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Abstract

Background: Segmentation of the magnetic resonance (MR) images is fundamentally
important in medical image analysis. Intensity inhomogeneity due to the unknown
noise and weak boundary makes it a difficult problem.

Method: The paper presents a novel level set geodesic model which integrates the
local and the global intensity information in the signed pressure force (SPF) function to
suppress the intensity inhomogeneity and implement the segmentation. First, a new
local and global region based SPF function is proposed to extract the local and global
image information in order to ensure a flexible initialization of the object contours.
Second, the global SPF is adaptively balanced by the weight calculated by using the
local image contrast. Third, two-phase level set formulation is extended to a multi-phase
formulation to successfully segment brain MR images.

Results: Experimental results on the synthetic images and MR images demonstrate that
the proposed method is very robust and efficient. Compared with the related methods,
our method is much more computationally efficient and much less sensitive to the initial
contour. Furthermore, the validation on 18 T1-weighted brain MR images (International
Brain Segmentation Repository) shows that our method can produce very promising
results.

Conclusions: A novel segmentation model by incorporating the local and global
information into the original GAC model is proposed. The proposed model is suitable for
the segmentation of the inhomogeneous MR images and allows flexible initialization.

Keywords: Intensity inhomogeneity, Level set method, Local image information, Global
image information
Background
Magnetic resonance image can provide excellent spatial resolution and superb soft tissue

contrast for anatomical and functional structures. Accurate segmentation of MR image is

an essential step in medical image analysis. However, the intensity inhomogeneity due to

the unknown noise and weak boundary makes the segmentation a challenge. Various seg-

mentation algorithms have been proposed in the literature. Particularly, Active contour

model (ACM) receives the widespread attention since it can provide promisingly smooth

and closed contours to cover object boundaries with sub-pixel accuracy [1,2]. The exist-

ing ACMs can be mainly categorized into two classes: edge-based models and region-

based models.
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One of the most popular edge-based models is geodesic active contour (GAC) model

[3,4], which utilizes image gradient to construct an edge stopping function (ESF) to keep

the contour evolution within the object boundaries. The model has been successfully ap-

plied in the general images with strong object boundaries, but it may suffer from boundary

leakage in the brain MR images which typically contain weak boundaries due to low con-

trast and partial volume effect. However, when the initial contour is far away from the de-

sired object boundary, the GAC model will fail to find the target [5]. And then Song

proposed an edge-based ACM that is driven by the regularized gradient flux flows [6].

The method is not only robust to noise, but also preserves the edge information, thereby

achieves accurate segmentation results.

Region-based models have many advantages over the edge-based ones. For example,

region-based models are less sensitive to noise and contour initialization since they utilize

region information as a substitute for image gradient to constrain contour evolution.

Moreover, they can successfully segment images with the weak boundaries or even with-

out boundaries. The well-known region-based model, Chan-Vese (CV) model, assumes

that image intensities are statistically homogeneous in each region, and therefore it fails to

segment MR images with intensity inhomogeneity [7]. Then Li et al. proposed a local bin-

ary fitting (LBF) model to overcome the intensity inhomogeneity. The LBF model can

provide desirable segmentation results because it uses the mean of the local region infor-

mation. However, it is sensitive to the initial contours and is easy to trap into a local mini-

mum, which limits their practical applications [8,9]. Zhang et al. proposed a maximum

likelihood in transformed domain method to simultaneously segment images and correct

bias field. The method demonstrated the superiority by taking the mean and variance in a

local region into account [10].

For making full use of the advantage of the three methods mentioned above, some

hybrid models combining the local and global intensity fitting energies were proposed

to drive the evolution of initial contours. Lei He et al. blended GMM model, Hueckel

model and CV model, and finished the segmentation of inhomogeneous image, but is

prone to be sensitive to initialization and parameterization [11]. Zhang et al. proposed

an improved method of GAC model, named as GCV model, which utilizes the global

intensity information to construct a signed pressure force (SPF) function to drive the

contour evolution. This method also proposed a new level set function re-initialization

method, i.e., selective binary and Gaussian filtering regularized Level Set, which is ro-

bust and simple to implement, but is hard to deal with the image having inhomogen-

eous gray intensity or weak boundary images [5]. Wang et al. proposed a hybrid level

set method which has a LBF term based on the local intensity fitting and CV term

based on an auxiliary global intensity fitting. Due to combining the local and global in-

tensity information, the proposed model can avoid trapping into a local minimum [12].

Motivated by Zhang et al. and Wang et al. method, the paper proposes a novel

method based on the GAC model. Concretely, a new SPF function is defined as an

adaptive combination of the local and the global fitting terms. Local term is the local

part being responsible for attracting the contour toward the object boundaries, and the

global one is the auxiliary global part incorporating the global image information to

drive the motion of the contour far away from object boundaries. Then the balance be-

tween the local and global fitting terms is dynamically adjusted by the weight calculated

on the local intensity contrast. The proposed SPF function is regularized by a binary
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level set function to avoid the traditional re-initialization of the level set function to a

signed distance function [5]. The proposed model is first presented as a two-phase level

set formulation and then extended to a multi-phase formulation. After minimizing the

energy function [13], the method is able to segment MR images. Experiments on syn-

thetic and MR images show that the proposed method can not only overcome inhomo-

geneous gray intensity, but also deal with the images having complex background and

weak boundary. Moreover, it reduces function’s dependence on initial contour.

The rest of the paper is organized as follows. We briefly review several classic models

and their limitation in “Background”. The proposed method is introduced in

“Methods”. We discussed our proposed method and compared our segmentation re-

sults with those of GCV method, LBF method and Li et al. method [14] in “Results and

discussion”. Finally, some conclusive remarks are included in “conclusion”

The related methods

Given the image I(x), x∈Ω and Ω ⊂ R2. Let the initial contour C(q):[01]→ R2 be a pa-

rameterized planar cure in Ω. In this subsection, we will introduce GAC model, CV

model, GCV model and LBF, respectively.

The GAC model

The traditional edge-based GAC model [3,4] is formulated as,

EGAC ¼
Z 1

0
g ∇I C qð Þð Þj jð Þ C 0

qð Þ�� ��dq; ð1Þ

where g is a positive, decreasing and regular edge stopping function (ESF) described as,
g ∇Ij jð Þ ¼ 1

1þ ∇Kσ � Ij j2 ; ð2Þ

where ∇Kσ*I denotes convolving image I with a Gaussian kernel, Kσ, whose standard

deviation is σ. σ is the scale parameter that controls the region-scalability from the lo-

cally small neighborhood to the whole image domain and is adaptively chosen in the

images, similar to [9].

The GAC model utilizes image gradient to construct an edge stopping function (ESF)

to stop the contour evolution on the object boundaries. For images of weak boundaries

or the initial contour is far away from the desired object boundary, the GAC model will

fail to find the target [5].

The CV model

The region-based CV model [7] considered a special case where the original image in-

tensity is assumed as homogeneous. The energy function of the segmenting curve C of

CV model is defined as,

ECV ¼ λ1

Z
inside Cð Þ

I xð Þ−C1ð Þ2dxþ λ2

Z
outside Cð Þ

I xð Þ−C2ð Þ2dx; x ∈Ω; ð3Þ

where C1 and C2 are two constants which are the average intensities inside and out-
side the curve C, respectively. λ1 and λ2 are nonnegative constants and control the
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driven force of the image data inside and outside the contour, respectively. By minimiz-

ing Eq. (3) C1 and C2 are solved as follows:

C1 ¼

Z
Ω
I xð ÞH ϕ xð Þð ÞdxZ
Ω
H ϕ xð Þð Þdx

; ð4Þ

C2 ¼

Z
Ω
I xð Þ 1−H ϕ xð Þð Þð ÞdxZ
Ω

1−H ϕ xð Þð Þð Þdx
; ð5Þ

where ϕ (x) is the level set function and H(ϕ (x)) is the Heaviside function which is

regularized as follows:

Hε zð Þ ¼ 1
2

1þ 2
π
arctan

z
ε

� �
; ð6Þ

where ε is nonnegative constant. Similar to [7,8], we set ε = 1.0 for good approxima-
tion of H by Hε.

Obviously, C1 and C2 are related to the global properties of the image contents inside

and outside the contour, respectively. Without taking local image information into ac-

count, the CV model fails to segment images with inhomogeneity. Figure 1(a) shows a

synthetic image with intensity inhomogeneity. The CV model fails to segment this

image, as show in Figure 1(b).

The GCV model

The GCV model [5] utilized the statistics of local region in CV model and proposed a

signed pressure force (SPF) function [15] whose value is in the range of [−1, 1]. And
GCV can modulate the signs of the pressure forces inside and outside the region of

interest so that the contour shrinks when outside the object, or expands when inside

the object. The SPF function is defined as follows,

S I xð Þð Þ ¼ I xð Þ− C1þC2
2

max I xð Þ− C1þC2
2

�� ��� � ; x ∈Ω; ð7Þ

where C1 and C2 are defined in Eq. (4) and Eq. (5), respectively. Substituting the ESF
in Eq. (1) for the SPF function in Eq. (7), the improved region-based segmentation
(a) (b) (c) (d)
Figure 1 Illustration of the experimental results on the synthetic image with intensity inhomogeneity.
(a) Original image and initial contour. (b) Result of CV model. (c) Result of GCV model (d) result of LBF model.
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method was formulated as GCV. Figure 2(a) illustrates the interaction of the interior

and exterior regions of the contour. The contour curve (green line) divides the image

into the interior and the exterior regions of the contour, which are corresponding to C1

and C2 computed in Eq. (4) and Eq. (5), respectively.

The GCV model shares the advantages of the CV and GAC models. This model uti-

lizes the statistical information inside and outside the contour to construct a region-

based SPF function to substitute ESF. Under the effect of SPF function, the contour

can shrink when it is outside the object or expand when inside the object. Moreover,

the level set function of the GCV model is regularized by the selective binary and

Gaussian filtering [5], and the computational complexity is decreased by comparing

with the traditional level set methods. However, this method can’t deal with the in-

homogeneous or fuzzy boundary images. For example, Figure 1(c) shows that the GCV

model fails to segment the object correctly.

The LBF model

The LBF model [8,9] utilizes two spatially varying fitting functions f1(x) and f2(x) to ap-

proximate the local intensities on the two sides of the contour. And the image fitting

energy function was defined as follows:

ELBF ϕ; f 1; f 2ð Þ ¼ λ1∬K σ y−xð Þ I yð Þ−f 1 xð Þð Þ2H ϕ yð Þð Þdy dx
þ λ2∬Kσ y−xð Þ I yð Þ−f 2 xð Þð Þ2 1−H ϕ yð Þð Þð Þdy dx; x ∈ Ω;

ð8Þ

Due to the localization property of the kernel function, the contribution of the inten-
sity I(y) to the LBF energy decreases to zero as the point y moves away from the center

point x. Therefore, the LBF energy is dominated by the intensity I(y) of points y in the

neighborhood of x. This localization property plays a key role in segmenting the images

with intensity inhomogeneity. Figure 2(b) illustrates the interaction of the local interior

and local exterior regions of the point x. The local neighborhood of x, Kσ(y − x), is rep-

resented by the black circle. The circle is spilt by the green curve into local interior

(red) and local exterior (green) regions. The small yellow and blue dots represent the
Figure 2 Graphical representation of one level set model. The green line denotes the contour curve,
which divides the image into two regions, interior region C1 and the exterior region C2 (a). The local
neighborhood of x, Kσ(y − x) is represented by the black circle. The circle is spilt by the green curve into
local interior (red) and local exterior (green) regions. The small yellow and blue dots represent the point x
along the contour and point y in the local region of point x, respectively. f1(x) and f2(x) are computed in the
local interior and local exterior region of the point x to fit the image intensities near the point x (b). f1(y)
and f2(y) are computed in the local interior and local exterior region of the point x to fit the image
intensities near the point y (c).
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point x along the contour and point y in the local region of point x, respectively. f1(x)

and f2(x) are computed in the local interior and local exterior region of the point x to

fit the image intensities near the point x.

By minimizing Eq. (8), f1(x) and f2(x) are solved as follows,

f 1 xð Þ ¼

Z
K σ y−xð ÞI xð ÞH ϕ yð Þð ÞdyZ
Kσ y−xð ÞH ϕ yð Þð Þdy

; x ∈Ω ð9Þ

f 2 xð Þ ¼

Z
K σ y−xð ÞI xð Þ 1−H ϕ yð Þð Þð ÞdyZ
Kσ y−xð Þ 1−H ϕ yð Þð Þð Þdy

; x ∈Ω ð10Þ

Because of using local region information, specifically local intensity mean, the LBF
model is able to provide desirable segmentation results even in the presence of intensity

inhomogeneity. Figure 1(d) shows the correct result of the LBF model. The disadvan-

tage of LBF model is that it is easy to fall into a local minimum, and then it is sensitive

to the initial location of contour.

Methods
The design of novel SPF function

Our method implements a novel model which combines the advantages of GCV model

and LBF model in a new SPF function by simultaneously taking the global and the local

intensity information into account. Figure 2(c) shows the main idea of our method.

Two fitting functions, f1(y) and f2(y), are computed in the local interior and local exter-

ior region of the point x to fit the image intensities near the point y. In this way, for

each center point x, the local SPF function can be minimized when the contour C is

exactly on the object boundary. Here, our local SPF function is formulated as,

SL I xð Þð Þ ¼

Z
Kσ y−xð Þ I xð Þ− f 1 yð Þ þ f 2 yð Þ

2

� �
dy

max
Z

Kσ y−xð Þ I xð Þ− f 1 yð Þ þ f 2 yð Þ
2

� �
dy

����
����

� � ; x ∈ Ω; ð11Þ

And the global SPF function is equalized to S(I(x)) in Eq. (7),

SG I xð Þð Þ ¼ S I xð Þð Þ; ð12Þ

Then, our full energy function is formulated as,
SNew I xð Þð Þ ¼ SL I xð Þð Þ þ ω⋅SG I xð Þð Þ; x ∈Ω; ð13Þ

where ω balances the local and the global fitting energies. Theoretically, ω should be
set a larger value to make the weight of global SPF function bigger in the regions where

intensity varies greatly, while set a smaller one in the regions where intensity varies

smoothly. Following the work in [16], we adopt the adaptive weight,

ω ¼ β⋅ �CR ⋅ 1−CRð Þ; ð14Þ

where β is a fixed positive parameter and �CR is the average value of CR over the
whole image. CR is a local contrast ratio of an image defined as,
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CR xð Þ ¼
max I xð Þð Þ−min I xð Þð Þ
R R

max I xð Þð Þ
Ω

where R defines the local window of size 5 × 5 centered at x. ω varies between 0 and
1 and reflects how rapidly the intensity changes in a local region. It is smaller in the

smooth regions and bigger in the regions close to the boundary of objects. Therefore,

the ω can adaptively adjust the global term in all regions.

Eq. (13) indicates that SNew(I(x)) is in the range of [−1, 1] and can control the contour

shrinks when it is outside the object, or expands when inside the object. Accordingly, it

satisfies the requirement of being a symbols pressure function. Substituting the ESF in

Eq. (1) for the SPF function in Eq. (13), the level set formulation of the proposed model

is regularized as following [3]:

∂ϕ
∂t

¼ SNew I xð Þð Þ⋅ div
∇ϕ
∇ϕj j þ α

� �
∇ϕj j þ ∇SNew I xð Þð Þ⋅∇ϕ; x ∈Ω; ð15Þ

where α is the balloon force, which controls the contour shrinking or expanding.
Extension to multi-phase level set model

The model proposed above is a two-phase level set formulation, which is not able to

segment multiple regions that are adjacent to each other. For example, in brain MR im-

ages, the regions of white matter (WM), gray matter (GM), and cerebrospinal fluid

(CSF) may be adjacent to each other. An important application of this multi-phase for-

mulation is for the segmentation of WM, GM and CSF. Therefore, we extend our

model to a multi-phase level set formulation to segment multiple junctions. In multi-

phase level set formulation, n level set functions can represent 2n regions [17]. The

multi-layer level set formulation can also represent multiple regions [18]. In the study,

we focus on four-phase formulation, which is sufficiently to segment brain MR images.

Two level set functions, ∅1 and ∅2, are used to define the partition of image domain as

four disjoined regions [17]: {ϕ1 > 0, ϕ2 > 0}, {ϕ1 > 0, ϕ2 < 0}, {ϕ1 < 0, ϕ2 > 0}, {ϕ1 < 0, ϕ2 <

0}. Let M1 =H(ϕ1)H(ϕ2),M2 =H(ϕ1)(1 −H(ϕ2)),M3 = (1 −H(ϕ1))H(ϕ2),M4 = (1 −H(ϕ1))

(1 −H(ϕ2)). Figure 3 shows the main idea of our method. The blue and red line denote

the two zero level set function ϕ1 and ϕ2, which divides the image into four regions:

C1, C2, C3 and C4 in Figure 3(b). The neighborhood of point x, Kσ(y − x), is represented

by the small black circle and it is spilt by the two level set function into local interior

and local exterior regions. The small blue dot represents the point y in the local region

of x. f1(y), f2(y), f3(y), f4(y) are computed in the local interior and local exterior regions

to fit the image intensities near the point y according to the four regions, respectively.

Similar to GAC model, energy function is defined as,

E ¼ α

Z
Ω

SL1M1 þ SL2M2 þ SL3M3
� �

dxþ ωα

Z
Ω

SG1 M1 þ SG2 M2 þ SG3 M3
� �

dx; ð16Þ

where the local SPF function, SL, is defined as,
i



Figure 3 Graphical representation of two level set model. (a) Blue and red line are considered two
zero level set function ϕ1 and ϕ2, which divides the image into four regions: C1, C2, C3 and C4 in
(b). (c) The neighborhood of point x, Kσ(y − x), is represented by the small black circle. The circle is spilt
by the two level set function into local interior and local exterior regions. The small blue dot represents
the point y in the local region of x. f1(y), f2(y), f3(y), f4(y) are computed in the local interior and local
exterior region to fit the image intensities near the point y, respectively.
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SLi ¼

Z
K σ y−xð Þ I xð Þ− f i yð Þ þ f 4 yð Þ

2

� �
dy

max
Z

K σ y−xð Þ I xð Þ− f i yð Þ þ f 4 yð Þ
2

� �
dy

����
����

� � ; i ¼ 1; 2; 3; x ∈Ω; ð17Þ

and the global SPF function, SG , is defined as,
i

SGi ¼

Z
K σ y−xð Þ I xð Þ−Ci þ C4

2

� �
dy

max
Z

Kσ y−xð Þ I xð Þ−Ci þ C4

2

� �
dy

����
����

� � ; i ¼ 1; 2; 3; x ∈Ω; ð18Þ

and f 1…; f 4;C1…;C4 can be similarly derived from Wang et al. [14] paper and Vest

et al. [7] paper.

f i xð Þ ¼ Kσ xð Þ � MiI xð Þ½ �
Kσ xð Þ �Mi

; Ci ¼

Z
I xð ÞMidyZ
Midy

; i ¼ 1; 2; 3; 4 ð19Þ

Minimizing the energy functional E in Eq. (16) with respect to ϕ1, we derive the
gradient descent flow:

∂ϕ1

∂t
¼ α⋅δ ϕ1ð Þ SL1−S

L
3

� �
H ϕ2ð Þ þ SL2 1−H ϕ2ð Þð Þ� �þ ω SG1 −S

G
3

� �
H ϕ2ð Þ þ SG2 1−H ϕ2ð Þð Þ� �� �

;

ð20Þ

Likewise, minimizing the energy functional E with respect to ϕ2, we derive the gradient
descent flow:

∂ϕ2

∂t
¼ α⋅δ ϕ2ð Þ SL1−S

L
2

� �
H ϕ1ð Þ þ SL

3
1−H ϕ1ð Þð Þ

	 

þ ω SG1 −S

G
2

� �
H ϕ1ð Þ þ SG3 1−H ϕ1ð Þð Þ� �h i

;

ð21Þ

where δ(ϕ) is the Dirac function which is regularized as follows:
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δε zð Þ ¼ 1
π
⋅

ε

ε2 þ z20
; ð22Þ

where ε is nonnegative constant. if ε is too small, the values of δε(z) tend to be near
zero to make its effective range small, so the energy functional has a tendency to fall

into a local minimum. The object may fail to be extracted if the initial contour starts

far from it. However, if ε is large, although δε(z) tends to obtain a global minimum, the

finial contour location may not be accurate. In “Results and discussion”, we will give some

examples to show this drawback. We set ε = 0.3 for good approximation of δ by δ3.

Implementation

We take two-phase segmentation as an example to describe the implementation. In

traditional level set methods, the curvature-based term div(∇ϕ/(|∇ϕ|))|∇ϕ| is usually

used to regularize the level set function and drive the contour evolution. Instead, Zhang

et al. [5] utilizes a Gaussian filter to smooth the level set function for keeping the inter-

face and getting rid of the curvature term. In addition, the term, ∇sNew(I(x)) ⋅ ∇ϕ, in
Eq. (15) can also be removed since the model utilizes the statistical information of re-

gions, which has a larger capture range and capacity of anti-edge leakage. Finally, the

level set formulation of the proposed model, Eq. (15), can be reduced as,

∂ϕ
∂t

¼ SNew I xð Þð Þ⋅α ∇ϕj j; x ∈Ω; ð23Þ

The main procedures of the proposed algorithm are summarized as follows:
Initialize the level set function ∅ as:

ϕ x; t ¼ 0ð Þ ¼
−ρ
0
ρ

x ∈Ω0−∂Ω0

x ∈ ∂Ω0 ;
x ∈Ω−Ω0

8<
:

ð24Þ

where ρ > 0 is a constant, Ω0 is a subset in the image domain Ω and ∂Ω0 is the

boundary of Ω0.

for Check whether the evolution of the level set function has converged

Compute C1, C2, f1(x) and f2(x) using (4), (5), (9) and (10), respectively.

Evolve the level set function according to Eq. (23).

Let ϕ = 1 if ϕ > 0; otherwise, ϕ = − 1.

Regularize the level set function with a Gaussian filter, i.e. ϕ = ϕ ∗ Kσ

end

Results and discussion
The performance of our method is extensively evaluated in synthetic and real images.

Particularly, We first describe the two-phase segmentation which compare the different

models, and then show the application of multi-phase segmentation. In addition, the

proposed method is implemented in Matlab R2009a on a 2.20GHz PC. Through the

whole implementation, the parameters are described in the Table 1.

Besides these parameters, the parameter ω is a variable, which is calculated by using

the local image contrast. When the intensity inhomogeneity is severe, the accuracy of

segmentation relies on the local SPF. In such case, we choose small ω as the weight of



Table 1 Description of the parameters used in the study

Parameters Functional description

ρ To initialize the level set function. ρ > 0 is a constant.

σ Scale parameter in Gaussian kernel (GCV: σ = 1; LBF: σ = 3; our model: σ = 5).

λ1 Inner weight of contour C (LBF: λ1 = 1).

λ2 Outer weight of contour C (LBF: λ2 = 1).

ε The parameter of H3 and δ3 (LBF: ε = 1; our model: ε = 0.3).

Δt Time step (GCV: Δt = 1; LBF: Δt = 0.1; our model: Δt = 1).

β The weight of ω (our model: β = 1).

π π = 3.14 is a constant.

α Balloon force (GCV and our model: α determined according to images).
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the global SPF. While in the smooth regions, a bigger ω is chosen as the weight of glo-

bal SPF so that the contour is attracted to the object boundary quickly. Figure 4(b) is

the mask of ω value of a synthetic image and Figure 4(d) is the mask of ω value of a

MR image. It can be seen from the two images that ω is bigger in the smooth regions

and smaller in the regions close to boundary of objects. Therefore, the ω can adaptively

adjust the global SPF term in all regions.
Two-phase segmentation

Our method is first compared with the GCV and LBF model in the synthetic hand and

the real blood images whose appearance show severe intensity inhomogeneity. And

then our method is also compared in the real MR images to evaluate the performance

of our method.

Figure 5 shows that our method can achieve sub-pixel segmentation accuracy. Here,

the blue rectangle in Figure 5(a) indicates the initial contour for all methods, and the

red contours in (Figure 5(b) and (d)) denote the convergence results by GCV and our

model, respectively. The regions surrounded by the green rectangle in (Figure 5(b) and

(d)) are zoomed in (Figure 5(c) and (e)), respectively. We can see that our model can

deal with intensity inhomogeneity region and the final contour covers the true hand

shape, while GCV method make two middle fingers stick together, which is not desired.

Here, the parameter α is set to 20.

Figure 6 compares the performance of the LBF and our model in segmenting a real

blood vessel image. The vessel image is of intensity inhomogeneity. The second row

shows the results of the LBF model. We can see that the LBF can segment intensity
(a) (b) (c) (d)
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.05

0.1

0.15

0.2

Figure 4 Masks of ω value. (a) Synthetic image; (b) ω value of (a); (c) MR image; (d) ω value of (c). In
mask images, red to blue decreases gradually.



Figure 5 Segmenting a hand phantom using the GCV and the proposed model. Illustration of the
performance of segmenting a hand phantom (downloaded from [13]) using the GCV and the proposed
model: (a) initial contour, (b) segmentation result by the GCV model α = 20 (c) zoomed view of the narrow,
green rectangle in (b), (d) segmentation result by our method, and (e) zoomed view of the narrow, green
rectangle in (d). The parameter α = 20.
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inhomogeneity image on the condition that the initial contour, denoted as yellow rect-

angle, lies in the appropriate location such as (Figure 6(a) and (c)). While giving bad

initial contour, a bad segmentation result will appear such as the contours indicated by

the green arrows in (Figure 6(b), (d) and (e)). On the contrary, the first row shows that

our model is less sensitive to the initial contour, and can achieve satisfying segmenta-

tion results. Despite the great difference of these initial contours, the corresponding re-

sults are almost similar to accurately capture the object boundaries. Furthermore, the

iterations and CPU time of segmenting the image with size of 110 × 111 pixels in Fig-

ure 6 are listed in Table 2 for LBF model and our method. It can be observed that our

method is much faster than LBF model. Accordingly, the proposed method is more ef-

ficient. Here, the parameter α is set to 10.

Two MR images with the intensity inhomogeneity shown in (Figure 7(a1) and (b1))

are used to evaluate the proposed model, GCV and LBF model, respectively. Here, the

blue rectangles are drawn as the initial contour in (Figure 7(a1) and (b1)). (Figure 7(a2)

and (b2)) indicate that the GCV model fails to segment the two images since it is based

on only the global intensity information. (Figure 7(a3) and (b3)) show that LBF model
(a) (b) (c) (d) (e)
Figure 6 Segmentation results on the real blood vessel image. Yellow rectangle is the initial contours:
Row 1 are the results by our model; Row 2 are the results by the LBF model; (a)-(e) are segmentation
results in different initial contours. The parameter α = 10.



Table 2 Iterations and CPU time (in seconds) needed by our model and LBF model when
segmenting the image with the size of 110 × 111 in Figure 6, respectively

Method
Figure 6(a) Figure 6(b) Figure 6(c) Figure 6(d) Figure 6(e)

Iterations Time(s) Iterations Time(s) Iterations Time(s) Iterations Time(s) Iterations Time(s)

Our model 80 5.36 80 5.17 80 5.23 80 5.26 80 6.18

LBF model 200 12.01 200 13.65 120 8.24 120 8.20 200 14.05
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is also failed in segmentation of the two images since it uses only the mean of local in-

tensity. By contrast, the proposed method incorporating global and local intensity

information successfully extracts object boundaries of the two MR images, as shown in

(Figure 7(a4) and (b4)).

Multi-phase segmentation of brain MR images

The segmentation of the brain MR images into WM, GM, and CSF is an important task

in medical image analysis. A major difficulty in segmentation of MR images is the in-

tensity inhomogeneity due to the noise. In this subsection, we will show an application

of our multi-phase model to segment brain MR images. We also compare our method

with the method of Li et al. [14] on 18 T1-w images obtained from the Internet Brain

Segmentation Repository (IBSR) [19].

Frist, we apply our multiphase model to segment two 2D MR images. The initial blue

and red contours are displayed in Figure 8(a). The segmentation results of different ε

values are shown in Figure 8(b)-(e), respectively. The number of iterations is 50. It can

be observed that WM, GM, and CSF are well segmented by our method. From Figure 8

(c) we can see that the tissue and the background of the image can be well-separated,

which make our method have a strong discriminative capability for the tissue and the

background. In contrast, for the case (b), (d) and (e), the results (Figure 8(b) (d) and

(e)) are not consistent with the anatomy of brain in some areas. Such as those pointed

by the green arrows. For example, WM is mislabeled as GM in Figure 8(b) and GM is
Figure 7 Comparison of our method with GCV and LBF model in the segmentation of the two MR
images in (a1) and (b1), respectively. (a1),(b1) blue rectangles are drawn as initial contours, (a2), (b2)
segmentation results from GCV, The parameter α = 10. (a3), (b3) segmentation results from LBF model, and
(a4), (b4) segmentation results from our method, respectively. The parameter α = 10.



Figure 8 Application of our method in segmenting the 3T MR images. (a) original images and initial blue
contours, (b) (c) (d) (e) segmentation results of ε is set to 0.1, 0.3, 0.5, 0.8, respectively. The parameter α= 30.

Figure 9 Comparison our method with Li’s method by using the data from IBSR. Colum 1: original
images (row 1: Axial plane, row 2: sagittal plane, row 3: coronal plane); Colum 2: results of Li’s method;
Colum 3: results of our method. The parameter α = 100.
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Figure 10 Tissue Segmentation masks of Figure 8. Colum 1: ground truth; Colum 2: Li’s method; Colum
3: our method.
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mislabeled as CSF in (Figure 8(d) and (e)). Here, ε is set 0.3 in our model and the par-

ameter α is set to 50.

Second, Figure 9 and Figure 10 shows the comparison between the proposed method

and Li’s method. Figure 9 displays the segmentation results by estimating
X4

i¼1
CiMi

.

The first Colum in Figure 10 shows the ground truth segmentation from IBSR [19]. It

can be observed that the results by our model and Li’s method look similar by visual

comparison. We use the Dice Similarity Coefficient (DSC) [20] as an index to measure

the segmentation accuracy of WM, GM and CSF, which is defined as
Table 3 The average DSC values of WM, GM and CSF by the two methods, respectively

Tissue WM GM CSF

Li’s method 0.86 ± 0.03 0.83 ± 0.02 0.68 ± 0.14

Our method 0.89 ± 0.01 0.87 ± 0.02 0.63 ± 0.14

(Data layout: mean ± std.).
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DSC S1; S2ð Þ ¼ 2N S1∩S2ð Þ
N S1ð Þ þ N S2ð Þ ; ð25Þ

where S1 and S2 represent the obtained segmentation and ground truth, respectively,
and N(·) indicates the number of voxels in the enclosed set. The closer the DSC value

to 1, the better the segmentation. Table 3 and Figure 11 shows the DSC values of WM,

GM and CSF by the two methods, respectively. It can be seen that our method can

achieve more accurate results by comparing with Li’s method in WM and GM. The

third column in Figure 10 shows that our method have a bad performance in segment

CSF on the edge of images. So the DSC values of CSF by our method is lower than Li’s

method. The p-value of statistical significance of the improvement of our method over

Li’s method are less than 0.0005 when using a paired student t-test, which shows that

our method significantly outperforms Li’s method with higher accuracy in terms of

DSC results. Similarly, compared with Sergi et al. research [21], our method also has

relatively high accuracy. Here, the parameter α is set to 100.

Conclusion
This paper presented a novel segmentation model by incorporating the local and global

information into the original GAC model. Particularly, a new local SPF function is used

to capture the local intensity information, so the novel model is especially fit for the

segmentation of the inhomogeneous images. The weight balancing the global term is

adaptively adjusted according to the statistics of the local intensity information. In a

word, the proposed model can not only allow flexible initialization but also estimate in-

tensity inhomogeneity. Moreover, the proposed method has better efficiency since it
Figure 11 Box plot of the DSC values of WM, GM and CSF by our method and Li’s
method, respectively.
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reduces the expensive re-initialization of the traditional level set method. In the future,

the proposed method will be evaluated in the more extensive experiments.
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