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Abstract
Radiofrequency ablation is an interventional technique that in recent years has come to be
employed in very different medical fields, such as the elimination of cardiac arrhythmias or the
destruction of tumors in different locations. In order to investigate and develop new techniques,
and also to improve those currently employed, theoretical models and computer simulations are a
powerful tool since they provide vital information on the electrical and thermal behavior of ablation
rapidly and at low cost. In the future they could even help to plan individual treatment for each
patient. This review analyzes the state-of-the-art in theoretical modeling as applied to the study of
radiofrequency ablation techniques. Firstly, it describes the most important issues involved in this
methodology, including the experimental validation. Secondly, it points out the present limitations,
especially those related to the lack of an accurate characterization of the biological tissues. After
analyzing the current and future benefits of this technique it finally suggests future lines and trends
in the research of this area.

Introduction
Radiofrequency (RF) techniques have been used to heat
biological tissues for many years. However, in recent years
its use for new medical applications has expanded enor-
mously [1]. To illustrate this, although the term "radiofre-
quency ablation" is relatively new, the number of papers
published per year on this topic has risen from 19 in 1990
to 828 in 2005.

Radiofrequency ablation (RFA) is a (more or less invasive)
interventional technique that in recent years has come to
be employed in very different medical fields, such as the
elimination of cardiac arrhythmias (using catheter or
intraoperatively) [2], or the destruction of tumors in dif-
ferent locations (liver [3], kidney [4], lung [5], bone [6],
prostate [7], and breast [8]). The procedure is based on RF

(≈500 kHz) electrical currents passing through biological
tissue and so achieving the controlled heating of the zone
with the highest power density (maximal SAR, Specific
Absorption Rate).

From a procedural point of view, RFA generally uses a pair
of electrodes: an active electrode with a small surface area
that is placed on the target zone, and a larger dispersive
electrode to close the electrical circuit. On occasions,
bipolar ablation is conducted with two active electrodes.
In addition, using the same biophysical foundation
described for RF ablation, other surgical fields use it to
treat other pathologies, e.g. the correction of refractive
errors in ophthalmology [9], the thermal remodeling of
oral cavity tissue to cure sleep obstructive apnea [10], the
intervention to minimize gastric reflux by applying RF
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energy to the gastroesophageal junction [11], and the
therapeutic heating of the articular cartilage [12].

In order to investigate and develop new techniques, and
also to improve those currently employed, research can
call upon clinical and experimental (ex vivo and/or in
vivo) studies, phantoms and theoretical models. The latter
are a powerful tool in this type of investigation, since they
provide vital information on the electrical and thermal
behavior of ablation rapidly and at low cost, quantifying
the effect of various extrinsic and intrinsic factors on the
electrical current and temperature distribution. Conse-
quently, they facilitate the assessment of the feasibility of
new electrode geometries, and new protocols for deliver-
ing electrical power. Despite the fact that several research
groups are currently using computer modeling to investi-
gate RF ablation procedures, to date no review articles
have been published on this topic. A previous review by
Strohbehn and Roemer [13] dealt with computer simula-
tions for hyperthermic treatments. Since this topic is
related to RF ablation, some of the data that it provides
could be useful for RF ablation modeling. Finally, various
papers have briefly reviewed different methodological
issues related to RF ablation modeling [14,15].

Modeled ablation procedures
To date, theoretical modeling applied to the study of RF
heating techniques have mainly focused on relatively new
therapies, such as cardiac ablation [14], cancer ablation
[16], and cornea heating [17]. However, other groups
have used previous theoretical models to study different
aspects of the RF heating phenomenon. For instance,
Overmyer et al [18] and Kim et al [19] developed three-
dimensional models to calculate current density and tem-
perature distributions in the tissue under a circular elec-
trode. Likewise, Wiley and Webster [20] studied
analytically the current density distribution in the tissue
under circular dispersive electrodes. These studies dealt
with circular dispersive electrodes in order to clarify the
origin of the perimetrical burning of the skin. In contrast,
dealing with the theoretical modeling of active electrodes
during RF heating, Erez and Shizter [21] used a one-
dimensional model to study the effect of different factors
on the temperature distribution in generic biological tis-
sue. All these models assumed numerous simplifications
(such as the homogeneity and isotropy of the tissue,
blood perfusion rate unaffected by the heating process, no
boiling of tissue during heating) which are considered in
most current models.

More recently, other researchers have developed models
for RF cardiac ablation. The first was proposed by Haines
and Watson [22] and was a one-dimensional model based
on a spherical electrode, which, despite its simplicity, gave
valuable insight into the mechanism of RF ablation. How-

ever, it ignored important factors such as blood flow and
the temperature dependence of the electrical conductivity
of cardiac tissue. These issues were taken into account by
Labonté [23,24], who developed a 2-dimensional model
(based on axial symmetry) and validated it by means of
thermograph measurements using a phantom of tissue-
equivalent material. Simultaneously, Vahid Shahidi and
Savard [25] and Kaouk et al. [26] proposed a new model
(three-dimensional but with two-dimensional potential)
incorporating fragments of blood, myocardium and torso.
In 1995, the most prolific group in theoretical modeling
of RF ablation directed by Prof. John G. Webster (Univer-
sity of Wisconsin-Madison) presented the first three-
dimensional RF cardiac ablation model [27]. This group
later became the leader in the modeling for RF cardiac
[14,28-33] and hepatic [16,34-39] ablation. Previously,
Curley and Hamilton [40] had developed a one-dimen-
sional model for RF hepatic ablation incorporating the
simultaneous infusion of heated saline into the tissue.

During the last 10 years, another two groups became
interested in theoretical RF ablation modeling. The Duke
University group [41-46] developed interesting three-
dimensional RF cardiac ablation models to assess the
effect of different factors on the temperature distributions
in the tissue. This group focused mainly on increasing the
realism of the modeling of blood flow [44], and con-
ducted excellent experiments to validate their models
[44,45,47]. The Valencia Polytechnic University group
began their modeling studies on RF heating of the cornea
[17,48,49], and later developed models for RF cardiac
ablation, specifically studying the problem of thermal
injury in the esophagus during RF ablation of the left
atrium [50-53]. In addition, other notable modeling stud-
ies have been developed for RF hepatic ablation [54-58],
RF ablation of breast cancer [59], and RF cardiac ablation,
incorporating both the heat convection due to blood cir-
culation and the irrigation of saline on the epicardium
[60].

Description of methodology
This section deals with the main steps in the building and
use of a theoretical model in studies on RF heating. These
steps are basically: 1) observation and simplification of
the physical situation, 2) arrangement of the mathemati-
cal equations which rule the thermal and electrical phe-
nomena, 3) determination of the boundary conditions,
both electrical and thermal, 4) obtaining the physical
characteristics (thermal and electrical) of the biological
tissues and other materials included in the model, 5)
choosing a numerical method in order to computation-
ally or analytically achieve a solution, and 6) conducting
the post-processing of the computed results. Since most
models are based on the Finite Element Method (FEM),
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the following steps have been tailored to this methodol-
ogy.

1) Simplifying the actual physical situation
The theaters in which RF ablation is performed are often
too elaborate and it is therefore absolutely necessary to
begin by studying this problem in detail and then to carry
out appropriate simplifications. These could include, for
instance, looking for planes or axes of symmetry (see Fig.
1), which would allow a three-dimensional model to be
simplified into a two-dimensional model (axial symmetry
case) [14,17,23,24,30,33,35,41,48,49,52], or even better,
condense the physical problem to a single dimension
[22,40]. Likewise, it is standard practice to consider only
the most significant tissues, i.e. to overlook microscopic
structures such as epithelia, basal laminas, glands, nerves,
etc. In fact, only the values of electrical and thermal char-
acteristics for whole tissues are usually available in the lit-
erature. Consequently, theoretical models only consider

macro-fragments of tissue, e.g. cardiac, adipose, blood
and connective.

2) Equations governing the phenomena
The second step consists of setting the equations govern-
ing the physical phenomenon of electrical-thermal heat-
ing. All the models of RF heating are based on a time
domain analysis of a coupled electric-thermal problem.
The spatial distribution of temperature in the tissues is
obtained by solving the so-called Bio-heat equation [61]:

where ρ is the mass density (kg/m3), c is the specific heat
(J/Kg·K), k is the thermal conductivity (W/m·K), T is the
temperature (°C), q is the heat source (W/m3), Qp is the
perfusion heat loss (W/m3), and Qm is the metabolic heat
generation (W/m3). This last term is always ignored since

ρ ⋅ ⋅ ∂
∂

= ∇ ⋅ ∇ + − + ( )c
T

t
k T q Q Qp m 1

Two examples of simplifying the actual physical situation during RF cardiac ablationFigure 1
Two examples of simplifying the actual physical situation during RF cardiac ablation. (a) The axial symmetry allows a three-
dimensional problem to be reduced to a two-dimensional problem in a theoretical model that includes an active electrode 
placed perpendicular to a fragment of cardiac tissue [52]. (b) The region under study has two symmetry planes, hence only one 
quadrant of the whole model can be considered for computational analysis in a theoretical model including fragments of differ-
ent tissues [50,51,53]. Fig. 2 shows the only quadrant considered in the model.
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it has been shown to be insignificant for ablation [24].
Likewise, the situation is often simplified by ignoring Qp
as it is negligible in some cases of RF heating, such as non
vascular tissues [17,48,49]. On the other hand, Qp is
always considered in cases of tissues with a high degree of
perfusion, such as liver [16,34,36,37,40,54,55]. The case
of in vitro ablation of excised liver could be an exception
[35]. Regarding RF cardiac ablation, Qp is incorporated in
some models [25,27,28,62], but is generally ignored
[14,23,24,31,32,43,44,52,63] since its effect is negligible
for cardiac ablation [22]. This term is mathematically
expressed as:

Qp = ωb·cb·(T - Tb)  (2)

where ωb is the blood perfusion per unit volume (kg/
m3·s), cb, is the specific heat of blood (J/Kg·K), and Tb is
the blood temperature (°C). In general, ωb has been
assumed as uniform throughout the tissue. However, in a
few studies its value was increased with heating time
because of vasodilation and capillary recruitment [64] or
annulled to model the cessation of local blood flow due
to tissue necrosis [54].

At the frequencies employed in RF ablation (300 kHz – 1
MHz) and within the area of interest (it is known that the
electrical power is deposited within a small radius around
the active electrode), the tissues can be considered purely
resistive, because the displacement currents are negligible.
For this reason, a quasi-static approach is usually
employed to resolve the electrical problem [65,66]. Then,
the distributed heat source q (Joule loss) is given by

q = J·E  (3)

where J is the current density (A/m2), and E is the electric
field intensity (V/m). The values of these two vectors are
evaluated using Laplace's equation:

∇ · σ ∇V = 0  (4)

where V is the voltage (V) and σ is the electrical conduc-
tivity (S/m). By using the quasi-static approach, the values
of "direct-current" (DC) voltage calculated from the
model correspond with the root mean squared (r.m.s.)
value of the RF voltage actually employed.

The equations (l)-(4) give the solution of an electrical-
thermal coupled problem which generally represents ade-
quately the RF ablation of biological tissues. However,
some models have incorporated additional terms into the
Bio-heat equation or have employed extra equations
which describe other physical phenomena. For instance,
in order to improve the prediction of the temperature in
the circulating blood during RF cardiac ablation, the Mass

Equation and Momentum Equation have been employed
to solve a thermal-flow coupled problem [44,63]; other
models have used fluid dynamics theory to derive a veloc-
ity field for the saline flowing out of the electrode holes
during RF epicardial cardiac ablation using irrigated elec-
trodes [60]; and other studies have modeled RF hepatic
ablation using irrigated electrodes in which heated saline
is simultaneously infused into the tissue [40]. In this last
case, the tissue can be considered as a porous medium
into which saline is infused, and hence additional equa-
tions should be employed (e.g. Darcy's Law) [67]. As
opposed to this complexity in the formulation, the mod-
eling of internally cooled RF ablation electrodes (dual-
channel probes with an electrode at the tip, in which cool-
ing fluids are continuously delivered through one channel
and removed through another) have been roughly
approximated by means of a single temperature boundary
condition at the electrode surface (value fixed to the same
value as the cooled fluid) [41,68].

3) Initial and boundary conditions
Once the thermal and electrical equations have been
stated, it is necessary to set the boundary conditions, both
thermal and electrical. RF ablation is typically performed
using a constant-voltage. In this case, the electrical bound-
ary conditions can be of two types: null current (Neu-
mann boundary condition) at the symmetry axis
[17,48,49,52,68] and planes [50,51,53], at points remote
from the heating zone [43,45], at the air-tissue interface
[17,48,49,52]; and fixed voltage on the electrodes (Dirich-
let boundary condition), in particular 0 V at the dispersive
electrode, and ≠0 V at the active electrode [17,23-
25,41,44,48,49,52,54,55,59,62]. Conversely, in the case
of a constant-current ablation, a value for current ≠0 A is
fixed at a point on the active electrode, and the same
value, but negative, is fixed at a point on the dispersive
electrode (null voltage has to be fixed on the dispersive
electrode as well). Moreover, the usual practice is to
model a constant-temperature RF ablation, in which the
delivered electrical power is modulated by the RF genera-
tor to maintain at a preset value the temperature of a sen-
sor located in the electrode. In this case, a boundary
condition of fixed voltage on the active electrode is used,
but its value is adjusted to keep the sensor temperature
constant
[14,16,29,31,32,34,36,37,42,43,45,46,50,51,53]. This
procedure involves manual adjustment based on a costly
trial-and-error method. In this respect, a closed loop con-
trol joined to the theoretical model allows not only a tem-
perature controlled RF ablation to be modeled with
minimal user input, but also gives results comparable to
clinical devices that use this type of control [33,69]. Other
studies also modeled constant-power ablation
[14,32,42,43,70], which is a clinically employed proce-
dure. Finally, some models included ablation with con-
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trolled impedance mode, i.e. maintaining the impedance
value lower or higher than a preset value [35].

Thermal conditions can be of two types: 1) null thermal
flux (Neumann boundary condition), for instance, at the
symmetry axis and plane [17,52]; 2) constant temperature
(Dirichlet boundary condition) for instance, at points dis-
tant from the heated zone [17,24,27,42,48,49,71], at the
same active electrode used to model an internally cooled
electrode [41,68], and 3) thermal convection (forced or
free) modeled by means of a thermal transfer coefficient,
e.g. at the air-tissue interface [17,25,48,49,52], and the
endothelium-blood interface in cardiac chambers
[24,25,27,45].

In addition, a value for the initial temperature has to be
considered for transient thermal analyses. This value is
frequently equal to those chosen in the experiments with
which the computer simulations will be later compared.
Almost all the studies modeling clinical RF ablations con-
sidered normothermic values of 37°C
[25,27,36,37,41,42,44-46,71,72], 36°C [52] or 35°C
[17]. Occasionally, hypothermia values (32°C) were con-
sidered to model this condition during a surgical RF car-
diac ablation [50,51]. Finally, other models in which the
computer results were compared to ex vivo experiments,
the value of initial temperature corresponded with an
ambient temperature of 20–25°C [35,48,49,59].

4) Physical characteristics of biological tissues
In order to build the complete theoretical model, the
value of four physical characteristics have to be set for all
the material of the model: mass density (ρ), specific heat
(c), thermal conductivity (k), and electrical conductivity
(σ). All these values are usually taken from the scientific
literature [73-76], specifically from previous experimental
studies of measurements on ex vivo and/or in vivo biolog-
ical tissues, and considered in the same conditions as
those used during RF ablation, i.e. at ≈500 kHz for the σ,
and at the appropriate temperature. If no previous data
are available for a certain tissue, it is possible to consider
the characteristics of a histologically comparable tissue.

All the characteristics are normally considered to be iso-
tropic. In this respect, it has been experimentally demon-
strated that the anisotropy of σ at RF frequencies is not
significant [77,78]. On the other hand, although no
experimental data are available on the anisotropy of k,
some modeling studies have considered the impact of a
possible anisotropy on this parameter by means of com-
puter simulations [48,79].

An important issue that has received little attention to
date is the relationship between tissue characteristics and
temperature. Although some RF ablation models did not

consider any relationship [27,35,44,60], most RF ablation
models considered a temperature-dependent change in σ
using a temperature coefficient of +2%/°C [14,23-
25,28,33,43,45,52,59,62,80] or a polynomial relation
derived from NaCl solutions [54,55]. However, this value
was experimentally obtained from measurements made
below 42°C [81]. For this reason, Pop et al [82] have
recently measured the change of σ (at RF frequencies) dur-
ing heating and have found that this phenomenon fol-
lows an Arrhenius model which allows the modeling of
irreversible changes in σ. Likewise, the parameter k has
been traditionally considered constant. Only a few mod-
els incorporated a linear relation with temperature
[17,25,28,50,51,53,62]. Recently, Bhattacharya and
Mahajan [83] have experimentally observed a linear rela-
tion below a threshold temperature (variable for different
tissues). Over this threshold, irreversible changes occur,
involving a sort of hysteresis in the relation k-T.

On the other hand, many RF ablation procedures involve
a temperature of nearly 100°C. In values of this order, it
is known that non-linear phenomena occur, such as des-
iccation and vaporization (bubble formation) [84]. Since
gas formation and desiccation are associated with an
increment of the electrical impedance, Haemmerich et al
[35] modeled this phenomenon using a coefficient of
value +2%/°C below 100°C, and assumed a rapid drop in
σ by a factor of 10000 between 100 and 102°C (applying
additionally a latent heat associated with water vaporiza-
tion). However, this approximation does not take into
account the irreversible behavior of σ, and hence the
results do not match the real situation, which is without
doubt much more complex. For this reason, other mode-
ling studies decided to end the computer simulation when
the maximal temperature in the tissue reached 100°C
[17,52,60], or to modulate the RF energy in order to main-
tain the maximum temperature at 95–100°C
[23,24,27,34,36,41,43,69]. This is a more reasonable
choice, which involves the loss of information on the phe-
nomenon outside this limit. However, the objective of the
modeling study is usually confined to knowing whether
this temperature limit is reached during heating [17].

More recently, some interesting attempts have been made
to quantify the relationship between temperature and spe-
cific heat [85], and to measure the characteristics of bio-
logical tissues under different physiological conditions
[86] and pathological states [87].

5) Numerical method and computer-based solution
To obtain the solution of the equations governing the
physical phenomena during RF ablation it is necessary to
chose a calculation method. Sometimes, the geometry of
the model (e.g. in one dimensional models) is simple
enough, and these equations can be solved by analytic
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methods [20,22]. However, most models present a com-
plex geometry (sometime based on a very realistic anat-
omy), with regions of different characteristics, and a
numerical method has to be employed, such as the Finite
Differences Method (FDM) or the FEM [13]. In the case of
a numerical method, the solution is obtained by means of
a computer. The FDM generally has less computation
requirements (memory and time) and consequently has
been employed for problems presenting a simple geome-
try [40,88,89]. However, at the same time, FDM allowed
to implement problems involving a mathematical formu-
lation more complex than those found in FEM studies
[40,89-91].

Concerning the use of the FEM, although some groups
have developed their own software [23,24], most have
employed commercially available software. For instance,
most RF ablation models have used ANSYS [17,28,30,41-
45,48-52,52,53,62,92] since it is able to perform electri-
cal-thermal coupled field analysis with temperature-
dependent properties. However, the main disadvantage of
ANSYS is its cost. Other models have combined different
programs for each step of the procedure. Firstly, a pre-
processing program is necessary to create the geometric
model and to assign material properties as well as the
boundary conditions to each region [28]. Several pro-
grams have been employed for this such as INGRID [27],
MSC/PATRAN [25,28,29,35,80], NETGEN [60], and
IDEAS [63]. Secondly, once the model has been built, a
solver program such as TOPAZ3D [27], COSMOS

[27,70,71], ABAQUS [25,28,35,63,69,80], and GMRES
[60] can be used to obtain the solution. Finally, post-
processing programs such as TAURUS [27] and ABAQUS/
POST [29] have been employed for displaying the results.
The combination of PATRAN-ABAQUS-ABAQUS/POST
for preprocessing-solver-post processing, respectively, has
also been extensively employed [14,16,32,34,36,37].

Some groups have recently employed FEMLAB (COMSOL
in the present version) in their modeling studies
[54,55,59]. This program, like ANSYS, provides all the ele-
ments necessary to build the model, to solve the problem
and post-process the results. Moreover, its basic version
allows arbitrarily defined equations to be introduced, and
coupled problems to be solved using these same equa-
tions. This could become an important advantage in the
future, since it would allow complex coupled problems
(flow-thermal-electrical) and the intricate relationships
between temperature, tissue damage and boundary condi-
tions to be determined. In fact, it has produced hybrid
models using FEMLAB and MATLAB to set up interesting
relationships between computed temperature, tissue
damage and resultant cessation in local blood flow [54].

Most FEM programs have numerous advantages for build-
ing, solving and post-processing models (such as a user-
friendly graphical interface, ease of complex model gener-
ation), however three key issues have to be take into
account in order to obtain accurate solutions. Two of
them are related to the discretization processes carried out

Example of meshing using tetrahedral elementsFigure 2
Example of meshing using tetrahedral elements. (a) Zoom of the only quadrant considered in the three-dimensional model of 
the Fig. 1b. (b) Meshing using tetrahedral elements. The mesh size is smaller where the gradient of electric field and current 
density are maximum, i.e. where the heating occurs. The optimum value of this parameter is calculated by convergence tests.
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during FEM: 1) spatial discretization of the model region
by creating a mesh (usually triangular elements for two-
dimensional models and tetrahedral elements for three-
dimensional models) (see Fig. 2), and 2) time discretiza-
tion during transient analysis by establishing time steps.
Finally, the models for RF ablation always include a single
fraction of the tissues included in the real situation, in par-
ticular from the area in which the heating occurs, i.e.
where the gradient of electric field and current density are
maximum. This implies that the outer dimensions of the
theoretical model are arbitrarily set (see Z and R in Fig. 1a,
and X, Y, and Z in Fig. 1b). Consequently, an essential step
in theoretical modeling is to determine the optimum val-
ues for mesh size, time step, and outer dimensions. This
can be achieved by means of sensitivity and convergence
tests.

Regarding the outer dimensions of the model, the correct
choice is a compromise between a model that is large
enough to yield a valid solution and small enough to
require reasonable computing time and memory [24]. A
sensitivity analysis allows the appropriate outer dimen-
sions to be obtained [93]. The procedure is as follows: ini-
tially, values of outer dimensions are arbitrarily chosen.
Then, the model is tested (by means of several computer
simulations using typical conditions of time, delivered
power, etc) by increasing the value of the outer dimen-
sions in each simulation by gradual stages. It is also nec-
essary to chose a control parameter for this sensitivity
analysis such as the total impedance between electrodes
[24], or the maximal temperature achieved in the tissue

after a time [49,52]. When the difference between the
value of the control parameter in a simulation and its
value in the previous simulation is less than the threshold
(previously chosen), the former values of the outer
dimensions can be considered as appropriate. The thresh-
old value can be an absolute value (depending on the cho-
sen control parameter) or a relative value expressed as a
percentage of the former value (typically 0.5%) [52].

Likewise, the optimum mesh size and time step are deter-
mined by a similar procedure called a "convergence test"
which is described in detail in [14]. In this case, the con-
trol parameters employed were the temperature at the
electrode tip [14], the temperature in reference nodes
(arbitrarily chosen) [44], or the maximal temperature in
the tissue [48,49,52]. The threshold values chosen in the
studies were 0.1°C [14], 0.5°C [48,49], or 0.5%
[43,44,52].

The determination of the optimum values of mesh size,
time step and outer dimensions is actually a combined
process, since any sensitivity and convergence test for
determining one parameter is implicitly employing a
value used by the others. For this reason, it seems appro-
priate to conduct a more or less iterative process, for
instance, to consider initially a tentative spatial and tem-
poral solution (e.g. a small grid size in the heating zone,
usually the active electrode-tissue interface, and a small
step time, 25–50 ms). Then, a computer analysis is con-
ducted to determine the appropriate values of the outer
dimensions. Finally, once these values have been

Example of post-processing of the theoretical modelingFigure 3
Example of post-processing of the theoretical modeling. (a) Two-dimensional model (axial symmetry) of a bipolar electrode for 
RF hepatic ablation similar to that proposed by Burdío et al [117]. (b) Current density (A/m2) distribution in the hepatic tissue 
surrounding the electrode. (c) Electrical potential (V) distribution.
Page 7 of 17
(page number not for citation purposes)



BioMedical Engineering OnLine 2006, 5:24 http://www.biomedical-engineering-online.com/content/5/1/24
obtained, convergence tests are performed to determine
adequate spatial and temporal discretization [52].

6) Post-processing: output variables and assessing lesions
The simplest RF ablation model is an electrical-thermal
coupled problem. Therefore, the output variables are
always electrical (voltage and current density) and ther-
mal (temperature and heat flux). In some analyses, only
electrical variables such as current density [27-
29,34,39,55,71], electric field [36,48,55], and electrical
potential [16] are employed (see Fig. 3). In fact, the spatial
distribution of current density is directly related to the dis-
tribution of SAR (Specific Absorption Rate), which corre-
sponds to the electrical power absorbed by the biological
tissue [51,55,59]. On the other hand, other studies also
calculated the total impedance (resistance) between active
and dispersive electrode [17,23,25,27], particularly its
time evolution, since this parameter is often registered by
the RF generators [70]. The impedance value has also been
used to model the quality of the contact between electrode
and tissue prior to RF ablation [30,52]. Finally, some stud-
ies that modeled constant-power or constant-temperature
ablation plotted the time evolution of the voltage applied
on the active electrode [42,43,45,46,69].

Regarding thermal variables, temperature distribution is
the most plotted result, due to its apparent association
with thermal injury [14,17,23-25,27-29,32,34-38,40-
45,48-52,52-55,59,60,62,63,69,71,72]. In other studies,
it has also been interesting to plot the heat flux distribu-
tion [55].

Some modeling studies used an isothermal line to assess
the tissue lesion boundary from the temperature distribu-
tion. Although different values have been used for this
boundary, such as 48°C [25,62] or 59°C [44], 50°C was
the most frequently employed [14,32-
37,42,43,45,46,50,52,53,59,60,63,70] since it is known
that the in vivo lesion volume (i.e. tissue rendered nonvi-
able) after RF ablation can be defined by the volume
enclosed by the 50°C isothermal surface [27]. However,
the value of the boundary is not always chosen in order to
estimate lesion dimensions, but rather to compare the
computer results with the dimensions of changes macro-
scopically observed in tissue color after ex vivo or in vivo
experiments. For instance, the discoloration observed in
excised cardiac tissue when it is heated to 60°C, allowed
in vitro results to be compared with computer simulations
by considering the 60°C isothermal surface [27]. In
another hepatic RF ablation study, the lesion border was
determined by optical inspection, since the pale central
area of the RF lesion corresponded to the necrosis zone
(i.e. the 50°C isothermal surface) [36]. Once a boundary
value has been chosen, it is then possible to estimate dif-
ferent lesion dimensions (depth, width, volume, or other

specified diameters) [14,27,29,32,33,37,45,52,63,70]
and their time evolution [23,42,43,46].

Nevertheless, since it is known that the biological damage
is a function of both temperature and time, several
authors have partially quantified it. Despite the fact that
tissue damage can be associated with many different reac-
tions, each with its own rate coefficient, it may be approx-
imated in a single process [21]. As proposed by Henriques
[94], this process is related to protein denaturation and
can be characterized by a single rate constant of the Arrhe-
nius form [95]. To be more precise, an arbitrary function
of tissue injury (Ω) is defined as follows:

where T is the temperature (K) calculated at each point of
the model region, R is the gas constant (8.3134 J/
mole·K), A (s-1) is the frequency factor (a measure of
molecular collisions) [96], and ∆E (J/mole) is an activa-
tion energy barrier which tissue constituents must sur-
mount to denature [96]. Both A and ∆E are kinetic
coefficients evaluated for each tissue type from experi-
mental data, using both microscopic measurements (e.g.
protein denaturation by means of scattering increase or
birefringence loss) [88,94], and other more sophisticated
techniques (e.g. expression of heat shock proteins (HSP)
to track cellular response to thermal injury)[97,98]. At the
same time, the values of the mentioned kinetics coeffi-
cients are chosen in order to make a value of Ω > 1 corre-
spond to a tissue in which the thermal damage is
completely irreversible [99].

So far, various theoretical models for RF ablation have
employed this formulation to assess tissue damage, some-
times using skin data [94] due to the absence of specific
data for the modeled tissue [23,24], or using specific data
from previous experiments [54,96]. Other more complex
models have been proposed, including not only cell death
but also cell recovery [100]. More recently, a comparative
study between the two methods of lesion assessment
(50°C isotherm versus Arrhenius equation) for cardiac
and hepatic RF ablation have concluded that the use of the
isotherm could overestimate the lesion diameter of car-
diac ablations with short treatment times (< 30 s), and
underestimate it in hepatic ablations with long treatment
times (> 20 minutes) [101].

Experimental validation of the theoretical 
models
Once the theoretical models have been built, and
although they are based on equations which correspond
to well characterized phenomena, some type of experi-
mental validation should be conducted to guarantee the

Ω
∆

t A e dt
E

R Tt( ) = ⋅ ⋅ ( )
−

⋅∫0
5
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results obtained from computer simulations. Many mod-
eling studies have included experimental work that
focused on the validation of theoretical models
[22,24,27,29,31,33,35,36,38-40,44,45,48,49,54,59,70-
72]. In these type of experiments, it is necessary to make a
distinction between the material used as a heating target
(model of biological tissue), the physical variables exper-
imentally measured during, before and/or after the RF
heating, and finally the experimental technique used to
acquire these variables.

Firstly, concerning the material employed, the experi-
ments can be conducted by following either of two meth-
odologies: 1) using real biological tissue (previously
excised -ex vivo or in vitro-
[22,27,29,31,33,35,39,40,44,48,49,54,59,70,71], and in
vivo [36,38,45,71,72]), and 2) using the so-called "phan-
tom" tissue-equivalent-material [24,102-104], which is
synthetic material with the same electrical and thermal
characteristics as biological tissue. In this second case, spe-
cial care should be taken to achieve these characteristics
under suitable conditions of temperature (and frequency,
in the case of electrical conductivity).

Secondly, the choice of the variables to be registered is
strongly influenced by the availability and accuracy of the
experimental techniques. For instance, it is obvious that
the use of tissue-equivalent-material does not allow any
subsequent histological analysis of the heated sample.
However, it does allow, for instance, a number of temper-
ature transducers, such as optic fibers [103], to be accu-
rately placed or even to obtain temperature distributions
on a transversal plane by means of a thermographic cam-
era [24].

On the other hand, the use of real biological tissue offers
other options for experimental validation. Some studies
used temperature measurement at different locations in
the tissue during the RF heating. This was mainly achieved
by using several small transducers (e.g. thermocouples)
placed with precision around the ablation zone
[31,47,105]. In this respect, small temperature sensors
such as thermistors have also been proposed for measur-
ing SAR distribution in the tissue [106]. However in gen-
eral, these procedure are not suitable for in vivo models,
due to the practical difficulty of accurately placing the sen-
sors. Additionally, RF electromagnetic fields induced in
the tissue during RFA could cause errors affecting these
thermometry techniques, and hence certain precautions
have to be taken [107].

Since the use of small temperature sensors (thermocou-
ples and thermistors) or thermographic image can have
limitations in some cases, other experimental techniques
have been proposed to obtain information on tempera-

ture distributions. For instance, Verdaasdonk and Borst
[108] introduced a method based on Schlieren tech-
niques, in which, using an optical setup, very small
changes in optical density of the media induced by tem-
perature gradients are color coded. To date, this method-
ology has been applied to study the thermal effects of
lasers with high temporal and spatial resolution [109]. In
the future, the application of RF ablation studies could
contribute to better experimental validation of theoretical
models.

Alternative methods of temperature measurement based
on magnetic resonance imaging (MRI) have recently been
employed for RFA of tumors in order to 1) interactively
guide the RF electrode to the target, and 2) monitor the
effect of therapy [110]. In fact, a modeling study of RF
ablation of tumors [104] employed MRI to compare the
lesion size during and post ablation to computer results.
There are currently different techniques which show a cor-
relation between the zone of irreversible tissue damage
(i.e. the lesion dimension) and post-ablation MRI
[111,112]. However, since RFA produces electromagnetic
noise that may severely deteriorate MR image quality, new
techniques such as thermosensitive MRI contrast agents
are being experimentally tested. These agents show a
change of state (from MR-inactived to MR-actived) when
temperature increases from physiological temperature to
a phase transition temperature [113]. It is very possible
that experimental validation of theoretical models will
make use of all these techniques in the not so distant
future.

When temperature measurement was not possible or
appropriate, some studies compared the computed tem-
perature distributions (or the line of irreversible damage
computed from a thermal injury function) to the macro-
scopic and/or histological samples of the heated tissue.
For example, the macroscopic assessment of cardiac tissue
was based on the degree of discoloration in the lesion
zone [22,71], which corresponds to a temperature of
60°C [27]. Since this isothermal line underestimates the
real zone of permanently damaged tissue [114], some
studies have stained the heated tissue sample with a spe-
cial solution in order to better distinguish the geometry of
nonviable tissue [29,31]. In other cases, when an in vivo
model was used to perform the experimental validation,
the lesions were analyzed and two visible zones were
identified: a well-demarcated necrosis zone, and a sur-
rounding zone of hemorrhage and inflamed cells. In this
case the outer boundary enclosing both zones was consid-
ered as the lesion border and hence compared to the 50°C
isotherm of the computed temperature distributions [45].
Likewise, for hepatic tissue, the validation procedures
have included both the analysis of the tissue discoloration
(pale zone) [35,36], and the use of special solutions for
Page 9 of 17
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staining the tissue [54]. Alternatively, mainly due to limi-
tations in size, some studies have proposed the use of his-
tologic analyses (see Fig. 4) [48,49,59]. Future research on
the histologic signatures of thermal injury will allow a
more accurate comparison to be made between computer
and experimental results in this field [115].

Finally, some studies have considered the basal value and/
or the time evolution of electrical variables during the
heating in order to compare the computed and experi-
mental values. Since the total impedance between the
active and dispersive electrodes decreases during heating,
the evolution of this parameter has occasionally been
employed to experimentally validate theoretical models
[17,24,116].

Current limitations
Modeling saline-enhanced RF ablation
Some RF hepatic ablation procedures involve the use of a
simultaneous saline infusion in the tissue [40,117,118].
In this case, the theoretical model becomes extremely
complicated, since there is not only an electrical-thermal
coupled problem, but also a fluid dynamics problem in a
porous medium (with preferential paths through the prin-
cipal veins). Since this fluid is usually a hypertonic saline
(with a high value of electrical conductivity) the spatial
distribution of the fluid in the tissue has a significant
effect on the electrical problem (i.e. the electrical energy
distribution). Also, since the fluid is infused during heat-
ing using a significant rate at ambient temperature, two
thermal effects are produced which are at present difficult

Example of experimental validation of the theoretical models by comparing computed temperature distributions and histologic samplesFigure 4
Example of experimental validation of the theoretical models by comparing computed temperature distributions and histologic 
samples. (a) Temperature distributions in the cornea during RF heating using constant voltage (scale in °C). Top: 16 V after 1 s. 
Bottom: 21 V after 1 s. (b) Cross-section of corneas heated with an active electrode of 200 µm diameter (hematoxylin and 
eosin, ×40). Top: 16 V after 1 s. Bottom: 21 V after 1 s. The lesion dimensions (central depth and surface width) were assessed 
using the coagulation contour, and were expressed as % of cornea thickness. In this case, the 100°C isothermal line was used 
to compare the experimental and computed results since it had been observed that the coagulation contour occurs in the tem-
perature range around 100°C using short heating times [49].
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to include in a model: 1) a cooling effect in the region of
the electrode, and 2) a convection effect due to the fluid
being heated in the proximity of the electrode (once
infused through the outlets). The fluid then moves away
from the electrode and heats remote tissues. Finally, these
procedures usually involve temperature values approach-
ing 100°C, which implies a clearly non linear behavior of
the tissues. Accurate modeling of saline-enhanced RF
ablation is consequently not feasible at the present time.

Modeling of the power delivery protocol
RF ablation procedures are conducted using an electrical
generator very similar to those normally employed in
electrosurgical practice. This generator can operate in dif-
ferent modes such as pulsed [119] versus continuous
wave, damped [17] or non-damped pulses, and constant
current (high output impedance) versus constant voltage
(low output impedance). Most modeling studies have
considered only constant voltage, power and temperature
modes, and only a few modeled pulsed voltage [17,24].

On the other hand, no theoretical models have been pro-
posed that include the effect of the impedance output of
the RF generator, i.e. the electrical boundary conditions
used in the active electrode implicitly considered as ideal
electrical sources. This issue could be significant since the
current RF generators present output impedances which
could be similar to the value of the load impedance (tis-
sue impedance). This means that during an actual RF heat-
ing, the resulting decrease in the tissue impedance could
cause a mismatching of the two impedances, and hence
significant errors in the computer results (considering an
ideal voltage source).

Another interesting question is the modeling of the con-
trol algorithm employed in RF generators that use con-
stant temperature. Recently, Haemmerich and Webster
[69] have implemented a PI (Proportional-Integral) con-
troller for RF ablation models. However, since this is not
the only algorithm available for commercial RF genera-
tors, it is also necessary to carry out more research into the
characteristics of the control loops usually employed in
these generators in order to include them in future mode-
ling studies.

Characterization of biological tissues
Even though great efforts have been made to obtain an
accurate value for each of the characteristics of different
biological tissues, it is important to take two issues into
account. On one hand, the dispersion of the values of the
biological characteristics can become very important, due
to the variability between individual values, and the
changing environmental and physiological conditions.
Some modeling studies have assessed the impact of these

changes on temperature distributions considering incre-
ments and/or reductions of up to 100% [14,49,70,80].

On the other hand, to date, theoretical RF ablation mod-
els and their corresponding computer simulations have
only been related to the comparative thermal dosimetry
[13]. The aim of this tool is, from a very general point of
view, the comparative evaluation of the potentials of dif-
ferent heating modes and configurations. Specifically, the
models developed have made a comparative assessment
of the effect of: geometry [27,28], dimensions
[23,25,29,48], and arrangement [34,36,39] of the active
electrode(s), the type of ablation (monopolar versus bipo-
lar)[16,36], the insertion depth of the electrode into the
tissue [29,32,46,52], the value of applied voltage [23,55],
the condition of thermal cooling around the active elec-
trode [27,31,32,44,60] and in the interior of the electrode
(cooled electrode) [35,41,68], the protocol for delivering
RF energy (constant voltage, constant power or constant
temperature) [42,43,69], the thickness of the ablated tis-
sue [51,52], the presence or lack of adjacent significant
structures, such as adipose layer [51,52], blood vessels
[34,37], or tumor [59], the location of the dispersive elec-
trode [25,45], the tissue perfusion [54], and the tempera-
ture and flow of the saline infused during the RF ablation
[40]. In all these studies, standardized models were used,
i.e. only the most significant anatomical and physiologi-
cal features of "typical" patients were considered [13]. In
other words, the results obtained from modeling studies
should be considered qualitatively rather than quantita-
tively [60]. In fact, the sensitivity analyses demonstrate
that, even when the precise value of the tissue characteris-
tics is unknown, the conclusions of comparative studies
are accurate, since the electrical-thermal behavior remains
constant even when the values of the characteristics vary.
This consideration is not only valid for the tissue charac-
teristics, but also for any anatomic or physiological
datum.

In conclusion, it does not seem either important or urgent
to obtain the precise characteristics of each type of biolog-
ical tissue. However, it is urgent and necessary to know the
relationship between tissue characteristics and tempera-
ture, in order to accurately model certain RF heating tech-
niques. In fact, as was stated at the end of the section
"Physical characteristics of biological tissues", there is at
present a considerable lack of understanding of the
changes in the physical characteristics of biological tissues
during intense heating, i.e. when temperature reaches
≈100°C. In these conditions, it seems obvious that all the
characteristics will experience sizeable, and probably irre-
versible, changes in value. It is therefore both urgent and
important to conduct experimental studies to assess these
behaviors. This is especially necessary in the modeling of
RF ablation procedures in which very high temperatures
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are reached, such as hepatic RF ablation using saline irri-
gation [117,118] or RF thermokeratoplasty [17].

Benefits of the methodology
The computer modeling of RF ablation offers several
unquestionable advantages over the experimental
approach. For this reason, it has become an essential tool
to complement experimental studies on RF ablation tech-
niques. Not only is it less expensive and faster than ex vivo
and in vivo experiments, but it also allows the time evolu-
tion and spatial distribution of physical variables to be
analyzed. These values are impossible to monitor due to
the lack of suitable transducers. These advantages will pro-
vide inestimable help to the research and development
processes of the manufacturers of RF ablation systems.
This is an important advantage, but in addition, and as I
have gathered from my experience of cooperation with
surgeons, radiologists, and cardiologists, RF ablation
models offer valuable assistance in explaining the bio-
physical phenomena involved in the RF heating of biolog-
ical tissues. In other words, the models are excellent
didactic tools that enable the users of RF ablation systems
to become familiar with the equipment and procedures,
and thus indirectly enhance the safety and efficacy of the
therapies.

A number of studies have recently proposed that theoret-
ical modeling might be useful not only as a support in the
design and understanding of the phenomenon, but also
to provide guidance during the ablation procedure. For
instance, various models have been developed for predict-
ing lesion size during catheter cardiac ablation using pre-
vious information (e.g. location of the ablation in the
cardiac chamber, insertion depth of the electrode in the
tissue, and preset temperature) [32,33]. Concerning RFA
of tumors, it has been proposed that theoretical models
and fast computer simulations be simultaneously com-
bined with MRI to predict tissue temperature during a pro-
cedure, thus increasing the effectiveness and reliability of
the ablation [58]. In fact, MRI has already been employed
to assess the computer results of theoretical modeling
[104]. In conclusion, these applications would allow RFA
computer modeling to be used as a tool for quantitatively
planning the thermal dose in individual cases.

Finally, although all the foregoing is related to radiofre-
quency ablation, the methodology described is very simi-
lar to those employed to study other thermal techniques
for destroying biological tissues. In fact, numerous com-
puter modeling studies have also been published on tech-
niques such as laser-induced interstitial thermotherapy
(LITT) [120-122], high intensity focused ultrasound
(HIFU) [123-125], microwave ablation [126-129], cryo-
ablation [130,131] and thermal balloon endometrial
ablation [132,133].

Research objectives for the near future
The future of theoretical RF ablation modeling appears to
lie in:

1) Accurate modeling of the electrical and thermal characteris-
tics of biological tissues, not only those that are temperature-
dependent, but also time-dependent, i.e. to quantify the
relations between the values of the characteristics and the
thermal damage function. In addition, these relations
offer irreversible effects above a certain thermal level
(≈70–80°C), or over a specific value of a thermal damage
function [82,83]. This fact would imply a hysteresis in the
relation between the tissue characteristics and tempera-
ture, or temperature-time. Fig. 5 shows, merely as an illus-
tration, an example of this behavior for the electrical
conductivity (σ) of a biological tissue considering a ther-
mal level of ≈70°C as the threshold of irreversible behav-
ior (red line). This behavior has been experimentally
assessed. However, it is known that a tissue temperature
value of ≈90°C is associated with a high degree of tissue
desiccation, and thus to a significant increase in electrical
impedance [134] (i.e. a lower value of σ). Thus, it seems
reasonable to consider a second thermal threshold (prob-
ably around 90–100°C) which involves a more or less
abrupt drop in σ (see Fig. 5). In addition, once this second

Example of hypothetic behavior for the electrical conductiv-ity (σ) of a biological tissue considering a thermal level of ≈70°C as first threshold of the irreversible behavior, such as that experimentally observed by Pop et al [82]Figure 5
Example of hypothetic behavior for the electrical conductiv-
ity (σ) of a biological tissue considering a thermal level of 
≈70°C as first threshold of the irreversible behavior, such as 
that experimentally observed by Pop et al [82]. In addition, 
the dotted line represents the relation between σ and tem-
perature once a second thermal threshold (≈90°C) has 
occurred. This second level is associated with a high degree 
of tissue desiccation, and thus a significant increase in the 
electrical impedance, as has been experimentally observed 
[134] (i.e. a lower value of σ). The real situation is probably 
more complex, since the thresholds are not simply thermal 
levels but levels of a tissue damage function. For the y-axis 
the units of σ are arbitrary.
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threshold has been exceeded, the relationship between σ
and temperature might follow a curve such as that sug-
gested by the dotted line (i.e. the tissue remains more or
less desiccated even after cooling). All these relations
should be studied in future experimental work.

2) Realistic modeling of the cooling effect of large and medium
blood vessels. This issue is especially important in RF abla-
tion of tumors, in which the thermal cooling effect of tis-
sue perfusion may dramatically reduce the lesion size
[135], and the proximity of large vessels [136] may imply
lesions with irregular shapes which are not matched to the
tumor volume [137]. As a consequence, the ablation
might not be able to completely destroy the tumor. A
number of modeling studies have considered the presence
of blood vessels [34,37] and assessed their impact on tem-
perature distribution. Experimental studies were recently
conducted to quantify the thermal effect of the blood cir-
culating in arteries and veins [138,139] and in the endo-
cardium [140]. The data obtained from these and future
experimental studies could be employed in a computer
model. A comprehensive review of the thermal modeling
of blood vessels and its influence on the Bio-heat equa-
tion the can be found in [99].

3) Determining the parameters (frequency factor and energy)
of the thermal damage function for different types of tissues
(hepatic, breast, cardiac, etc.). For this purpose, it is possi-
ble to use the classical methods (such as the measurement
of the decrease in intensity of the thermally induced bire-
fringence image using polarizing microscopy [99]), or to
employ new techniques to improve the understanding of
the lethal and sublethal injury on a cellular level [97].
Finally, the value of the damage function could be used to
modify the value of various terms in the Bio-heat equa-
tion, such as the heat loss by local tissue perfusion [54].

4) Conducting research on new histological markers of thermal
injury to allow consistent experimental validation using ex
vivo and in vivo samples. These markers would allow dif-
ferent histological changes to different isothermal lines to
be compared [99,115,141,142].

5) Development of fast computer simulation of ablation models
to predict tissue temperature and hence to provide simul-
taneous guidance during a procedure [58,143]. In this
respect, and with the support provided by the new meth-
odologies of planning, simulation, and training
[143,144], theoretical modeling could become a tool for
quantitatively planning individual treatment by using
MRI or other future techniques.

6) Finally, it is especially important to obtain a more accu-
rate model of the behavior of the tissue during the simultaneous
application of RF energy and saline perfusion. This is a truly

complex phenomenon and to date only a one-dimen-
sional model has been developed [40]. In fact, once the
saline is infused into the tissue, it produces a cooling effect
in the proximity of the electrode [40]. The saline is simul-
taneously heated by the effect of the SAR, and probably
pushed towards deeper zones in the tissue, thus enlarging
the lesion size by thermal convection, in addition to con-
duction. As a result, the modeling problem turns out to be
very complex, since several areas of physics are involved
(heat transfer, electronics and fluid dynamics [60]).

On the other hand, it seems that certain other lines of
research are of low priority, due to their currently high
cost in human resources and computational power, as
well as to an apparent lack of utility, as is the case, for
instance, of large-scale modeling including an entire
human torso to study RF cardiac and hepatic ablation.
Another questionable issue would be the inclusion of an
extremely realistic geometry in the models, since the key
question of any model is its simplicity, and only the gen-
uinely significant aspects should be included.

Conclusion
Radiofrequency ablation (RFA) is a surgical technique
that in recent years has come to be employed in very
diverse medical fields. In order to study, investigate and
develop new techniques and to improve those currently
employed, research can make use of clinical and experi-
mental studies, phantoms, and theoretical models. The
latter are a powerful tool in this kind of investigation,
since they rapidly and economically provide an under-
standing of the electrical and thermal behavior involved
in ablation. In the last 10 years several groups have devel-
oped theoretical models for the study of RF ablation. In
this review, the methodology of the modeling has been
explained, including the experimental validation. At
present, certain important limitations impede the com-
plete and accurate development of the model, especially
under conditions of high temperature (≈100°C) or simul-
taneous saline perfusion. In spite of this, modeling has
grown to such an extent that it has become an essential
tool in assisting experimental studies on RF ablation tech-
niques.
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