG: RDM and MAG boxplots obtained on 100 random 3-layers sphere models. Each layer
contains 600 or 800 random vertices.
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symmetric BEM makes the problem size larger. This is confirmed by the results pre-

sented in Figure 8(a) where is can be observed that OpenMEEG is slower than all sol-

vers except Simbio. One explanation is that Simbio does not use BLAS/LAPACK for

efficient linear algebra but implements its own routines in C code. When the number

of unknowns is fixed (cf. Figure 8(b)), the computation time of OpenMEEG is compar-

able with Dipoli and even slightly lower for highly sampled models. In all cases the col-

location methods without ISA (HB and CP) are significantly faster, but their limited

accuracy does not make them good candidates for EEG forward modeling. By jointly

analyzing Figures 5 and 8(b), one can note that OpenMEEG is the fastest method for a

prescribed accuracy.

The OpenMEEG Software Package
All the tests performed in this paper were made using the version 2.0 of OpenMEEG.

Licence

OpenMEEG is distributed under the French opensource license CeCILL-B. It is

intended to give users the freedom to modify and redistribute the software. It is there-

fore compatible with popular opensource licenses such as the GPL and BSD licenses.

The CeCILL-B license imposes to anybody distributing a software incorporating Open-

MEEG the obligation to give credits (by citing the appropriate publications), in order

for all contributions to be properly identified and acknowledged. The references to be

acknowledged are [7], and the present article.

Figure 5 Accuracy comparison for EEG using random meshes and fixed number of unknowns.
Forward EEG: RDM and MAG boxplots obtained on 100 random 3-layers sphere models. Each forward
solution is obtained taking as constraint that the number of unknowns that is estimated is the same for all
BEM solvers. Results are presented for 1500 and 3000 unknowns.
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Source code

OpenMEEG is implemented in C/C++ with limited external dependencies. It uses the

Intel MKL libraries on Windows and ATLAS (BLAS/LAPACK) on Unix systems for

fast and accurate linear algebra. A modified version of the MATIO library http://sour-

ceforge.net/projects/matio has been integrated in OpenMEEG for Matlab compatible

IOs for vectors and matrices. The source code of OpenMEEG is hosted on the INRIA

GForge platform and is accessible to an anonymous user via a public version control

system. OpenMEEG binaries and source code are both available from http://openmeeg.

gforge.inria.fr.

Multiplatform

OpenMEEG is available as precompiled binaries for GNU-Linux systems, Mac OS and

Windows. OpenMEEG’s build and packaging system is based on CMake/CPack http://

www.cmake.org allowing easy development and deployment on all architectures.

Parallel processing

Compilation of OpenMEEG can be done using advanced features provided by modern

compilers. OpenMP is a technology that enables parallel computation at a limited cost

in terms of software design. When OpenMEEG is compiled using OpenMP, the numeri-

cal integration, on which most of the computation time is spent, can be run in parallel.

On a machine with 8 CPUs a standard EEG leadfield is computed up to 6 times faster.

Figure 6 Accuracy comparison for MEG using random meshes with fixed number of vertices and
non-radial magnetometers. Forward MEG: RDM and MAG boxplots obtained on 100 random sphere
models (1 and 3-layers) using non-radial magnetometers. Each layer contains 600 or 800 random vertices.
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Testing

Deployment on multiple architectures with heterogenous hardware and software envir-

onments requires testing procedures to assess the stability of the solutions provided by

compiled binaries. This testing procedure is run through the CMake/CTest testing soft-

ware. OpenMEEG test suite guarantees the integrity of the results obtained by MEG,

EEG and EIT forward solvers. A part of the tests consists of running OpenMEEG on a

3-layer spherical geometry like the one presented in Figure 2. Outputs are then

Figure 7 Accuracy comparison for MEG using random meshes with fixed number of vertices and
radial magnetometers. Forward MEG: RDM and MAG boxplots obtained on 100 random sphere models
(1 and 3-layers) using radial magnetometers. Each layer contains 600 or 800 random vertices.

Figure 8 Computation times of the different BEM solvers for EEG. Forward EEG: computation times for
the different solvers as a function of the number of vertices per layer or the number of unknowns.
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compared to analytical results to test that the accuracy is not degraded by a modifica-

tion of the code.

Integration

Considerable efforts have been made to facilitate the use of OpenMEEG by the M/EEG

community. OpenMEEG can be simply invoked via a command line interface, or via

higher levels languages. OpenMEEG can also be called from Python or via the Fieldtrip

Toolbox, where it has been fully integrated in the M/EEG forward modeling routines.

For sample scripts using Python and Fieldtrip, see Tables 1 and 2.

Benchmark

The benchmark presented in the previous section was run within the Fieldtrip environ-

ment and its MATLAB source code can be obtained for noncommercial use from the

authors. Since SPM uses the same code as Fieldtrip for forward modeling, SPM can

now benefit from integration of OpenMEEG. Moreover, the binary format used by

OpenMEEG is that of Matlab, by use of the opensource MATIO library.

A sample dataset for M/EEG forward modeling can be downloaded from http://

openmeeg.gforge.inria.fr. The sample dataset is provided with scripts that can be run

to compute MEG and EEG leadfields on a realistic 3-layer model.

Documentation

A tutorial for OpenMEEG is available on the web site, and it is briefly summarised in

Additional file 1.The tutorial describes the low-level interface and details the different

steps to be followed when computing M/EEG lead fields (Figure 9). Developper docu-

mentation can be generated via doxygen http://www.stack.nl/~dimitri/doxygen/.

Conclusion
In this paper, the OpenMEEG software project has been detailed, from the mathemati-

cal grounds of the symmetric BEM to more practical aspects.

The relevance of the OpenMEEG solver for quasistatic bioelectromagnetics has been

demonstrated by a benchmark incorporating many alternative solvers in the context of

M/EEG forward modeling. According to the results of this simulation study, Open-

MEEG outperforms all the alternative solvers tested. By providing state-of-the-art

solutions for both EEG and MEG forward problems, OpenMEEG enables the

combined use of these two complementary modalities.

It should be mentioned that OpenMEEG is being used for many problems in the field of

quasistatic bioelectromagnetics, including Electrical Impedance Tomography, Intracranial

electric potentials, Functional Electrical Stimulation and Cortical Mapping. This wide

range of application domains, as well as its integration into high-level languages make

OpenMEEG unique and particularly valuable for basic and clinical research purposes.

Appendix
The symmetric BEM

In early numerical experiments to compare a Boundary Element and a Finite Element

Method (FEM) for forward electroencephalography, we found a superior accuracy of

the FEM [21]. This triggered a quest to improve the precision of Boundary Element

Methods and led us to study the extended Green representation theorem [6]. We
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proposed a common formalism for the integral formulations of the forward EEG pro-

blem, and derived three different Boundary Element Methods within the same frame-

work [7]. In this section we recall the mathematical background of Boundary Element

Methods, and present both the double-layer BEM, which is the most widespread

method, and the symmetric BEM, which is a new formulation.

Green Representation

A fundamental result in potential theory shows that a harmonic function (i.e., such that

Δu = 0) is uniquely determined within a domain Ω from its value on the boundary ∂Ω

(Dirichlet condition), or the value of its normal derivative (Neumann condition). The

Green Representation Theorem gives an explicit representation of a piecewise-harmonic

function as a combination of boundary integrals of its jumps and the jumps of its normal

derivative across interfaces. Before stating this theorem, some notation must be defined.

• The restriction of a function f to a surface Sj is indicated by fsj.

• The functions fS j

− and fS j

+ represent the interior and exterior limits of f on Sj:

for r r r n∈ = +±

→ ±
S f fj S j

, ( ) lim ( ).



0

Head description: 
- geometry

- conductivities

Head  
Matrix

Source 
Matrix

Sources 
description

EEG sensors  
description

MEG sensors 
description

EEG sensors 
Head Matrix

MEG sensors 
Head Matrix

MEG sensors 
Source Matrix

 Inverse
Head

Matrix

EEG Gain  
Matrix

MEG Gain 
Matrix

lnternal Potential 
Head Matrix

Internal points 
description

Internal
Potential

Gain Matrix

 

Internal Potential 
Source Matrix

-hm

-h2ipm

-ds2ipm

-ssm-dsm

-h2em

-h2mm

-ds2mm -ss2mm

-EIT or -EEG

-MEG

-IP

EIT electrodes 
description

Inputs

Outputs

Intermediate computation

 

EIT Source 
Matrix

EIT Gain 
Matrix

-EEG

-EITsm

om_gain
om_assemble

om_minverser
OpenMEEG command

-xxx command option

Intermediate data
Input data

Output data

Figure 9 Pipelines for computing lead fields with OpenMEEG. Diagram for the low level pipeline for
computing MEG and EEG leadfields (a.k.a., gain matrices) using OpenMEEG. To facilitate the understanding
of this diagram one can give an example. An EEG gain matrix is obtained with the om_gain command
using with option -EEG taking as input an inverted head matrix, an EEG sensors matrix and a source matrix.
The source matrix can be obtained using om_assemble taking as input a head model (geometry and
conductivities) and a source descriptionfile (option -dsm when using isolated dipoles). The inverted head
matrix is obtained using om_minverser from a head matrix which is obtained using om_assemble and the
option -HM from a head model (geometry and conductivities).
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• The jump of a function f across Sj is denoted by:

[ ] ,f f fS S Sj j j
= −− +

• ∂nV = n·∇V denotes the partial derivative of V in the direction of a unit vector n,

• The function G( )r
r

= 1
4 is the fundamental solution of the Laplacian in R3,

such that -ΔG = δ0.

Consider an open region Ω and a function u such that Δu = 0 in Ω and in R3\Ω

(but not necessarily continuous across ∂Ω). The Green Representation Theorem states

that, for a point r belonging to ∂Ω,

u u
u G ds u G ds

− + +
= − ∂ − + ∂ −′ ′ ′ ′′

∂
′

∂∫( ) ( )
[ ] ( ) ( ) [ ] ( ) ( )

r r
r r r r r rn n2 Ω Ω∫∫ . (4)

Table 1 OpenMEEG demo script in Python

Python code

Import openmeeg as om

# Load data

condFile = ‘om_demo.cond’

geomFile = ‘om_demo.geom’

dipoleFile = ‘cortex.dip’

squidsFile = ‘meg_squids.txt’

electrodesFile = ‘eeg_electrodes.txt’

geom = om.Geometry()

geom.read(geomFile,condFile)

dipoles = om.Matrix()

dipoles.load(dipoleFile)

squids = om.Sensors()

squids.load(squidsFile)

electrodes = om.Matrix()

electrodes.load(electrodesFile)

# Compute forward problem

gaussOrder = 3; # Integration order

hm = om.HeadMat(geom,gaussOrder)

hminv = hm.inverse()

dsm = om.DipSourceMat (geom, dipoles, gaussOrder)

ds2 mm = om.DipSource2MEGMat (dipoles, squids).

h2 mm = om.Head2MEGMat (geom, squids)

h2em = om.Head2EEGMat (geom, electrodes).

gain_meg = om.GainMEG (hminv, dsm, h2 mm, ds2mm)

gain_eeg = om.GainEEG (hminv, dsm, h2em)

Demo script for computing MEG and EEG forward problems with OpenMEEG in Python.
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This representation also holds for the head model in Figure 1, when Ω is the union

of disjoint open sets: Ω = Ω1 ⋃ Ω2 ⋃ ... ΩN, with ∂Ω = S1 ⋃ S2 ⋃ ... SN. If u is harmo-

nic in each Ωi, for r Î Si,

u u
u G ds u G dsS

S
Sj

j
j

− + +
= − ∂ − + ∂ −′ ′ ′ ′′ ′∫( ) ( )

[ ] ( ) ( ) [ ] ( ) (
r r

r r r r rn n2
rr )

S
j

N

j
∫∑⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=1

(5)

The notation is simplified by introducing two integral operators, which map a scalar

function f on ∂Ω to another scalar function on ∂Ω: the “double-layer” operator

( )( ) ( ) ( ) ( )f G f sr r r r rn= ∂ − ′ ′ ′′
∂Ω
∫ d . For an operator  , its restriction ij maps a function

of Sj to a function of Si.

An extension of the Green Representation Theorem represents the directional deri-

vative of a harmonic function as a combination of boundary integrals of higher order.

This requires two more integral operators: the adjoint ∗ of the double-layer opera-

tor, and a hyper-singular operator  defined by ( )( ) ( ) ( ) ( ),f G f sr r r r rn n= ∂ − ′ ′ ′′
∂Ω
∫ d if r is

a point of Si,

− ∂ − +∂ +
= − ∂∗n r n r

n
u u

u u
( ) ( )

[ ] [ ],
2

  (6)

Table 2 OpenMEEG demo script in Matlab

Matlab code

%% Structure for BEM volume conduction model

%% Each layer mesh is indexed by k

% vol.bnd(k).pnt. : vertices for mesh “k”

% vol.bnd (k).tri : triangles for mesh “k”

% %% Set the conductivities of each domain

% vol .cond : conductivities

%% EEG electrodes

% sens.pnt : locations of electrodes

%% Positions of the dipoles

% pos :locations of dipoles

%% Compute the BEM

% choose BEM method (OpenMEEG, BEMCP or Dipoli)

cfg.method = ‘openmeeg’;

% Compute the BEM matrix

vol = ft_prepare_bemmodel(cfg, vol);

cfg. vol = vol;

cfg. grid. pos = pos;

cfg. elec = sens;

% Compute leadfield

% with no orientation constraint

lf_openmeeg = ft_prepare_leadfield(cfg);

Demo script for computing an EEG forward problem with OpenMEEG in Fieldtrip.

Gramfort et al. BioMedical Engineering OnLine 2010, 9:45
http://www.biomedical-engineering-online.com/content/9/1/45

Page 17 of 20



where ∗ is the adjoint of the operator  . The Geselowitz formula exploits only the

first boundary integral representation equation (5), while it is possible to exploit both (5)

and (6). Thus three Boundary Element Methods can be derived within a unified setting:

a BEM involving only single-layer potentials, a BEM involving only double-layer poten-

tials, and a symmetric BEM combining single- and double-layer potentials [7]. We

concentrate hereforth on the double-layer and on the symmetric BEMs.

The double-layer BEM

To apply the representation theorem to the forward problem of EEG, a harmonic func-

tion must be produced, which relates the potential and the sources. Decomposing the

source term as f = ∑i fi where the support of each fi lies inside Ωi, consider v
iΩ such

that Δ =Ωv f
i i holds in all R3. The function v vd i

N

i
= =∑ Ω1

satisfies Δvd = f and is

continuous across each surface Si, as well as its normal derivative ∂nvd. The function

u = sV - vd is a harmonic function in Ω, to which (5) can be applied. Since
[ ] ( )u VS i i Si i

= − +  1 and [∂nu] = 0, we obtain, on each surface Si,

   i i V V vS

j

N

j j ij S di j

+ + + − =
=

+∑1
2

1

1( ) . (7)

The above formula was established by Geselowitz [5], and was the only one used to

model electroencephalography or electrocardiography, until recently, when [7] showed

the diversity of BEMs that can be derived. This classical BEM is called a double-layer

BEM because it only involves the double-layer operator  .

The symmetric BEM

The originality of the symmetric Boundary Element Method is to consider a different

piecewise harmonic function for each domain: the function uΩi equal to V
v i
i

− Ω


within Ωi and to −
v i

i

Ω


outside of Ωi. This u
iΩ is indeed harmonic in R3\∂Ωi, and

the representation equations (5) and (6) can be applied, leading to a system of integral

equations involving two types of unknowns: the potential Vi and the normal current

(s∂n V)i on each interface.

The surfaces are represented by triangular meshes. To fix ideas, consider a three-layer

geometrical model for the head. Conductivities of each domain are respectively denoted

s1, s2 and s3. The surfaces enclosing these homogeneous conductivity regions are denoted

S1 (inner skull boundary), S2 (skull-scalp interface) and S3 (scalp-air interface). Denoting

 i
k( ) the P0 function associated to triangle i on surface Sk, and  j

l( ) the P1 function asso-

ciated to node j on surface Sl, the potential V on surface Sk is approximated as

V xS i
k

i
k

ik
( ) ( ) ( )r r= ( )∑  , while p = s∂n V on surface Sk is approximated by

p yS i
k

i i
k

k
( ) ( )( ) ( )r r= ∑  . As an illustration, considering the source term to reside in the brain

compartmentΩ1, the variables ( ) ( )x k i i
kx= and ( ) ( )y k i i

ky= satisfy the linear system:

 

 


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Gramfort et al. BioMedical Engineering OnLine 2010, 9:45
http://www.biomedical-engineering-online.com/content/9/1/45

Page 18 of 20



where ^ ij
(resp.

 ij ) is defined as si + sj (resp.  i j
− −+1 1 ) and where b1 and c1 are

the coefficients of the P0 (resp. P1) boundary element decomposition of the source

term ∂nvΩ1
(resp. − −1

1
1

vΩ ).

Blocks Nij and Dij map a potential Vj on Sj to a function defined on Si. Block Sij
maps a normal current pj on Sj to a function defined on Si. The resulting matrix is

block-diagonal, and symmetric, hence the name “symmetric BEM”.

The magnetic field is computed from the electric field and the primary source distri-

bution using the Biot and Savart equation (3), as proposed by Ferguson, Zhang and

Stroink [11].

In summary, the symmetric BEM introduces an additional unknown into the pro-

blem. the normal current, and uses an additional set of representation equations link-

ing the normal current and the potential. The symmetric BEM departs from the

double-layer BEM in several ways:

• the normal current to each surface is explicitely modeled;

• only the surfaces which bound a common compartment have an interaction

(whence the blocks of zeros in the matrix);

• only the surfaces which bound a compartment containing sources have a source

term;

• the matrix is symmetric;

• the matrix is larger for a given head model.

Additional material

Additional file 1: OpenMEEG: Hands-on tutorial.
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