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Abstract

Background: The advances in technology make possible the incorporation of
sensors and actuators in rollators, building safer robots and extending the use of
walkers to a more diverse population. This paper presents a new method for the
extraction of navigation related components from upper-body force interaction data
in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-
frequency noise caused by vibrations on the walker’s structure due to irregularities
on the terrain or walker’s wheels and (ii) the cadence related force components
caused by user’s trunk oscillations during gait. As a result, a third component related
to user’s navigation commands is distinguished.

Results: For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter
was designed presenting very low values for Kinematic Tracking Error ((2.035 ±
0.358)·10-2 kgf) and delay ((1.897 ± 0.3697)·101ms). A Fourier Linear Combiner filtering
architecture was implemented for the adaptive attenuation of about 80% of the
cadence related components’ energy from force data. This was done without
compromising the information contained in the frequencies close to such notch
filters.

Conclusions: The presented methodology offers an effective cancelation of the
undesired components from force data, allowing the system to extract in real-time
voluntary user’s navigation commands. Based on this real-time identification of
voluntary user’s commands, a classical approach to the control architecture of the
robotic walker is being developed, in order to obtain stable and safe user assisted
locomotion.

Background
Walkers are designed to assist pathological gait, helping in balance, and providing

weight support to the user. Moreover, as walkers rely on the user’s ability to walk,

these devices play an important role in empowering user’s rehabilitation. Walker-

assisted gait is a theme of interest in the scientific community. Studies regarding

walker assisted gait are found in [1-3]. Conventional walkers are prescribed according

to certain user’s characteristics:

1. Standard or four-legged wakers are useful for patients with poor balance, [4], or

for those that require some level of partial body weight support (PBWS), at the
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cost of compromising gait patterns and posture during gait. Upper body strength

and good motor coordination are demanded for lifting up and placing forward the

device during gait, [5].

2. Rollators or four-wheeled walkers offer more natural gait patterns but lack in sta-

bility. If users should put much weight on the device, it may roll away, resulting in

a fall. In that context, rollators should be used by patients that require minimal

weight bearing, such as individuals with mild to moderate Parkinson’s disease or

ataxia, [5].

The advances in technology make possible the incorporation of sensors and actuators

in such devices, bringing to these devices new characteristics: improved the therapies

based on walkers by means of assist-as-needed intervention and improved device’s

reliability. These new characteristics extended the use of walkers to a more diverse

population. (Robotic, advanced or smart)-walkers are normally three/four-wheeled

devices in which locomotion is controlled by motors, offering, at the same time, nat-

ural gait patterns, lateral stability and the possibility of PBWS. Sensors aimed at

extracting user or environment conditions provide safe and efficient control. Some

examples of the most significant smart walkers in the literature are found in [6-11]. A

review regarding such devices along with a functional classification was presented in

[12].

In the framework of Simbiosis Project, a robotic walker equipped with a multimodal

user-machine interface was developed, [12]. This work presents a new method for the

extraction of user’s navigation commands from upper-body force interaction in walker

assisted gait. After a previous analysis of the force sensor data measured in walker’s

handles, the main components were identified. First, a high-frequency component ori-

ginated from the vibrations introduced by the wheels/floor irregularities was found.

These components can be attenuated by improving the device’s structure. Nevertheless,

in outdoors the pavement usually presents imperfections. This requires the develop-

ment of efficient techniques to remove these components from force data.

Second, a component related to user’s trunk oscillations, and consequently to user’s

gait, is observed. In previous works, [13], such component was characterized and con-

tinuously monitored in order to infer gait parameters from force data. Nevertheless, in

this work the focus is on the third component related to user’s navigation commands.

It is fundamental to infer such commands from the interaction with the robotic walker

for an efficient control of the device during assisted gait.

This paper presents a filtering architecture and its validation for obtaining user’s

navigation commands. Section 2 includes a brief presentation of the Simbiosis walker,

the force measurement configuration and, most importantly, a discussion regarding the

filtering designed to extract the components related to user’s navigation commands. In

section 3, the experimental results are presented along with the corresponding discus-

sion. Finally, section 4 presents the conclusions and future work.

Methods
The robotic walker developed under the framework of the Simbiosis Project presents a

series of sensor subsystems designed for the acquisition of gait parameters and for the

characterization of the human-robot interaction during gait, [12]. One of them, the
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upper-body force interaction subsystem, is based on two tridimensional (3D) force sen-

sors installed under the forearm supporting platforms, Figure 1. Each 3D force sensor

is compound by one MBA400-200Lb biaxial sensor by Futek and one Transdutec TPP-

3/75 load cell with their respective amplifiers. The biaxial sensors are used for measur-

ing the X (lateral direction) and Y (advance direction) components. The load cells mea-

sure the Z component (vertical direction). Force sensors are integrated into a real-time

architecture based on Matlab Real-Time xPC Target Toolbox. When data storage for

offline studies is required, a laptop computer is also introduced into the system’s archi-

tecture. The laptop PC also adds the possibility to control the system externally

through a wireless LAN remote desktop connection.

A previous study regarding the forces acquired during experiments of assisted gait

lead to the identification of three main components in force signals: the vibrations

introduced by floor/walker wheels imperfections, oscillations due to user’s trunk

motion during gait and the voluntary components related to the user’s navigational

commands. The typical force data acquired on the y axis of one of the force sensors is

presented in Figure 2. As it can be seen, in the instants that the subject is not walking

but has his arms resting on the forearm supports (yellow area in Figure 2), no high fre-

quency noise is observed. This indicates that the high frequency components are gen-

erated during the movement of the device. As observed by the authors, such noise is

caused by vibrations introduced by both irregularities on the ground and imperfections

on the surface of the walker’s wheels.

In addition, during the moments in which the subject is walking (blue highlighted

area), slower oscillations are also observed in all axis of force data. In previous works,

the authors demonstrated that this oscillatory component is specially observed in the

vertical direction of the force data, and is a result of the lateral displacements of user’s

trunk, [14]. Such oscillations are translated into forearm reactions as the user is sup-

ported by the walker. Movements of user’s trunk and, consequently, user’s center of

Fy Fx
Fz

Figure 1 Illustration of the SIMBIOSIS walker upper body force interaction subsystem.
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gravity (CoG) are highly correlated with gait phases, [15]. In [13], the authors proposed

a methodology for the extraction of gait parameters, such as heel-strike, toe-off and

cadence, from this force component.

Finally, transient events related to user’s navigation commands are also found within

the force sensor data. The main objective for the installation of force sensors in walk-

er’s handles was the identification and characterization of user’s guidance intentions.

As an example, at the beginning of the blue area in Figure 2, a high amplitude peak

identifying the initial pushing force to move the device is observed. More information

related to guidance commands is within this force signal, but they can not be easily

identified without its proper extraction from the two previously commented compo-

nents. Next section introduces the new methodology for the extraction of the compo-

nents related to user’s guidance intentions.

For the validation of the filtering methodology following presented, five healthy sub-

jects were asked to walk with the device in a 40 m track prepared for the experiments.

The track was placed in a indoors installation and included a 90 degrees curve at the

center. The five subjects were asked to walk, at preferred speed, three times in each

direction, resulting in a total of 30 repetitions. It took from 50 to 70 seconds for the

subjects to complete the track each time. During the experiments, force data was

acquired at 1 KHz and stored for the analysis presented in the following sections.

Informed consent was obtained from the patients that participated in this study.

The subjects recruited for the proposed experiments presented no history of any dys-

function on either upper or lower limbs. At this point in the study, reference signals

and validation of the method are the main objectives. Individuals with pathological gait

will be addressed in the future.

Data analysis

Considering the obtained knowledge regarding the several components contained in

the force signals, the authors propose the filtering strategy presented in Figure 3. On

the one hand, the upper branch is designed for the cancelation of high-frequency com-

ponents that result from vibrations caused by wheels/floor irregularities.

On the other, the lower branch is constructed to online estimate the component

caused by user’s trunk oscillations and, therefore, highly correlated with user’s cadence.
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Figure 2 Typical raw force data obtained from the Y-axis of the 3D sensor. Two main zones
highlighted: (i) the yellow zone indicates the moments in which the subject has his arms resting on the
structure of the walker and is not walking, and (ii) denotes the moments in which the subject is actually
walking with the device. Three main components are identified in force signals: the vibrations introduced
by floor/walker wheels imperfections, oscillations due to user’s trunk motion during gait and the voluntary
transient events related to the user’s navigational commands.
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This last component is, then, subtracted from the force data filtered by the first block.

As it can be seen, in addition to the force signals, cadence is also an input for this fil-

ter. The idea is to selectively and adaptively filter the force data without compromising

the amplitude of components which frequencies are close to gait cadence as they can

contain relevant information regarding user’s intents.

Design of high-frequency noise cancelation filter

The technique presented in this section relies on the high-frequency of the force com-

ponents related to the vibrations of the walker’s structure. Classical low-pass filters,

such as Butterworth, Chebyshev, among others, can be used for the cancelation of

high-frequency components of the acquired force signals, nevertheless, such approach

would also introduce an important phase shift between input and outputs signals caus-

ing a temporal delay on the filtered signal. Such situation is undesirable in real-time

applications once delay affect the cognitive interaction between the walker and the

user.

In this context, for this first stage of noise cancellation an approach based on g-h fil-

ters is designed. G-h filters are simple recursive filters that estimate future position and

velocity of a variable based on first order model of the process. Measurements are used

to correct these predictions, minimizing the estimation error. Traditional applications

of g-h filters are radar tracking and aeronautics, [16]. The general form of a g-h filter

is described in the following equations.

x x g y xk k k k k k k k, , ,( )= + −− −1 1 (1)

 x x
hk
Ts

y xk k k k k k k, , ,( )= + −− −1 1 (2)

x x T xk k k k s k k+ = +1, , , (3)

 x xk k k k+ =1, , (4)

Fij

Cadence

+-

Gait cadence 
component 
estimation

Cancelation of
high-frequency 

perturbations

F(cad) ij

F(lf) ij F(filt) ij

Figure 3 Signal processing architecture for user’s intent component separation. Fij is the force signal
obtained from axis (j), sensor (i). F f ij( ) denotes the force signal obtained after the high frequency noise
cancelation and F cad ij( ) is the periodical, cadence-dependent component of force. Finally, F filt ij( ) is the
processed final signal related to user’s navigation intent.
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Equations 1 and 2 are designated as update, tracking, or filtering equations. They

estimate the current position, xk, k, and velocity, xk k, , of the variable based on previous

predicted position, xk, k-1, and velocity, xk k, −1 , taking the current measurement yk to

account. Confidence on measures is weighted by gains gk and hk. Equations 3 and 4

are called prediction equations as they provide a prediction of future position and velo-

city, xk+1,k, xk k+1, , based on first order dynamic model of the variable. As g-h trackers

consider a constant velocity model, predicted velocity xk k+1, is equal to the current

one, xk k, . The assumption of constant speed is reasonable considering that human

movements are slow, presenting small accelerations, [17], and that the data is sampled

at high rates (in this study, fsampling = 1kHz).

G-h filters are affected by two error sources, [16]: (i) the lag, dynamic, bias or sys-

tematic error, which are related to the constant velocity assumption, and (ii) the mea-

surement error, which is inherent to the sensor and measurement process. Typically,

the smaller gk and hk are, the larger is the dynamic error and the smaller are the mea-

surement errors, [16]. In designing a g-h tracking filter there is a degree of freedom in

choice of the relative magnitude of the measurement and dynamic errors.

To simplify the selection of filter gains (gk, hk), two filters that are optimal in some

sense are considered. These filters are the Benedict-Bordner Filter (BBF) and the Criti-

cally Dampened Filter (CDF). BBF minimizes the total transient error, defined as the

weighted sum of the total transient error and the variance of prediction error due to

measurement noise errors, [18]. BBF is the constant g-h filter that satisfies:

h
g
g

=
−

2

2
(5)

As g and h are related by Equation 5, the BBF has only one degree of freedom. CDF

minimizes the least-squares fitting line of previous measurements, [16], giving old data

lesser significance when forming the total error sum. This is achieved with weight fac-

tor θ. Parameters in the g-h filter are related by Equation 6. Selection of filter gain for

the CDF is analogous to that for the BBF.

g

h

= −

= −

1

1

2

2



( )
(6)

For the selection of the filter and for tuning of the correspondent parameters, the

Kinematic Estimation Error (KTE) was used, (Equation 7). KTE quantifies the transient

response through | |
2 and, at the same time, the averaging of filtering capabilities of

the filter through the term s2 [19].

KTE = +| | 
2 2

Where, | | is the mean square of errors of the filtered signal and s2 is the variance

both related to a reference signal obtained through offline filtering the signal with the

algorithm known as zero-phase forward and reverse digital filtering, [20]. This last fil-

tering algorithm is non-causal once the signal is filtered both in forward and reverse

directions in time and it can be only used in offline applications. Nevertheless, it offers
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an optimal reference signal for the proper selection of filter’s coefficients, considering

that the filter yields precisely zero-phase distortion.

The KTE was used for the selection of the filtering parameters for BBF and CDF: g

and θ were modified within a broad range, using a small step, and the best solution

was selected for each user, experiment and repetition. Once the best solution was

found for each case, the delay between input and output signals was calculated. The

selection of the best coefficients along with the KTE and delay (δ) for each user is pre-

sented in Table 1. Considering the components related to user’s guidance intentions,

the authors obtained empirically that the y-components of forces are the most impor-

tant. Thus, for practical reasons, Table 1 only presents the mean values for the best fil-

ter coefficients, KTE and (δ) for the y-axis of each force sensor (right and left).

As it can be seen, KTE for BBF and CDF are very similar. Nevertheless, delay is sig-

nificantly smaller when using the BBF approach. In addition, to avoid the need of tun-

ing the algorithm for each user, sensor and repetition, the KTE and delay were

recalculated using the mean values for the coefficients for each filter (g = 2.469·10-2 for

BBF and θ = 9.877·10-1 for CDF). In this case, mean KTE of (2.035 ± 0.358)·10-2kgf

and delay of (1.897 ± 0.3697)·101ms were obtained for the BBF, while mean KTE of

Table 1 Selection of best filter coefficients based on the KTE.

BBF

Subj. Sensor KTE [kgf] δ[ms] g

1 FYright (2.194 ± 0.1455)·10-1 (1.583 ± 0.1462)·101 (2.817 ± 0.1795)·10-2

1 FY left (2.131 ± 0.0893)·10-1 (1.517 ± 0.1951)·101 (2.900 ± 0.2828)·10-2

2 FYright (1.396 ± 0.1569)·10-1 (1.933 ± 0.3902)·101 (2.517 ± 0.3727)·10-2

2 FY left (1.333 ± 0.1414)·10-1 (1.850 ± 0.4113)·101 (2.633 ± 0.4758)·10-2

3 FYright (2.203 ± 0.4284)·10-1 (1.900 ± 0.4397)·101 (2.425 ± 0.3521)·10-2

3 FY left (2.291 ± 0.3513)·10-1 (1.933 ± 0.2134)·101 (2.542 ± 0.2070)·10-2

4 FYright (2.105 ± 0.2947)·10-1 (1.967 ± 0.1972)·101 (2.223 ± 0.1863)·10-2

4 FY left (2.019 ± 0.2605)·10-1 (1.967 ± 1.5986)·101 (2.292 ± 0.1170)·10-2

5 FYright (2.183 ± 0.2209)·10-1 (2.383 ± 0.2544)·101 (2.041 ± 0.1538)·10-2

5 FYleft (2.284 ± 0.2446)·10-1 (2.100 ± 0.3215)·101 (2.229 ± 0.2634)·10-2

Mean values (2.014 ± 0.4194)·10-1 (1.9133 ± 0.3721)·101 (2.469 ± 0.3781)·10-2

CDF

Subj. Sensor KTE [kgf] δ[ms] θ

1 FYright (2.124 ± 0.1447)·10-1 (2.050 ± 0.2432)·101 (9.857 ± 0.01374)·10-1

1 FY left (2.056 ± 0.0896)·10-1 (1.967 ± 0.2494)·101 (9.850 ± 0.01528)·10-1

2 FYright (1.321 ± 0.1437)·10-1 (2.533 ± 0.4988)·101 (9.877 ± 0.02054)·10-1

2 FY left (1.262 ± 0.1311)·10-1 (2.217 ± 0.3891)·101 (9.862 ± 0.02267)·10-1

3 FYright (2.108 ± 0.3627)·10-1 (2.533 ± 0.6600)·101 (9.882 ± 0.02340)·10-1

3 FY left (2.174 ± 0.3218)·10-1 (2.617 ± 0.3184)·101 (9.878 ± 0.01344)·10-1

4 FYright (2.035 ± 0.2687)·10-1 (2.567 ± 0.3815)·101 (9.890 ± 0.01633)·10-1

4 FY left (1.947 ± 0.2533)·10-1 (2.433 ± 0.1795)·101 (9.883 ± 0.00745)·10-1

5 FYright (2.094 ± 0.2037)·10-1 (2.967 ± 0.3543)·101 (9.900 ± 0.01155)·10-1

5 FY left (2.177 ± 0.2495)·10-1 (2.783 ± 0.3288)·101 (9.899 ± 0.01344)·10-1

Mean values (1.923 ± 0.4002)·10-1 (2.467 ± 0.4847)·101 (9.877 ± 0.0225)·10-1

Vilues (mean ± std. deviation) for KTE and delay obtained in the selection of g-h filters for high-frequency noise
cancelation. As it can be seen, although the values of KTE are equivalent for both filtering algorithms, the delay is
significantly smaller for the Benedict-Bordner Filter.

Frizera Neto et al. BioMedical Engineering OnLine 2010, 9:37
http://www.biomedical-engineering-online.com/content/9/1/37

Page 7 of 16



(1.951 ± 0.350)·10-1kgf and delay of (2.413 ± 0.131)·101ms were obtained for the CDF.

As the KTE in both cases are very similar and the delay is still significantly smaller for

the BBF, this filter showed to be a better solution than CDF for the data obtained

from the experiments performed in this work. Figure 4 shows an example of the data

filtered with the selected filter.

Estimation of force component related to gait cadence

Once the filter for cancelation of high-frequency noise is introduced, this section pre-

sents a methodology for the estimation of the force component related with user’s gait

cadence. For that purpose, taking advantage of the periodicity of cadence, an adaptive

filter based on the Fourier Linear Combiner (FLC) was applied. FLC is an adaptive

algorithm used for continuous estimation of quasi-periodical signals based on a M har-

monics dynamic Fourier model (Equation 8). Using frequency and number of harmo-

nics as inputs for the model, the algorithm adapts amplitude and phase for each

harmonic at the given frequency.

s w sin r k w cos r kr M

r

M

= + +
=

∑[ ( ) ( )] 0 1 0

1

(8)

The adaptation of the coefficients wk is performed based on the least-mean-square

(LMS) recursion, a descend method based on a special estimate of the gradient, [21],
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Figure 4 Signal filtered with the selected g-h filter (Benedict-Bordner, g = g = 2.469·10-2). Dashed
box shows a detail of the filtered signal (in red) compared with the original raw force data (in blue).
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which ensures inherent zero phase. Figure 5 illustrates the FLC algorithm and shows

how the LMS recursion is used for the adaptation of amplitude and phase. The equa-

tions for the FLC algorithm, presented in Figure 5 are described below.

x
r k

r M k

r M

M r Mrk =
( )

−( )( )
≤ ≤

+ ≤ ≤

⎧
⎨
⎪

⎩⎪

sin 

cos




0

0

1

2,
(9)

 k k k ky= − W XT (10)

W W Xk k k k+ = +1 2 (11)

Where yk is the input signal. The adaptive weight vector, Wk, generates a linear com-

bination of the harmonic orthogonal sinusoidal components of the reference input vec-

tor, Xk. As previously described, M is the number of the harmonics used and, finally, μ

represents the amplitude adaptation gain used for the LMS recursion.

yk  = sk + vk

+-

LMS
Recursion

w1

wM

wM+1

w2M

sin( 0k) .
.
.

sin(M 0k)

cos( 0k)

cos(M 0k)

.

.

.

Xk Wk
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FLC

.

.
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Figure 5 The Fourier Linear Combiner algorithm. The adaptation of the coefficients wk is performed
based on the least-mean-square (LMS) recursion. yk is the input signal. The adaptive weight vector, Wk,
generates a linear combination of the harmonic orthogonal sinusoidal components of the reference input
vector, Xk. M is the number of the harmonics used and μ represents the amplitude adaptation gain used
for the LMS recursion.
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As mentioned before, the algorithm needs a frequency input for the correct estimation

of the gait related force component. On the one hand, such information can be offered

by an external system, such as a podometer (or any step counter). In this context, the

authors proposed in [22] an ultrasonic subsystem that offer continuously the distance

between each user’s feet and the walker. From that information, cadence can be easily

extracted and used for the FLC algorithm. The main disadvantage of this approach is

that the user has to wear sensors on each feet compromising the usability of the device.

On the other hand, the author’s also demonstrated in [13] that the vertical compo-

nents of the force signals can be used for continuous estimation of gait cadence using

the Weighted-Frequency Fourier Linear Combiner (WFLC). The WFLC is an extension

of the FLC noise canceler presented before and also tracks frequency of the input sig-

nal based on a LMS recursion. Therefore, the WFLC adapts in real-time its amplitude,

frequency and phase, [23].

As the WLFC is designed to adapt to the dominant-frequency component in a signal

[24], it is important to perform a previous stage of band-pass filtering (compatible with

gait cadence frequencies) for the correct performance of the WFLC. Although this fil-

tering stage can cause undesirable time delay in the force signals, instantaneous tem-

poral changes in gait cadence (WFLC’s frequency output) are minimal.

Therefore, an external branch of cadence estimation based force measurement, and

the WFLC algorithm showed to be very useful in the application presented in this

paper.

Thus, the combination of WLFC and FLC presents great advantages, [25]. The band-

pass filtering allows the WFLC to robustly adapt to the values of gait cadence, while

the FLC operates on the raw input, ensuring zero-phase amplitude estimation, pre-

sented in Figure 3. Figure 6 shows the complete diagram of the filtering architecture

used for the extraction of user’s intentions from force data.

+-

WFLC

FLC

+
+

cadence estimation stage

Fij

Cadence

F(cad) ij

F(lf) ij F(filt) ij

F1z

F2z

 Benedict-Bordner
Filter

g=2.469.10

Figure 6 Signal processing architecture for estimation of user’s intent force component. Fij is the
force signal obtained from axis (j), sensor (i). F(ιf)ij denotes the force signal obtained after the high
frequency noise cancelation and F(cad)ij is the periodical, cadence-dependent component of force.
Cadence estimation stage by means of WLFC is indicated with dashed lines.
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During the preliminary experiments, the method for filtering the force sensor data

was observed to be very effective for canceling the cadence-related components in

symmetrical gait, in which the user applies approximately the same amount of body

weight to both supporting platforms. Nevertheless, when planning the filter design to

help people with pathological gait, it is interesting to include the possibility for the

cancelation of components related to asymmetrical supporting forces. When such

situation occurs, it was experimentally observed that the oscillatory component pre-

sents more influence due to the cadence of one foot.

However, the presence of different gait cycle durations for left and right feet affects

equally the number of steps per minute of each foot. In this manner, for the cancella-

tion of asymmetrical supporting forces it is necessary to eliminate two frequency har-

monics (M = 2): f1 and f2 equal to the half of cadence and cadence, respectively. The

FLC algorithm cancels each component individually if they are within the force signals.

Figure 7 presents the final diagram for cancelation of all undesired components of

force data and taking into account the possibility of asymmetrical supporting forces.

In previous works, the authors presented a methodology for tuning the WFLC para-

meters for the online estimation of cadence from force data, [13]. This methodology

consists in adjusting five parameters. Three of them do not require tuning: the number

of harmonics of the model, M, which is fixed to 1, the instantaneous frequency at initi-

alization, which is automatically set as the lower cut-off frequency of the band-pass fil-

ter (0.5 Hz in this work) and the bias weight to compensate for low frequency drifts,

which is set to zero in this application. Finally, the amplitude and frequency update

weights are adjusted in a manner that the frequency output of the WFLC adapts as

fast as possible to the dominant-frequency component of the input signals.

Since the WFLC tuning was previously solved, authors start from the supposition

that continuous cadence is a known parameter. Only FLC tuning is required. As the

number of the harmonics (M) of the FLC is set to 2, only one parameter needs to be

adjusted: the amplitude adaptation gain, μ, used for the LMS recursion. The selection

of values for μ affects directly the convergency time and, most importantly, the

 Benedict-Bordner
Filter

g=2.469.10-2

FLC +-

WFLC

f=cadence

+
+

x 0.5

0.5f

M=2

Fij

F(cad) ij

F(lf) ij

F(filt) ij

F1z

F2z

Figure 7 Final signal processing architecture for estimation of user’s intent force component
considering the possibility of asymmetrical supporting forces.
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bandwidth (BW) of the FLC adaptive filter, [26]. For values of μ ≪1, the bandwidth is

given by BW ≈ 2μ.

Considering that, small values of μ imply in a narrow band filter and the cancelation

of a very specific frequency. Nevertheless, if the force component signal is not a perfect

sinusoidal wave, the cancelation will not be effective. Opposite to the g-h filters selec-

tion, in this case, no reference signal can be obtained for the automatic/optimal selec-

tion of the FLC parameter. As in other similar works, such as [19], the selection of μ is

usually performed empirically.

For the signals obtained in this study, μ = 0.002 presented excellent results for both

FLC filters. Figure 8 shows the signal processed with the FLC algorithm. First, Figure 8

(a) shows the original signal after the high frequency noise cancelation and, thus, the

input of the first FLC filter. Second, Figure 8(b) shows the output of the FLC filter in

which only the cadence component was canceled (scheme presented in Figure 6). As

previously mentioned, in the experiments performed for this work a right/left turn was
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Figure 8 The top graph (in black) shows the force data after the canceling of the high-frequency
components for the tuning of the FLC algorithm. Middle graph shows the signal (in red) after the FLC
filtering taking into account only the cadence frequency (one harmonic). Finally, the bottom graph (in
blue) shows the filter output signal processed with the final FLC filter. The dashed box indicates the
instants in which asymmetrical support is forced through a right turn performed with the walker.
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executed. This was done in order to intentionally generate different gait cycle duration

for each foot and asymmetric supporting forces in the walker’s handles. This turn is

marked with the dotted line. As it can be seen, a slower oscillatory component is

observed inside this dotted line in both Figure 8(a) and 8(b). The final FLC filtering

architecture (Figure 7) tracks and cancels both harmonics of the cadence frequency

( f cadence= 2
and f = cadence). The signal resulting from such filtering algorithm is

shown in Figure 8(c).

Results and Discussion
Once both filters were individually tuned, a methodology for the analysis of the com-

plete filtering architecture is presented in this section. For that purpose, an index (R in

Equation 12) based on the ratio of the energy within the cadence components of gait

before and after the filters in the frequency-domain is proposed. R indicates the reduc-

tion of signal’s energy within the cancelation range given by the frequency input of the

FLC algorithm presented in this work.

R
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f1,1 and f1,2 are the minimum and maximum values of cadence for the first harmonic

of the FLC filter and f2,1 and f2,2 for the second harmonic (f = cadence). This method

for the evaluation of the filtering strategy is presented graphically in Figure 9. The
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Figure 9 Graphical representation of the methodology for quantifying the canceling of the
cadence related components of force data. R indicates the reduction of signal’s energy within the
cancelation range given by the frequency input of the FLC algorithm presented in this work.
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mean and standard deviation values of R obtained for the five subjects considering all

the repetitions and right and left sensors are presented in Table 2. As it can be seen, a

reduction close to 80% of the energy in the frequency components is obtained for all

the subjects. In addition, small standard deviations indicate the robustness of the pro-

posed methodology for the canceling of non-desired components from force data.

Finally, Figure 10 presents the effect of the complete filtering methodology over the

acquired force signals. First, on the top left the raw force signals are presented. Along

with that, the force signal after the processing by the BBF and the final filtered data

are both presented. On the right side, the spectrogram, [20], of the input and output

signals are presented. In these graphs, the continuous cadence output of both harmo-

nics obtained by means of WFLC are marked with the continuous lines. As it can be

seen in the top spectrogram, these signals coincide with two zones of local maxima. In

the bottom spectrogram, the attenuation of both cadence component by means of the

FLC algorithm is observed. In addition, the reduction in PSD is also noticed in the

higher frequencies due to the cancelation of the vibration components through the

Benedict-Bordner Filter.

Conclusions
For achieving safer and more reliable robotic walkers for disabled people, it is impor-

tant to develop efficient methods for inferring of user’s voluntary commands from

user-walker interaction in assisted gait. Regarding usability issues and in order to

extend the use of smart walkers outside clinics and research laboratories, such infor-

mation must be ideally extracted without installing any sensors in user’s body. In this

context, this paper presents a novel strategy for the estimation of the voluntary compo-

nent of force data based on two filtering stages. First, the higher frequency signals due

to walker vibrations caused by floor imperfections are cancelled by means of a Bene-

dict-Bordner g-h filter. Second, a WFLC-FLC algorithm is built for the estimation of

cadence related force components. Such components present interesting information

on spatio-temporal parameters of user’s gait and they have been previously studied and

characterized by the authors in previous works. In this work, as the objective is to infer

voluntary guidance information, those cadence related components have been sub-

tracted from the force data. All the filtering strategies presented in this work are cur-

rently working in real-time programmed into the firmware installed on the Simbiosis

walker. The first experiments of controlled motion of the device are being performed

with healthy subjects. Figure 11 shows an example of the complete architecture imple-

mented in the SIMBIOSIS walker’s firmware. As it can be seen, the force data pro-

cessed with the algorithms presented in this work will be used as input signals for an

event detection algorithm that classify, in real-time, the navigational commands applied

Table 2 Attenuation of cadence related components by means of WFLC-FLC algorithms.

Subject R (mean ± std. deviation)

1 0.8084 ± 0.0140

2 0.7605 ± 0.1104

3 0.7915 ± 0.0147

4 0.8045 ± 0.0173

5 0.7970 ± 0.0204

Values (mean ± std. deviation) for ratio index R for each subject including all six repetitions of both experiments.
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by the user during gait. Notice that is impossible to extract such information from the

raw data. In Figure 11, it is shown an example of three areas in which navigational

transition events occur: (i) start walking, (ii) right turn and (iii) stop walking. Once this

validation is over, the device will be taken to a clinical environment for the final valida-

tion with user’s in which gait patterns, weight bearing and stability will be evaluated in

collaboration with the medical staff involved in the research project.

cadence 
estimation

adaptive
filtering

control
architecture

event
detection

raw
force data

filtered 
force data

left motor

right motor

(i) (ii) (iii)

Figure 11 Complete system architecture implemented in the SIMBIOSIS walker’s firmware. The
output signals of the filtering architecture presented in this paper is used by a event detection algorithm
that classify the signals in real-time and send navigational commands to the controller that commands
directly the walker’s dc motors. For illustration purposes, three areas are distinguish with blue boxes: (i)
start walking, (ii) right turn and (iii) stop walking.
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Figure 10 On the left, representation of force data for the y axis of the left sensor in one
experiment in three stages: raw force data (top), data after the BBF (middle) and final output
(bottom). On the right, the spectrogram of the filtering input (top) and output (bottom) are presented
along with the continuous line marking the continuous cadence estimation by means of WFLC. Important
reductions in PSD of high frequencies and in both cadence harmonics are observed.
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