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Abstract

Background: Left bundle branch block (LBBB) and right bundle branch block (RBBB)
not only mask electrocardiogram (ECG) changes that reflect diseases but also
indicate important underlying pathology. The timely detection of LBBB and RBBB
is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification
is based on independent training and testing sets to construct and evaluate a
heartbeat classification system. Therefore, a heartbeat classification system with a
high performance evaluation possesses a strong predictive capability for unknown
data. The aim of this study was to propose a method for inter-patient classification
of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM).

Methods: This study proposed a heartbeat classification method through a
combination of three different types of classifiers: a minimum distance classifier
constructed between NORM and LBBB; a weighted linear discriminant classifier
between NORM and RBBB based on Bayesian decision making using posterior
probabilities; and a linear support vector machine (SVM) between LBBB and RBBB.
Each classifier was used with matching features to obtain better classification
performance. The final types of the test heartbeats were determined using a majority
voting strategy through the combination of class labels from the three classifiers.
The optimal parameters for the classifiers were selected using cross-validation on
the training set. The effects of different lead configurations on the classification
results were assessed, and the performance of these three classifiers was compared
for the detection of each pair of heartbeat types.

Results: The study results showed that a two-lead configuration exhibited better
classification results compared with a single-lead configuration. The construction of
a classifier with good performance between each pair of heartbeat types significantly
improved the heartbeat classification performance. The results showed a sensitivity
of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8%
and a positive predictive value of 88.8% for RBBB.

Conclusions: A multi-classifier ensemble method was proposed based on inter-patient
data and demonstrated a satisfactory classification performance. This approach has the
potential for application in clinical practice to distinguish LBBB and RBBB from NORM of
unknown patients.
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Background
Under normal circumstances, excitation from the sinoatrial node controls the heart

rhythm. An abnormality in the sinus rhythm leads to arrhythmia, which refers to

abnormalities in the rate, rhythm, site of origin, and conduction of the cardiac

electrical pulse. When disorders occur in specific intraventricular conduction fibers,

the repolarization wave must travel through the slower muscle-muscle conduction

to reach the ventricles. Classic disorders related to conditions that involve different

conduction bundle branches include left bundle branch block (LBBB) and right

bundle branch block (RBBB). Electrocardiogram (ECG) can be used to measure

and record cardiac electrical activities and thus can provide important information

on cardiac functions. ECG has been used as a standard diagnostic tool to analyze

arrhythmia. Typical ECGs of LBBB and RBBB are shown in Figure 1. LBBB and

RBBB usually have a minimal impact on blood pumping. However, these conditions

can change the ECG and mask the ECG changes that reflect disease conditions,

such as ischemia. In some cases, these conduction abnormalities indicate important

underlying pathological conditions, such as a new occurrence of LBBB resulting from

acute anterior ischemia or a new occurrence of RBBB caused by pulmonary embolism [1].

Some studies have reported that LBBB and RBBB have important prognostic value. The

prevalence of LBBB increases the risk of coronary heart disease and ventricular

myocardial infarction. The prevalence of RBBB is associated with cardiovascular

diseases, such as arterial hypertension, heart failure, coronary disease, and pulmonary

embolism. Individuals with comorbid cardiovascular diseases and LBBB or RBBB have a

higher risk of mortality compared with individuals without LBBB or RBBB. Consequently,

the timely detection of LBBB and RBBB is critical in clinical treatment [2-4].

LBBB and RBBB manifest as a series of heartbeats with abnormal intervals and

morphologies. Heartbeat classification is an important step in identifying LBBB and

RBBB because they can be determined through the classification of continuous heartbeats

[5]. For accurate qualitative and quantitative analyses of arrhythmias, a Holter monitor

can be used to record thousands of heartbeats. As a result, heartbeat classification

is a relatively time-consuming process. With the aid of a computer, automatic
Figure 1 Typical ECGs of LBBB and RBBB from two leads. (a) The ECG of LBBB from two leads. Upper:
lead A; lower: lead B. (b) The ECG of RBBB from two leads. Upper: lead A; lower: lead B.
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heartbeat classification can be achieved, and new algorithms can be developed to

improve the classification performance.

In clinical practice, a heartbeat classification system is typically constructed using

labeled ECG data. It is then used to predict the types of heartbeats in the ECG recordings

of unknown clinical patients. The predictive performance of a heartbeat classification

system is closely related to the dataset division method used in system construction. To

date, a heartbeat-oriented dataset has been adopted in most studies [6-15], without

consideration of the subject to whom the heartbeat belongs (i.e., recording number).

Consequently, data in the training and testing sets may originate from the same patient,

leading to optimistic classification results [16]. The heartbeat classification systems built

on such datasets have poor predictive capability. Some training sets include both

global and local training sets. A global training set is obtained from many patients’

ECG recordings but is independent of the testing set. Local training sets use a

small section from the beginning of each patient’s recording as the training samples for

the subsequent test of this recording to improve the classification performance. This

technique is called patient-adaptive heartbeat classification [17-19]. Because the local

training and testing sets originate from the same patient, this method presents a very high

accuracy rate in heartbeat classification. However, it requires denotation by experts and

cannot be fully automated. The two classification methods discussed are for intra-patient

classification. To improve the predictive capability of heartbeat classification systems and

achieve automatic classification of heartbeats, a system should be constructed on

the basis of independent training and testing sets (the training set and testing set

originate from different individuals), namely, inter-patient classification. In this

case, heartbeat classification is more challenging.

The Association for the Advancement of Medical Instrumentation (AAMI) has

proposed standards for the performance evaluation of arrhythmia analysis algorithms

[20]. The MIT-BIH Arrhythmia Database [21] is the most commonly used database for

testing algorithms. The AAMI has classified the 15 types of heartbeats identified in the

MIT-BIH Arrhythmia Database into five classes. The classes include heartbeats that

originate in the sinoatrial node (N), supraventricular ectopic beat (S), ventricular

ectopic beat (V), fusion heartbeat (F), and unknown beat type (Q). Recently, progress

has been made in studies on inter-patient heartbeat classification methods based on the

AAMI standards [5,16,22-25].

In addition to the normal beat (NORM), class N beats primarily include LBBB and

RBBB. Based on the AAMI standards, the current inter-patient heartbeat classification

usually only distinguishes class N beats from other classes of heartbeats, but it

cannot further distinguish LBBB and RBBB from NORM. A large number of the

previous studies that involved LBBB and RBBB classification only investigated

intra-patient classification [7-13]. Despite good results, it is difficult to utilize these

methods to predict LBBB and RBBB in unknown patients’ ECG recordings. Yeh et al.

[26-28] proposed several classification methods for LBBB and RBBB detection based on

parametric features. However, their study did not explicitly use an independent training

set, and it is not clear whether the methods belong to inter-patient classification. A few

studies detected LBBB and RBBB based on inter-patient classification. Jekova et al. [8]

employed parameter features and the kth nearest neighbor classifier for LBBB and RBBB

detection. Mishra et al. [11] proposed a local fractal dimension based nearest neighbor
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classifier to detect LBBB and RBBB. However, the sensitivities of LBBB and RBBB in two

studies were lower than 90%. Dokur et al. [29] represented an intersecting sphere (InS)

network for classification using discrete wavelet transform. Despite a high performance,

the number of NORMs was so small that it lowered the difficulty of classification.

Therefore, the aim of this study was to propose an inter-patient heartbeat classification

method to accurately distinguish LBBB, RBBB, and NORM in class N beats based

on large datasets. Through our experimental observation, large variations were

observed in heartbeats of the same type because of inter-individual variations; meanwhile,

the morphologies and RR intervals of LBBB and RBBB were similar to those of NORM.

LBBB and NORM are particularly difficult to distinguish. As a result, it is difficult to

obtain a satisfactory classification of these three types of heartbeats based on independent

training and testing sets.

The combination of multiple classifiers facilitates the integration of knowledge

obtained from different classifiers to improve the accuracy of the ultimate classification

[30,31]. To obtain improved integration of the classification results, the component

classifiers must typically possess a good classification performance with simultaneously

significant differences [32]. This study proposed a heartbeat classification method

through the integration of three different classifiers. A high performance classification

was achieved via the construction of an effective component classifier between each

pair of heartbeat types (shown in Figure 2). A minimum distance classifier was

constructed between NORM and LBBB. A weighted linear discriminant classifier was

constructed between NORM and RBBB based on Bayesian decision making using

posterior probabilities. A linear support vector machine (SVM) was constructed

between LBBB and RBBB. Each classifier provided two possible class labels for the tested

heartbeats, and the final classification of the examined heartbeats was determined using a

majority voting strategy through the combination of the class labels from the three

classifiers. Each classifier was used with matching features to obtain better classification

performance. The optimal parameters for the classifiers were selected using cross-validation

of the training set. The effects of different lead configurations on the classification results

were assessed, and the classification performance of these three classifiers was compared for

the detection of each pair of heartbeat types. The study results indicated better classification
Figure 2 An overview of the classification of LBBB, RBBB, and NORM using ensemble classifiers. The
heartbeats were extracted from ECG signals and normalized in the preprocessing stage. Then, they were
processed in parallel through the three branches, each of which included feature extraction and
classification. Each classifier provided two possible class labels for the tested heartbeats, and the final type
of the heartbeat was determined using a majority voting strategy through the combination of the class
labels from the three classifiers.
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performance with two-lead configurations compared with single-lead configurations.

The proposed multi-classifier ensemble method showed a satisfactory classification

performance.
Methods
ECG data

The datasets utilized in this study were obtained from the MIT-BIH Arrhythmia Database

[21]. The data included forty-eight 30 minute ECG recordings collected from two leads

(labeled here as leads A and B). There were 109,492 heartbeats, which were divided into

15 heartbeat types. Class N beats defined by the AAMI primarily include three heartbeat

types, NORM, LBBB, and RBBB; thus, only three types of heartbeats were studied. In this

study, recordings in the MIT-BIH Arrhythmia Database were divided as described in [5].

Consistent with the standard recommendation by the AAMI, four heartbeat recordings in

which a paced beat was involved were discarded [5]. The remaining 44 recordings were

divided into two datasets, DS1 and DS2, each of which contained 22 recordings. DS1 was

utilized as the training set, and DS2 was utilized as the testing set. The numbers of the

three heartbeat types in the two datasets are shown in Table 1.
Overview of the proposed method

The heartbeat classification process is usually divided into three parts: preprocessing,

feature extraction, and classification. Figure 2 shows the stages of the proposed method

for heartbeat classification in this study.

In the preprocessing stage, the heartbeats were extracted from ECG signals using the

R peak position provided by the MIT-BIH Arrhythmia Database and then normalized.

The preprocessed heartbeats were then processed in parallel through the three branches,

each of which included feature extraction and classification. The classification performance

depends largely on the design of the classifier. Because of the different extents of overlap

and different distributions of each pair of heartbeat types, three classifiers were used

in this study: the minimum distance classifier, the linear discriminant classifier, and

the linear SVM. Feature extraction also has a great impact on the performance of

a classifier. A classifier can only achieve better performance when appropriate features are

applied. The input features of the minimum distance classifier included the morphology

of the preprocessed heartbeat and the RR interval. The input features of the linear

discriminant classifier and the linear SVM included the independent component

analysis (ICA) features and the RR interval. Each classifier was built based on each

pair of heartbeat types in the training set DS1 (the minimum distance classifier
Table 1 Distribution of heartbeat types in the two independent datasets

Dataset NORM LBBB RBBB Total

DS1 38104 3949 3783 45836

DS2 36444 4125 3476 44045

Total 74548 8074 7259 89881

Dataset DS1 includes data from the following recordings: 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201,
203, 205, 207, 208, 209, 215, 220, 223, and 220. Dataset DS2 includes data from the following recordings: 100, 103, 105,
111, 105, 7, 11, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 233, and 234. Four recordings (102, 104,
107, and 217) that contained pace beats were not included in DS1 or DS2.
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between NORM and LBBB; the linear discriminant classifier between NORM and

RBBB; and the linear SVM between LBBB and RBBB).

Each classifier subsequently produced two possible type labels for a test heartbeat

because each classifier was trained between each pair of heartbeat types in the

training set. In other words, each classifier was concerned with the classification of

two types of heartbeats. Another type of heartbeat not involved in the training

procedure was assigned to the type label by the classifier.

Finally, the preprocessed test heartbeats, including NORM, LBBB, and RBBB, in the

dataset DS2 were assigned to the type labels using a majority voting strategy through the

combination of the type labels from the three classifiers. Multi-class classification was

implemented through a one-against-one classification method, which used three distinct

classifiers with matching features. The preprocessing, construction of the three classifiers,

and classification of the test heartbeats are described in additional detail below.
Preprocessing

Extraction of the heartbeats first requires QRS wave detection. Currently, many

methods are available for QRS detection with accuracy rates greater than 99.5%

[33-35]. The focus of this study was on heartbeat classification, not on QRS detection.

Therefore, the reference points provided by the annotated files in the MIT-BIH

Arrhythmia Database [21] were used directly. The ECG sampling frequency was

360 Hz. Each heartbeat sample was segmented from 0.278 s before to 0.278 s after the

R wave and included 200 points. Thus, the sample included a complete heartbeat

signal, which was composed of the QRS complex, the P wave, and the T wave. To reduce

incorrect decisions as a result of signal amplitude deviation generated by the apparatus

and individual variation, each heartbeat sample was subtracted by the mean and then

divided by the standard deviation. Thus, a series of zero-mean, unit-standard-deviation

normalized waveforms were produced, which represented preprocessed heartbeats. Prior

to heartbeat extraction and normalization, the ECG signal was not denoised by a filtering

method because filter denoising could cause the distortion of heartbeat morphology; thus,

the information useful for classification in the heartbeats would be lost and subsequent

heartbeat classification could be affected.
Construction of the minimum distance classifier

A minimum distance classifier was constructed between NORM and LBBB in the training

set DS1. The feature vector used here consisted of the preprocessed heartbeats of the two

leads and the RR interval, i.e., a 401-dimensional vector.

Because the majority of heartbeats are NORM in various forms, and some NORMs

are close to LBBB morphology, NORM and LBBB overlap heavily with many heartbeats

at the border between the two types. To exclude the impact of these border heartbeats,

a minimum distance classifier was used for the classification of NORM and LBBB with

the consideration of the centroids (mean vectors) of two heartbeat types. Considering

NORM and LBBB as the two clusters, the mean vectors, or the centroids, of NORM

and LBBB heartbeats in the training set were first calculated. The 400-dimension heart-

beat mean vectors of NORM and LBBB are shown in Figure 3 (not including the RR

interval).



Figure 3 The two-lead heartbeat mean vectors of NORM and LBBB in the training set. (a) The mean
vector of NORM. (b) The mean vector of LBBB.
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The distances from any heartbeat of the testing set to the two centroids were then cal-

culated and compared, and the heartbeat was classified in the type with the closer centroid.

The minimum distance classifier is relatively simple and does not require parameter selection.

Construction of the weighted linear discriminant classifier

A weighted linear discriminant classifier was constructed between NORM and RBBB in

the training set DS1 based on Bayesian decision making using posterior probabilities.

In order to achieve an improved classification performance with a reduced number of

feature dimensions, the feature vector used was composed of the ICA-based features of

the two leads and the RR interval, i.e., a 201-dimensional vector.

Application of ICA for extraction of heartbeat features

ICA is a statistical method that can separate a set of random variables into statistically inde-

pendent potential components. It estimates the independent components from the data

itself, extracts the essential features, and simultaneously reduces the dimensions [36].

Compared with principal component analysis (PCA), ICA captures not only second order

statistics but higher order statistics and contains more feature information. Therefore, ICA

has become a highly useful feature extraction method. The application of ICA to heartbeat

classification has produced satisfactory results [15,37,38]. In this study, the use of ICA for

the extraction of heartbeat features could prevent feature vectors from diverging in the fea-

ture space and facilitate the classification performance of the linear discriminant classifier.

Many algorithms have been proposed for implementing ICA. Hyvärinen’s FastICA algo-

rithm [39], which uses a fixed point iteration scheme, provides a great advantage in the

rapid estimation of ICA because it is much faster compared with the traditional gradient

descent methods for ICA. Therefore, the FastICA algorithm was used to calculate the inde-

pendent components in this study. Because ICA for heartbeat feature extraction was also

used in the subsequent classifier construction between LBBB and RBBB, 180 NORMs, 200

LBBB beats, and 240 RBBB beats were extracted separately from the training set of 22 re-

cords. Ten NORMs were extracted from each of the 18 records, 100 LBBB beats from each

of the 2 records, and 80 RBBB beats from each of the 3 records. This extraction resulted in

620 heartbeats from which 100 independent components were calculated in order using the

FastICA algorithm. In the final step, the heartbeat samples were projected onto the inde-

pendent components to produce 100 ICA-based features (i.e., each heartbeat sample was

multiplied by the pseudo-inverse of the matrix that consisted of 100 independent
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components and obtained 100 ICA-based features). The feature vector used here

was composed of 200 ICA features of the two leads and one RR interval. Figure 4

(a) shows a preprocessed two-lead heartbeat, and Figure 4(b) shows the ICA features of

the heartbeat in Figure 4(a).

Construction of the weighted linear discriminant classifier

Because the quantity of NORM is far greater compared with the quantity of RBBB in

the heartbeat datasets, to prevent skewed classification results toward the majority

class, a weighted linear discriminant classifier based on Bayesian posterior probability

decision making, previously described in [5], was used to classify NORM and RBBB.

This classifier assumes Gaussian distributions of two types of heartbeats with the same

priori probability and assigns the test sample to the type with the maximum posterior

probability. The classification performance is improved by eliminating the effects of the

heartbeats with similar morphology at the border between the two types of heartbeats.

The linear discriminant classifier must first calculate the mean vector and covariance

from the training set, and the covariance matrix ∑ is defined as [5]

Σ ¼
XC

i¼1

wi

XNi

k¼1

xik−mið Þ xik−mið ÞT ð1Þ

where xik is the feature vector of heartbeat k in class i; Ni is the number of heartbeats

in class i; mi is the mean vector of class i; and C is the number of classes. The values of

the weighting coefficients wi of the two heartbeat types were experimentally determined

in the training set.

After computing mi and ∑ from the training set, assuming Gaussian distributions of the

two types of training feature vectors and based on Bayesian decision making theory, the

posterior probability of an unknown heartbeat feature vector x belonging to class i was

calculated by

PðijxÞ ¼ exp gi xð Þ� �

X2

n¼1

exp gn xð Þ� �
i ¼ 1; 2 ð2Þ

where
gi xð Þ ¼ mT
i Σ

−1x−
1
2
mT

i Σ
−1mi þ log P ωið Þð Þ; i ¼ 1; 2 ð3Þ
Figure 4 A preprocessed two-lead heartbeat and its ICA features. (a) A preprocessed LBBB heartbeat.
(b) The ICA features of the heartbeat shown in (a).



Huang et al. BioMedical Engineering OnLine 2014, 13:72 Page 9 of 22
http://www.biomedical-engineering-online.com/content/13/1/72
P(ωi) is the priori probability, which is 0.5 for both NORM and RBBB. The unknown

heartbeat can then be assigned to the type with the maximum posteriori probability

estimated from Equation (2).

Construction of the linear SVM

A linear SVM was constructed between LBBB and RBBB in the training set DS1. ICA

was also used to extract heartbeat features, and the input feature vector consisted of

the ICA features from two leads and the RR interval.

LBBB and RBBB are relatively easy to distinguish. Although the use of the pre-

viously described weighted linear discriminant classifier can yield a relatively good

classification performance, the use of a linear SVM can yield even better classification

performance.

SVM is a widely used classification method based on minimizing structural risk, with

good generalization performance. SVM maps data in an original low-dimensional space

to a high-dimensional feature space using a kernel function. The best separation surface

in the high-dimensional feature space is determined to maximize the margin between

the training data and the decision making border. The closest training data to the decision

border constitute the support vectors [40,41].

The linear SVM performs substantially faster compared with the SVM with radial

basis function (RBF) kernels and must only determine the penalty parameter; thus, the

use of the linear SVM can improve the efficiency of training and classification. The

classification performance of linear SVM depends largely on the choice of the penalty

parameter C. The penalty parameter was experimentally determined to achieve the best

classification performance, and liblinear-1.93 in the MATLAB environment was used

for the SVM experiments [42].

Classification of the test heartbeats using an ensemble of the three classifiers

Following the construction of the minimum distance classifier, the linear discriminant

classifier, and the linear SVM, the heartbeats in the testing set DS2 were classified using

an ensemble of the three classifiers. The entire classification process is summarized in

the following four sections:

1) The preprocessed test heartbeats of the two leads together with the RR intervals formed

test feature vectors and were used as the input feature vectors of the minimum

distance classifier. The distances from any vector of the test feature vectors to the

NORM mean vector and the LBBB mean vector were then calculated and compared,

and the test feature vector was assigned to the type with the closer mean vector,

namely, NORM or LBBB.

2) The preprocessed test heartbeats from each lead were projected onto the 100 independent

components (generated using 620 heartbeats, including NORM, LBBB, and RBBB in

the training set) to produce 100 ICA-based features. The ICA-based features of leads

A and B were concatenated together and were combined with the RR interval to form

the 201-dimensional test feature vectors. The test feature vectors were utilized as the

input feature vectors of the weighted linear discriminant classifier. The posterior

probabilities of any unknown test feature vector that belonged to NORM and

RBBB were calculated by Equations (2) and (3). The unknown test feature vector
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was then assigned to the type with the maximum posteriori probability, namely,

NORM or RBBB.

3) The 201-dimensional test feature vectors previously discussed were also used as the

input feature vectors of the linear SVM. The linear SVM produced two possible

type labels for a test feature vector, namely, LBBB or RBBB.

4) Finally, with a maximum voting strategy, the votes for the three heartbeat types were

counted, and the test feature vectors were then assigned to the type labels with the

highest number of votes. When the type labels from the three classifiers were

combined, it was possible that three different type labels were produced by these

classifiers. In this case, the final type of the heartbeat was assigned to NORM because

of the substantially greater quantity of NORM compared with LBBB and RBBB.
Experimental setup

To assess the performance of the heartbeat classification, classification performance

indexes were used. These indexes included the sensitivity (Se), positive predictive value

(PP), and accuracy (Acc). The sensitivity refers to the proportion of correctly detected

heartbeats of a certain type against all heartbeats of that type. The positive predictive

value refers to the proportion of real positive heartbeats of a certain type against all

detected heartbeats of that type, and the accuracy refers to the number of correctly

identified heartbeats as a percentage of the total heartbeats. When the heartbeat type is

NORM, the sensitivity is translated into the specificity (Sp), and the positive predictive

value is translated into the negative predictive value (NP). All indexes can be calculated

from the confusion matrix.

Several experiments were conducted to construct and evaluate the proposed method.

First, the three classifiers were constructed based on each pair of heartbeat types in the

training set DS1. Then, the effects of different lead configurations on the classification

results for each pair of heartbeat types in the testing set DS2 were assessed, and the final

classification results that used an ensemble of the three classifiers were represented. To

demonstrate the rationality of using three different classifiers, the performance of these

three classifiers was compared for the detection of each pair of heartbeat types, and the

classification results of the proposed method were compared with those of the methods

that used the same three classifiers. Finally, the rationales for utilizing different classifiers

between different pairs of heartbeat types, the feature extraction methods, and the

comparison with other methods were discussed.

The ECG data included data from two leads, which were designated lead A and lead

B. The features of lead A and lead B were concatenated together when the two leads

were applied and were combined with the RR interval to form a feature vector.

For the construction of the minimum distance classifier, the mean vectors of NORM

and LBBB were computed based on the training set DS1 without considering parameter

selection.

When constructing the weighted linear discriminant classifier, a 10-fold cross-validation

on the data that contained NORM and RBBB in the training data set DS1 was used to

identify the optimal values of the two weighting coefficients. The training set was divided

into 10 parts, with one part left out as a testing set for each cross-validation and the

remaining nine parts as a training set. The 10 classification confusion matrices were then
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summed to calculate the specificity and negative predictive value of NORM and

the sensitivity and positive predictive value of RBBB. The benefit of this process

was to avoid the error caused by averaging, which reflected the actual classification.

Because the number of NORMs was approximately 10 times the number of RBBB

heartbeats, the weighting coefficient w1 of NORM included the values between

0.01 and 0.1, with increments of 0.01, whereas the weighting coefficient w2 of

RBBB included the values 0.4, 0.5, and 0.6. This process produced 30 sets of

parameters. For different lead data, the optimal parameters for the linear discriminant

classifier were selected from these 30 sets to maximize the RBBB sensitivity. The

parameters that maximized the RBBB positive predictive value were selected if the

sensitivities were the same.

When the linear SVM was constructed, the previously described 10-fold cross-

validation method was used to identify the optimal value of the penalty parameter

C for the data that contained LBBB and RBBB in the training data set DS1. The

10 classification confusion matrices were then summed to calculate the sensitivity

and positive predictive value of LBBB and RBBB. The penalty parameters were set

to 0.001, 0.01, 0.1, 1, 10, and 100, and the optimal parameters for different leads

were selected from these six sets of parameters based on the mean sensitivity

(mean value of the sensitivity of the two heartbeat types). The parameter with the

smallest value was selected if the mean sensitivities were the same.

FastICA codes (http://www.cis.hut.fi/projects/ica/fastica) were employed to calculate

the independent components. The linear SVM was implemented by liblinear-1.93

(http://www.csie.ntu.edu.tw/~cjlin/liblinear/). The programs were written and run in

the MATLAB environment.
Results
In this study, an improved classification performance was achieved via the construction

of an effective classifier between each pair of heartbeat types. The one-against-one

classification methods were used to implement a multi-class classification. Therefore, the

classification results of each pair of heartbeat types in the testing set under different lead

configurations were first represented. Then, the final classification results of the three

heartbeat types under the optimum lead configuration were identified by combin-

ing the results of each pair of heartbeat types with the maximum voting strategy.

To indicate the rationality of using a different classifier for each pair of heartbeat

types, the performance comparison of these three classifiers for the detection of

each pair of heartbeat types and the performance comparison of the proposed

method with the methods of using an ensemble of the same three classifiers were

represented, respectively.

It is worth mentioning that we used independent data as a test set to validate

the proposed method. The performance indexes of the proposed method were

obtained based on the data that were independent of the data used to construct

the classifiers and determine the optimum parameters. Furthermore, data as a test

set originated from different patients than those providing data used to train the

classifiers. Therefore, the results in this study provided a valid assessment of the

predictive capability for unknown data.

http://www.cis.hut.fi/projects/ica/fastica
http://www.csie.ntu.edu.tw/~cjlin/liblinear
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Classification of NORM and LBBB under different lead configurations using the minimum

distance classifier

The classification performance for NORM and LBBB in the dataset DS2 under different

lead configurations is shown in Figure 5. When configuration lead A was used, LBBB

showed a relatively low sensitivity at 32.4%. When configuration lead B was used, the

specificity for NORM was 66.3%. When a two-lead configuration was employed, LBBB

showed a sensitivity of 91.4% and a positive predictive value of 36.8%, whereas NORM

exhibited a specificity of 82.3% and a negative predictive value of 98.8%. The two-lead

configuration exhibited an improved classification performance compared with the

single-lead configurations. The classification confusion matrix for the two-lead

configuration is shown in Table 2. Over 6,000 NORMs were classified as LBBB by

mistake, which led to a decreased positive predictive value for LBBB.
Classification of NORM and RBBB under different lead configurations using the weighted

linear discriminant classifier

The classification results from the weighted linear discriminant classifier based on

Bayesian posterior probability decision making for NORM and RBBB are shown in

Table 3; the results of the different lead configurations and the best parameters are also

shown. Under the two-lead configuration, RBBB showed a sensitivity of 92.9% and a

positive predictive value of 88.4%, whereas NORM yielded a specificity of 98.8% and a

negative predictive value of 99.3%, which indicated a satisfactory classification performance.

Only a low number of heartbeats were misclassified between NORM and RBBB.
Classification of LBBB and RBBB under different lead configurations using the linear SVM

The LBBB and RBBB classification results from the linear SVM, as well as the results

for the different lead configurations and the best parameters are shown in Table 4.

Under the two-lead configuration, LBBB and RBBB exhibited excellent classification

results, with both the sensitivity and the positive predictive value reaching above

99% for the two heartbeat types. Approximately ten heartbeats were misclassified

between LBBB and RBBB.
Figure 5 Comparision of the classification performance of LBBB and NORM under different lead
configurations on DS2. (a) The sensitivity (Se) and positive predictive value (PP) of LBBB under different
lead configurations. (b) The specificity (Sp) and negative predictive value (NP) of NORM under different
lead configurations.



Table 2 Classification confusion matrix of NORM and LBBB under the two-lead
configuration on DS2

Reference label Algorithm label Total

NORM LBBB

NORM 29979 6465 36444

LBBB 355 3770 4125

Total 30334 10235 40569
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Final classification performance using ensemble classifiers under the two-lead

configuration

According to the classification results between each pair of heartbeat types under

different lead configurations, the two-lead configurations were employed to obtain the

best classification performance because more classification information was provided

by the two-lead data.

Using the three classifiers based on the two-lead data to classify the three types of

heartbeats, NORM, LBBB, and RBBB, the final types of heartbeats were obtained

through the ensemble of the results from the three classifiers with a majority voting

strategy. Table 5 shows the confusion matrix for the heartbeat classification system.

The performance indexes were calculated for each heartbeat type based on the

information in Table 5, and the results are shown in Table 6. LBBB showed a sensitivity of

91.4% and a positive predictive value of 37.3%, whereas RBBB exhibited a sensitivity of

92.8% and a positive predictive value of 88.8%. The specificity for NORM was 81.5%, and

the negative predictive value was 98.0%. The classification performance for the three

heartbeat types was all close to the lower classification performance indexes in the

pair-wise classification.

In addition, the classification results for the recordings that contained LBBB or RBBB

in the testing set DS2 are listed in Table 7. Except for recording 232, a satisfactory

classification performance was observed in all cases for LBBB and RBBB.
Performance comparison among three different classifiers for classifying each pair of

heartbeat types

To demonstrate the construction of the effective classifier between each pair of heartbeat

types in this study, the previously trained minimum distance classifier, linear discriminant

classifier and linear SVM were employed to classify each pair of heartbeat types in the

testing set. The results are shown in Tables 8, 9, and 10, and the classifier with the best

performance is expressed in bold.
Table 3 Classification results of NORM and RBBB under different lead configurations on
DS2

Method Parameters NORM (%) RBBB (%) Acc (%)

W1 W2 Sp NP Se PP

Lead A 0.01 0.4 94.1 95.0 48.1 43.8 90.1

Lead B 0.01 0.6 67.0 93.3 49.8 12.6 65.5

Lead A + B 0.03 0.6 98.8 99.3 92.9 88.4 98.3



Table 4 Classification results of LBBB and RBBB under different lead configurations on
DS2

Method Parameters LBBB (%) RBBB (%) Acc (%)

C Se PP Se PP

Lead A 100 50.3 99.9 99.9 62.9 73.0

Lead B 1 78.4 92.1 92.0 78.2 84.6

Lead A + B 0.1 99.9 99.9 99.9 99.8 99.9
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As shown in Table 8, the minimum distance classifier exhibited the best classification

performance between NORM and LBBB, followed by the weighted linear SVM (i.e., the

weighted linear SVM was required because the number of heartbeats that were classified

as LBBB was far less compared with the number of NORMs). The weighted linear SVM is

described as follows. If the numbers of two heartbeat types to be classified are imbalanced,

then to avoid results skewed towards the majority class, different penalties can be intro-

duced for each type in the objective function. Thus, the penalty parameter and weighting

factors were experimentally determined to achieve the best classification performance. The

linear discriminant classifier showed the worst results between NORM and LBBB.

As shown in Table 9, the linear discriminant classifier showed the best performance

in the classification of NORM and RBBB, followed by the weighted linear SVM. LBBB

and RBBB showed good separability. The linear SVM exhibited the best performance

in the classification of LBBB and RBBB, followed by the linear discriminant classifier

(see Table 10).

The results indicated that the classifier utilized between each pair of heartbeat types

in this study had the best classification performance among the three classifiers.
Comparison with the methods of using an ensemble of three identical classifiers

To demonstrate that ensembles of three different classifiers can significantly improve

the classification performance in heartbeat classification, the results of combining the

three different classifiers were compared with the results of combining three identical

classifiers as shown in Table 11. The proposed method demonstrated the best classification

performance. These results indicated that an improved classification performance can be

achieved by constructing classifiers with the best performance between each pair of

heartbeat types. The findings also indicated the complexity of heartbeat classification, and

a single classifier is not sufficient to obtain good heartbeat classification results. To

achieve better performance, different classifiers are required when the distribution and

extent of overlap between every two types of heartbeats are different.
Discussion
We first explained why the different classifiers were used between different pairs of

heartbeat types. Then, we discussed the selection of the input features for the three

classifiers and the comparison with other methods.
The rationale for utilizing different classifiers between different pairs of heartbeat types

We constructed different classifiers between different pairs of heartbeat types and

obtained satisfactory classification performance. This finding can be explained by the



Table 5 Classification confusion matrix of NORM, LBBB, and RBBB using an ensemble of
three classifiers

Reference label Algorithm label Total

NORM LBBB RBBB

NORM 29697 6339 408 36444

LBBB 355 3770 0 4125

RBBB 249 0 3227 3476

Total 30301 10109 3635 44045
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distribution and extent of overlap between every two types of heartbeats. Because the

NORMs originated from 22 patients in each dataset and the number of NORMs was

very high, i.e., up to tens of thousands, the NORMs showed large variations and thus

generated overlapping beats between NORM and other heartbeat types. Through our

careful observation in the experiments, the morphologies and RR intervals of a part of

the LBBB and RBBB beats were similar to those of the NORMs. Therefore, there were

overlapping beats at the border between LBBB and NORM and between RBBB and

NORM. Furthermore, the distribution and extent of overlap between every two types

of heartbeats were different.

LBBB and NORM are particularly difficult to distinguish because NORM and

LBBB overlap significantly, and the distribution of LBBB is not close to a Gaussian

distribution. The linear discriminant classifier that assumed the data conformed to

a Gaussian distribution was used to classify the heartbeats and achieved the worst

results. The minimum distance classifier was used for the classification of NORM

and LBBB according to the distances of any heartbeat in the testing set to the centroids of

two heartbeat types. This approach can reduce the misclassification of these border

heartbeats between the two types more effectively compared with the weighted

linear SVM. The weighted linear SVM handles the overlapping beats through the

penalty parameter and weighting factors. As a result of the significant overlap

between NORM and LBBB, the weighted linear SVM has limitations with respect

to the nonlinear separable case.

The distributions of RBBB and NORM were close to a Gaussian distribution, which

satisfied the assumption required by the linear discriminant classifier. Therefore, the

linear discriminant classifier could effectively eliminate the impact from the overlapping

beats at the boundary of the two types of heartbeats and thus obtained good results. As

a result of the good separability of LBBB and RBBB, the three classifiers all exhibited

good classification performance, but the linear SVM had an advantage for handling

the error-classifying samples through the penalty parameter and showed the best

performance.

With respect to the classifier ensemble, the combination of multiple classifiers

can facilitate the integration of knowledge obtained from different classifiers and

thus improve the classification performance [30,31]. To obtain satisfactory ensemble
Table 6 The final classification performance of NORM, LBBB, and RBBB on DS2

NORM (%) LBBB (%) RBBB (%)

Sp NP Se PP Se PP

81.5 98.0 91.4 37.3 92.8 88.8



Table 7 Classification performance on each recording of DS2

Record Number of beats NORM LBBB RBBB

NORM LBBB RBBB Sp (%) NP (%) Se (%) PP (%) Se (%) PP (%)

111 0 2123 0 - 0 83.4 100 - 0

212 923 0 1825 99.0 95.4 - - 97.6 99.5

214 0 2002 0 - 0 99.9 100 - -

231 314 0 1254 100 99.7 - - 99.9 100

232 0 0 397 - 0 - - 48.6 100
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classification results, the component classifiers are required to possess a good classification

performance and simultaneously be different from each other [32].

In summary, we should choose different classifiers between different pairs of heartbeat

types to attain the best performance because the distribution and extent of overlap between

every two types of heartbeats are different, and the classifier ensemble also requires different

component classifiers to obtain a good ensemble classification performance.
Consideration of feature extraction

The classification performance is not only related to the classifier used but is also

affected by feature extraction. Feature extraction is aimed at achieving better classification

performance with a reduced number of feature dimensions, which increases the classification

speed. Parameter estimation is the most common method for heartbeat feature extraction,

and it typically produces a lower number of feature vector dimensions. However,

these parameters are affected by the human body and instrument noise, which results in

variations in different patients. The extraction of parameter features relies on accurate

ECG measurement [29], and thus, this feature extraction method was not adopted in this

study. The direct method uses the amplitude of ECG signals, namely, the morphological

features as the feature vector to achieve a low computational cost but with a

higher number of dimensions.

Compared with morphological features, transform methods can extract information

that cannot be readily obtained from the original signals. Among the transform

methods, linear discriminant analysis (LDA), PCA, and ICA can prevent the divergence

of feature vectors in the feature space and simultaneously reduce dimensions. Due to

the overlap between NORM and RBBB, the use of LDA does not provide adequate

separation [43]. Although there is no clear overlap between LBBB and RBBB, the use of

ICA has obtained good classification results, and thus, we did not use LDA to extract

the features of the heartbeats. Compared with PCA, ICA captures both second and

higher order statistics and thus contains more feature information. For these reasons,

the features used in the classification between NORM and RBBB and between LBBB

and RBBB in this study were all ICA features, and 400-dimension morphological features

were transformed to 200-dimension features. Satisfactory classification results were achieved

using these features.

However, ICA features were not employed in the classification between NORM and

LBBB, and the 400-dimension morphological features were used instead. As shown in

Table 12, feature extraction using ICA did not achieve good classification performance,

which was likely caused by the severe overlap between NORM and LBBB. The use of



Table 8 Classification performance comparison of NORM and LBBB using three classifiers

Method NORM (%) LBBB (%)

Sp NP Se PP

Minimum distance classifier 82.3 98.8 91.4 36.8

Linear discriminant classifier 70.6 90.6 35.2 11.9

Weighted linear SVM 77.3 98.7 91.2 31.2

The classifier with the best performance is expressed in bold. The feature vector was composed of the preprocessed
heartbeat signals from both leads and a RR interval.
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ICA made the separation of overlapping samples more difficult. Consequently,

morphological features were employed to distinguish between NORM and LBBB.

Despite a higher number of dimensions, the computational efficiency was not affected

due to the simple computation associated with the minimum distance classifier. LBBB

exhibited a low positive predictive value, and thus, further studies are needed to identify

features that can accurately identify LBBB.
Comparison with other classification methods

The aim of this paper was to explore an inter-patient classification method for

automatically detecting LBBB and RBBB from NORM. To our knowledge, few

studies have been reported on the detection of LBBB and RBBB based on inter-patient

classification. Nevertheless, we still compared the results of the proposed method

with other intra-patient classification methods. Whether the methods belonged to

the inter-patient classification is shown in Table 13. These methods included the

time-frequency beat descriptors and the kth nearest neighbor classification [7]; parameter

features and the kth nearest neighbor classification [8]; a feed forward back propagation

neural network using higher order statistics of wavelet transform subband components

[9]; SVM classification using power spectral features [10]; the nearest neighbor classification

using local fractal dimension [11]; SVM classification using the wavelet with best

discrimination capability [12]; and probabilistic neural network with a feature reduction

method [13]. All intra-patient methods obtained higher detection performance for LBBB

and RBBB compared with the proposed method, except for the methods proposed in [8]

and [12]. These two methods used a small-size training set; thus, their performance

was affected. Because intra-patient classification methods were trained on the non-

independent training datasets, obtaining a good predictive performance for LBBB and RBBB

was difficult. They can be used for adaptive-patient heartbeat classification to improve

classification performance but require expert annotation.

Yeh et al. [26-28] studied the classification of LBBB, RBBB, and NORM and proposed

several classification methods based on a group of recordings in the MIT-BIH Arrhythmia
Table 9 Classification performance comparison of NORM and RBBB using three classifiers

Method NORM (%) RBBB (%)

Sp NP Se PP

Minimum distance classifier 73.6 88.9 4.1 1.5

Linear discriminant classifier 98.8 99.3 92.9 88.4

Weighted linear SVM 94.8 99.0 89.9 62.0

The classifier with the best performance is expressed in bold. The feature vector was composed of the ICA features from
both leads and a RR interval.



Table 10 Classification performance comparison of LBBB and RBBB using three classifiers

Method LBBB (%) RBBB (%)

Se PP Se PP

Minimum distance classifier 99.8 99.2 99.0 99.7

Linear discriminant classifier 99.7 99.6 99.6 99.6

Linear SVM 99.9 99.9 99.9 99.8

The classifier with the best performance is expressed in bold. The feature vector was composed of the ICA features from
both leads and a RR interval.
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Database, which showed high classification performance as shown in Table 13. These

methods chose four qualitative features using a range-overlap method and adopted a

fuzzy logic method, LDA, and cluster analysis for classification, respectively. However, it is

not clear whether the dataset for building the classification model was independent from

the testing set. Furthermore, the recordings used in their study were different from the

recordings used in current study. Fourteen recordings were used in their study. In

addition, the numbers of RBBB and NORM in two recordings, 212 and 231, were different

from their numbers in this study. We used the class labels in the annotation files

of the MIT-BIH Arrhythmia Database. Therefore, due to the different datasets

used, the proposed method showed a different classification performance compared

with the methods proposed by Yeh et al. [26-28]. Their methods did not explicitly

designate the independent training set and thus were not counted as inter-patient

classification.

Inter-patient classification methods were developed using independent training

datasets and thus can be used to predict LBBB and RBBB from the unknown patients’

ECG recordings. Furthermore, they do not require expert annotation and can perform

detection automatically. Jekova et al. [8] and Mishra et al. [11] also performed

inter-patient heartbeat classification, but the results were inferior to those based on

intra-patient classification shown in Table 13. Jekova et al. [8] adopted 26 morphological

parameters for feature extraction; the use of low-dimension features can lead to a decrease

in the operating time of the kth nearest neighbor classifier. However, the parameter

features are affected by the human body and instrument noise. Jekova et al. selected 1

heartbeat of each available type from each record, which resulted in 91 heartbeats in the

training set. When each recording was classified, only the training heartbeats from the

remaining 47 recordings were used. The method cannot make full use of the information

of more heartbeats and produced worst results, i.e., a sensitivity of 18.8% for LBBB and a

sensitivity of 43.2% for RBBB. Mishra et al. [11] utilized power spectral density

based fractal dimensions for feature extraction, which can prevent the divergence

of feature vectors in the feature space. They used 11 recordings obtained from 25
Table 11 Classification performance comparison of the proposed method with the
methods using the same three classifiers

Method NORM (%) LBBB (%) RBBB (%)

Sp NP Se PP Se PP

Minimum distance classifier 55.9 84.7 91.4 36.9 4.1 1.5

Linear discriminant classifier 77.0 90.6 35.2 15.3 92.8 89.6

(Weighted) linear SVM 72.1 97.4 91.1 31.3 89.9 62.1

Proposed method 81.5 98.0 91.4 37.3 92.8 88.8



Table 12 Classification performance comparison of the morphological and ICA features
for NORM and LBBB

Method NORM (%) LBBB (%)

Sp NP Se PP

Preprocessed heartbeat 82.3 98.8 91.4 36.8

ICA features 97.4 96.0 63.9 73.9
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recordings as the testing set, and the remaining 14 recordings were used as the

training set. The average sensitivities of LBBB and RBBB were 87.4% and 82.4%, respectively,

but the positive predictive values were not provided. The performance of this

method was lower compared with our method because using only one classifier

cannot yield better results given a complicated heartbeat distribution. Dokur et al.

[29] proposed an intersecting sphere (Ins) network and discrete wavelet transform

for inter-patient classification. The InS network has a high generalization ability,

and the dimension of the feature vector is only 8, contributing to an improvement

in the operating speed. This method yielded a higher performance compared with

the proposed method, a sensitivity of 94.6% for LBBB and a sensitivity of 98.6% for

RBBB. However, because each heartbeat type had only 150 heartbeats separately in

the training and testing sets, it reduced the difficulty of classification and led to

optimistic results.

The proposed method was constructed and evaluated based on inter-patient

classification schema. We achieved satisfactory classification results by constructing an

effective classifier between each pair of heartbeat types according to the different extents

of overlap and different distributions between every two types of heartbeats. The

proposed method is better compared with the method proposed by Mishra et al.

[11], which benefits from adopting the ensemble classifiers. Furthermore, we used

22 recordings as the training set and 22 recordings as the testing set, which made

complete use of the heartbeats to train the classification model and provided more
Table 13 Performance comparison of the proposed method with other methods

Method Inter-patient NORM (%) LBBB (%) RBBB (%)

Sp NP Se PP Se PP

Christov [7] No 96.9 98.4 95.7 99.2 94.4 99.3

Jekova [8] No 94.8 98.1 58.1 74.4 88.5 78.9

Yu [9] No 98.8 - 98.8 - 99.2 -

Khazaee [10] No 94.3 99.4 98.9 98.5 98.9 98.8

Mishra [11] No 98.9 99.6 97.4 97.5 97.9 98.5

Daamouche [12] No 86.3 - 88.8 - 89.4 -

Wang [13] No 99.6 99.8 98.8 99.5 99.3 100

Yeh [26] Unknown 99.0 97.3 91.1 96.5 95.1 94.2

Yeh [27] Unknown 98.3 97.4 90.4 91.0 87.0 87.1

Yeh [28] Unknown 95.6 97.9 91.3 92.3 90.5 90.7

Jekova [8] Yes 87.2 92.3 18.8 25.2 43.2 52.7

Mishra [11] Yes 93.2 - 87.4 - 82.4 -

Dokur [29] Yes 100 96.7 94.6 91.0 98.6 94.2

Proposed method Yes 81.5 98.0 91.4 37.3 92.8 88.8



Huang et al. BioMedical Engineering OnLine 2014, 13:72 Page 20 of 22
http://www.biomedical-engineering-online.com/content/13/1/72
objective results. The method can be ported to a real-life heartbeat classification

system with some fine-tuning. However, prior to applying the proposed method,

the algorithm for classifying class N beats following AAMI is required because our

method was developed based on class N beats, which primarily included NORM,

LBBB, and RBBB. Again, the proposed method employed the ensemble of three different

classifiers to improve the detection performance, but it also increased the complexity of

the entire algorithm. However, the computational speed of computers is currently fast,

thus, this is not a problem. The proposed method is promising for clinical

applications.

Due to the different datasets used, it is difficult to perform a fair and objective

comparison based purely on the classification results. Nevertheless, the results from

this study can be deemed an objective reflection of the predictive capability of

unknown data because the testing set was not used in the prior construction of the

training model in this study.
Conclusions
Inter-patient classification is critical in improving the predictive capability of a

heartbeat classification system. To accurately distinguish LBBB and RBBB from

NORM, this study proposed a heartbeat classification method that combined three

different classifiers. This method was based on inter-patient data division and

achieved high performance classification by constructing an effective classifier between

each pair of the heartbeat types examined. Using different classifiers is conducive to

constructing better classification models according to the different extents of overlap

and different distributions of each pair of sample types. In this study, we constructed a

minimum distance classifier between NORM and LBBB, a weighted linear discriminant

classifier between NORM and RBBB based on Bayesian posterior probability, and a linear

SVM between LBBB and RBBB. Satisfactory classification results were obtained by

combining the three classifiers using a majority voting strategy, with a sensitivity of 91.4%

and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive

predictive value of 88.8% for RBBB. Because the classification model selected was

entirely based on the training set and the final classification performance was

assessed using the best configuration on the independent testing set, the results

from this study can be deemed an objective reflection of the predictive capability

for unknown data. The proposed heartbeat classification method has the potential

for clinical use.
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