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Abstract

Background: The extraction of overlapping cell nuclei is a critical issue in automated
diagnosis systems. Due to the similarities between overlapping and malignant nuclei,
misclassification of the overlapped regions can affect the automated systems’ final
decision. In this paper, we present a method for detecting overlapping cell nuclei in
Pap smear samples.

Method: Judgement about the presence of overlapping nuclei is performed in three
steps using an unsupervised clustering approach: candidate nuclei regions are located
and refined with morphological operations; key features are extracted; and candidate
nuclei regions are clustered into two groups, overlapping or non-overlapping, A new
combination of features containing two local minima-based and three
shape-dependent features are extracted for determination of the presence or absence
of overlapping. F1 score, precision, and recall values are used to evaluate the method’s
classification performance.

Results: In order to make evaluation, we compared the segmentation results of the
proposed system with empirical contours. Experimental results indicate that applied
morphological operations can locate most of the nuclei and produces accurate
boundaries. Independent features significance test indicates that our feature
combination is significant for overlapping nuclei. Comparisons of the classification
results of a fuzzy clustering algorithm and a non-fuzzy clustering algorithm show that
the fuzzy approach would be a more convenient mechanism for classification of
overlapping.

Conclusion: The main contribution of this study is the development of a decision
mechanism for identifying overlapping nuclei to further improve the extraction process
with respect to the segmentation of interregional borders, nuclei area, and radius.
Experimental results showed that our unsupervised approach with proposed feature
combination yields acceptable performance for detection of overlapping nuclei.

Keywords: Pap smear, Nuclei, Overlapped, Clustering

Background
Although cervical cancer is one of the most mortal cancers in women, it is highly curable
if it is diagnosed at an early stage. Pap smear test is a popular gynecological scanning test
to diagnose cervical cancer. It is based on interpretation of cervical cells under micro-
scopic examination. During manual screening of cervical cytology samples, the observer
searches for morphometric changes and visual abnormalities on cells [1]. The false rate
ratio may be increase in this screening due to subjective variability of different observers.
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Moreover, manual screening is an unreasonably time-consuming and costly process due
to several types of distortions such as uneven dyeing, optical errors, artifacts, overlap-
ping cells, mucus, blood etc. on samples. Thus, there has been a great motivation for
automating Pap-test to reduce human error and to decrease the time consumption [1]. An
automated Pap smear screening system should be able to delineate cells within samples
to classify cervical cells.
In malignant cells, nuclei may be disproportionately enlarged and irregular both in form

and outline. Thus, one of the most common features that guide the detection of an exist-
ing malignancy is an increased nucleus-to-cytoplasm ratio [2]. Hence, one of the highest
priority tasks for an automated Pap smear monitoring system is the segmentation of cell
nuclei. Moreover, the correct interpretation of nuclei abnormality depends on accuracy
of the nuclei detection mechanism in automated systems [3].
In most Pap smear samples, some nuclei overlapping occurs, which is a factor that

makes automated Pap smear monitoring systems error prone [4,5]. Overlapping cell
nuclei often appear as adjacent darker regions within Pap smear samples. The appear-
ance of these darker regions most likely cause automated systems to interpret the whole
area as a single nucleus. Overlapping nuclei in the segmented region may cause the mis-
classification of a nucleus as abnormal. Thus, overlapping and adjacent nuclei must be
distinguished prior to any further processing [3,6].
Many studies have sought to developmethods for accurately determining the borders of

overlapping cell nuclei. For instance, Jung et al. reported an unsupervised Bayesian classi-
fication scheme for separating overlapping regions [2]. In another study, Li et al. utilized a
modified gradient vector flow [7], as well as radiating gradient vector flow (RGVF) snake
and k-means unsupervised clustering methods, for the accurate extraction of overlap-
ping cytoplasm and nuclei in their study. Other methods including watershed were also
proposed in the literature [8]. These previous studies show that there has been a great
interest in accurately determining cell nuclei borders inside adjacent regions [9]. However,
it is critical that before any further separation process takes place, each nucleus should
be judged as to whether it is overlapping or not. Our study objective was to develop a
fully automated elimination mechanism specializing in the classification of overlapping
nuclei. Our proposedmodel is not a segmentation approach for determining interregional
borders. Furthermore, this model may judge the region even if there are no apparent
interregional nuclei borders.
We used morphological operations to determine cell nuclei borders and a clustering-

based decision mechanism to examine detected objects to assess the presence of single
or multiple nuclei inside a region. Using this approach, several new features are extracted
to optimize the success of the clustering algorithm. We prefer to use a fuzzy c-means
algorithm as a clustering method in this study, as it provides an unsupervised decision
mechanism capable of distinguishing different classes of cell nuclei from their previously
extracted features. One of the reasons we prefer a clustering-based algorithm is that no
training or learning stages are needed in clustering-based approaches. This results in flex-
ibility in the developed system and increases the success rates in cases where multiple
samples are examined due to practical requirements.
In most previous studies, a typical analysis structure of an automated or semi-

automated Pap smear diagnosis system includes segmentation of both the nuclei and
cytoplasm regions [2,3,6]. According to the common structural approach, a computerized
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system should be able to classify and discriminate overlapping nuclei before feature
extraction. A possible block diagram of such an automated system is shown in Figure 1,
where the gray-filled blocks indicate the suggested position for detecting the presence
of overlapping in this study. Since the major goal of our study is the development of a
pre-detection mechanism for overlapping to improve the interregional border extraction
process, the separation of nuclei and extraction of interregional walls will be addressed
in a later study. Our aim here is to develop an unsupervised overlapping nuclei detection
mechanism for automating Pap smear screening systems.

Figure 1 Block diagram of a typical automated screening system. The possible blocks of a typical
automated Pap smear diagnosis system where focus range of our study is shown in the gray blocks.
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Methods
This study contains three consecutive steps: 1) the determination of nuclei boundaries; 2)
the feature extraction of cell nuclei; and 3) the determination of the presence or absence
of overlapping nuclei. According to the existing algorithmic flow, candidate nuclei regions
are extracted using morphological operations. Then, several features are extracted from
previously segmented areas and, finally, overlapping regions are classified by clustering
techniques. A block diagram of the general flow is shown in Figure 2, and the steps are
described in detail in the following paragraphs. The methods we introduce here were
developed using a MATLAB environment.

A. Data set

All methods introduced here were applied to the study test set which consisted of a total
of 290 nuclei within 10 cervical images where 8% of the detected nuclei overlapped. All
images were taken from different subjects. A NIKON microscope equipped with 100×
magnification is used for taking images which are processed with Papanicolaou staining.
The study is performed in accordance with the Declaration of Helsinki and approved by
institutional ethics committee. Ground truthing of the segmentation and classification
processes was performed by two observers. While all images originally had 2560 × 1920
pixels, the samples were down-sized to 1280×960 pixels. All original sample images were
stored in RGB color space in a JPEG format. In addition to the test set, we used a sample
set of 16 public cervical cytology images from the International Symposium on Biomedi-
cal Imaging (ISBI, http://cs.adelaide.edu.au/~carneiro/isbi14_challenge/dataset.html) 14
Challenge for tuning and evaluation purpose. The set contains 690 nuclei where 14% of
them were determined as overlapped. It should be noted that images from ISBI were
not previously ranked for abnormality. Instead, we used 140 normal and 140 abnormal

Figure 2 Basic steps of our method. Basic computational stages of the proposed approach are detailed in a
block diagram.

http://cs.adelaide.edu.au/~carneiro/isbi14_challenge/dataset.html
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nuclei images from the Herlev data set (HDS) for observing the significance of the pro-
posed feature set for abnormal and normal cell nuclei. The HDS consists of segmented
single cells collected and ranked by cytotechnicians at the Department of Pathology at
Herlev University Hospital and the Department of Automation at Technical University of
Denmark for classification experiments. Totally 1240 nuclei including samples from
Herlev data set were examined in the study.

B. Determination of nuclei boundaries

Most of the Pap smear test images in the study sample contained blood cells and artifacts.
In the study, cell clusters from the test set were segmented from the background prior to
the delineation process to eliminate artifacts and undesired data from outside the cyto-
plasmic regions. It is relatively easy to remove background pixels during the segmentation
of the outer boundaries of cell clusters. Two factors that simplify this process include the
color and contrast differences between the background and cluster regions. To achieve
an effective and low cost extraction process, we converted our original test images from
RGB to a hue-saturation-value (HSV) colormap in the range 0 and 1. Then we applied a
hue filter to the images and chose the hue value limits 0.2 (lower) and 0.7 (upper). Out-
put of the HSV filtering process is given in Figure 3. Finally, we converted the images into
grayscale intensity images with 8-bit depth for further processing.
Cell nuclei appear as one of the darkest regions in most cervical samples. Other darker

regions include those attributed to artifacts, mucus, blood, etc. According to global data,
it is reasonable to presume that the location of the cell nuclei is in the intensity valleys
[10]. Nuclei boundaries cause the formation of high gradients on images as a result of the
density difference between the cytoplasm and nuclei regions [11]. Using this global infor-
mation on the appearance of nuclei as a guide, we divided the nuclei extraction process
into four consecutive steps in our study: 1) extraction of the gradient magnitude of the
images; 2) filtering the images with an edge detection filter; 3) cleaning of some of the
final images of any remaining artifacts via object size based filtering. 4) Final morpho-
logical operations for touching pixels and remaining artifacts. Sample outputs of these
steps are presented in Figure 3 as a block diagram. A similar approach was used by Plissiti
et al. [11], in which the authors extracted and filtered the gradient magnitude of samples
to assess the initial nuclei contours.
We determined the corresponding gradient value of a sample image at a particular coor-

dinate by combining the partial derivative of the image in the x and y directions. We
converted all sample images to grayscale before beginning the work flow, and applied a
Sobel operator as a discrete differentiation operator to determine the partial derivative in
both directions.
In a typical gradient magnitude image of a Pap smear sample, nuclei boundaries may be

much more apparent. However, final nuclei boundaries should be segmented to progress
with this analysis. In the next segmentation step, the gradient of the sample image is fil-
tered with a Canny edge detection filter to eliminate lower transition regions [11]. We
determined the threshold value for the Canny edge detector to be 0.4, which is optimal
for our purposes. With this threshold value, most of the samples preserved their impor-
tant structural properties after the filtering process. A sample region after edge filtering
process is given in Figure 3 as following stage to gradient magnitude extraction pro-
cess. After the Canny edge detector filter was applied, almost all of the refined nuclei
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Figure 3 Nuclei detection process. All nuclei detection process is given in block diagram form with regions
from sample images.

boundary data were located within the image. However, undesirable boundary data such
as cytoplasm walls, artifacts, and several types of connected objects still existed within
the nuclei boundaries. So, we combined a series of morphological operations to eliminate
the remaining artifacts from the various data collected.
As a following stage to edge filtering, all connected objects were filtered according to

their sizes to remove some of the remaining artifacts. Then, all non-connected objects
were filtered. The purpose of eliminating these objects is to locate any closed-loop con-
tours, which are likely to be nuclei boundaries. In the recent form of the output image,
nuclei walls are being located as closed-contour connected pixel groups in binary images.
However, in most of the cases, there may be extra pixels and pixel groups touching the
nuclei walls. In the final stage, these bifurcations are removed to extract actual nuclei
walls before conducting feature extraction. The scope of the filtering in this stage is shown
in Figure 3 as final filtering process. Pseudo code for this elimination process is given in
Algorithm 1.
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Algorithm 1 Bifurcation Elimination Process
1: Generate a mask that fills all of the closed contour objects
2: n ← number of pixels outside the mask
3: loop through n and check all pixels outside the mask:
4: k ← 0
5: loop to check all neighbours of each pixel:
6: if neighbouring pixel is inside the mask then
7: k ← k + 1
8: end loop.
9: if k < 1 then

10: Eliminate the pixel
11: end loop.

In the final form of the output image, most of the nuclei boundaries were detected and
filtered. However, nuclei belong to blood cells and nuclei outside the cytoplasmic regions
were still within the samples. All undesired objects outside the previously detected cell
clusters were removed as final step of nuclei segmentation stage. Most of the blood cells
and nuclei outside the cell clusters were removed in this stage. HSV filter was eliminated
most of the blood cells as a result of color and contrast differences. Final form of a sample
region is given in Figure 3.

C. Feature extraction

We classified overlapping nuclei in this study by using a fuzzy clustering algorithm.
With this approach, extracted nuclei features are clustered into two groups—those with
possible overlapping regions and single nuclei features with no overlapping. Hence, the
extraction of the most significant features may be crucial for achieving better clustering
results. The five features we extracted to identify overlapping nuclei, as listed in Table 1,
include three shape-based features supported by two textural features. Variations in the
shape and texture between samples with overlapping and single nuclei regions are shown
in Figures 4a and 4b, respectively. Also, we introduce the parameters of the shape-based
features we utilized in Figures 4c, 4d, and 4e.
The shape-based features we utilized depended on the regularity of the nuclei perime-

ter. We extracted regularity information by evaluating both axes, as shown in Figure 4e.
The major and minor axes are basically two lines through the center of an ellipse-shaped
object. The difference between the lengths of these two lines is less in the single regions
than in the overlapping regions in most of the sample images. Overlapping results in flat-
tened regions, which may be a characteristic appearance. Thus, one of the shape-based

Table 1 Extracted features from detectednuclei regions

1. Eccentricity* F1
a

2. Major axis to minor axis ratio* a
b

3. Equivalent diameter to actual diameter ratio*

√
4 Area

π

Pn
2∗π

4. Number of local minima** –

5. Max distance between local minima** –
*a,b and F1 are given in Figure 4e. Pn= number of pixels in perimeter. **Extraction process is given in text.
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Figure 4 Extracted features. Five sample regions are given in (a) and (b) as an example of both single and
overlapped nuclei. Formulation of shape-based features is explained and shown in (c), (d), and (e).

features we used was the highly distinctive ratio of these axes for nuclei discrimination
[11]. We also extracted the eccentricity of the candidate region in our evaluation, to
determine how closely the shape of each object was to an ideal circle, as formulated in
Table 1.
The final shape-based feature we extracted was the ratio of the object’s equivalent

diameter to the actual diameter, which may significantly change if the boundary of the
object is wavy and irregular. Most single nuclei tend to appear as circular smooth objects.
High irregularity and/or a wavy regional boundary structure may indicate the presence of
overlapping. Formulations of these shape-based features are given in Table 1.
In addition to our analyses of shapes, we used two textural features for discrimination

purposes. Both of these features were based on the local minima points of delineated
nuclei regions. A local minimum point indicates the bottom point of an intensity valley
in the image. In contrast with the global minimum, there may be more than one local
minimum in the grayscale region. In our study, if a pixel has the lowest grayscale value in
a neighborhood set (8-connected), then it is assumed to be a local minimum point [10].
A local minimum for a single nucleus is shown on the intensity mesh in Figure 5a.
Local minima points located inside regions most often indicate higher matter density.

We may presume that more than one nucleus inside a candidate region will change the
regular density distribution inside the region boundary. The existence of multiple nuclei
inside a region causes fluctuations in the bottom points, which then increases the num-
ber of local minima [12,13]. According to this information, increases in the number of
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Figure 5 Visualisation of local minima points. Local minima points are marked with a white pixel (left
handside images) and illustrated with intensity mesh in shades of blue (right handside images) for single
and overlapped nuclei regions inside a previously defined boundary. a) There is only one local minima.
b) Overlapping causes multiple intensity valleys inside the region.

local minima points are most likely inside overlapped regions. Increased numbers of local
minima points are shown in shades of blue in Figure 5b.
The other textural feature is based on the Euclidean distance between local minima

points which gives information about the regularity of the local minima distribu-
tion. Using this approach, we extracted the distance between local minima points and
assigned the maximum distance as the region’s maximum distance property. The basic
approach used to extract the maximum distance of the local minimum points is given in
Algorithm 2.

Algorithm 2 Extraction of Maximum Distance Between Local Minima Points
1: Extract local minima points
2: n ← number of extracted points
3: loop through n and check all points:
4: Max ← 0
5: loop to measure distance between recent pixel and other local minima points:
6: d ← euclidean distance
7: if d>max then
8: max ← d
9: end loop.

10: end loop.
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D. Classification

In this section, we examine fuzzy and non-fuzzy clustering algorithms and compare them
with respect to their discrimination of overlapped nuclei. We use the k-means technique
for the non-fuzzy approach, which was first introduced by McQueen [14]. The goal of
this approach is to partition n-numbered observations into k sets. Since this method is
non fuzzy, each of the pattern clusters have one center at any given time. This algo-
rithm updates the centroids with each iteration to minimize the within-cluster sum of the
squares, which is defined as

k∑
j=1

n∑
i=1

∥∥∥xji − cj
∥∥∥
2

(1)

where the
∥∥∥xji − cj

∥∥∥ term indicates the distance between an observation and the cluster’s
centroid. With this approach, the algorithm assigns observations to clusters according to
their distance from cluster centers, and updates the centroids of new members. A block
diagram of this process is shown in Figure 6a.
The fuzzy c-means (FCM) clustering method, was first introduced by Dunn in 1973

and then improved by Bezdek et al. in 1981. FCM is simply the optimization of the basic
c-means objective function using a fuzzy approach. In contrast to k-means clustering,
every observation has a degree of association with all sets, according to their distances

Figure 6 Computational steps of the examined clustering algorithms. Block diagrams of examined
techniques in the study (a) k-means and (b) fuzzy c-means.
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apart, and observations do not belong to just one cluster. Every point has a set of coeffi-
cients [15], each of these coefficients represents a degree of association with one of the
clusters, and the centroids of the clusters are the weighted means of the sets.
A point’s degree of belonging to a cluster is inversely proportional to the distance

between a cluster centroid and the point. Accordingly, a greater distance means a lower
degree of belonging to a set, calculated by:

uij = 1
C∑

k=1

(‖xi−cj‖
‖xi−ck‖

) 2
m−1

(2)

Where, uij is the degree of belonging of xi in the cluster j. Also, cj represents the center
of each cluster which is determined by:

cj =

N∑
i=1

umij .xi

N∑
i=1

umij

(3)

Clustering is determined by an iterative algorithm. Centers of the clusters and coeffi-
cients are updated upon each iteration until the change in coefficients is less than a given
threshold. A block diagram of the algorithm we used is shown in Figure 6b. Ultimately, all
observations are divided into two main clusters at the end of the iteration process.

Results
We examined the segmentation capability of this method with respect to 290 nuclei
during their development stage. Each of the nuclei were segmented and classified by
computer with no human intervention. The experimental algorithm successfully located
87% of the nuclei with 82% sensitivity (true positive rate). We evaluated the segmenta-
tion capability of the developed system by comparing the Tanimoto similarity between
the empiric and automated segmentation results. The Tanimoto similarity coefficient is
widely used for measuring similarities between two binary arrays [16]. It is determined by
the ratio of the common to the uncommon bits in the two different arrays. The Tanimoto
coefficient provided the rate of similarity between the segmented areas in our study. It
may be formulated as:

Tanimoto(a, b) = Nc
(Na + Nb − Nc)

(4)

In this equation, the Nc term is the number of the common-valued pixels in two images.
Na is the number of pixel values which occur only in image a, and Nb is the number of
pixel values which occur only in image b. We extracted three binary images from each
sample image for comparison. The first holds regions segmented by computer, and the
other two are the empirical areas, segmented by two different expert observers. A com-
parison of the observers’ segmentations were accepted as ground truth. The segmentation
success for the 290 nuclei is given in Table 2.
In this study, we propose a new combination of features containing two local minima-

based features in addition to shape-dependent features. The two textural features
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Table 2 Segmentation success of method for 290 nuclei where tanimoto coefficient
utilized as success criteria

Observations Mean Standard deviation

Proposed method 290 0.732 0.09

Ground truth 290 0.803 0.07

extracted for 20 previously segmented nuclei are shown in Figure 7, to highlight the
variance of such features in the presence of overlapping.
In addition to the information shown in Figure 7, we also compared the significance of

the proposed feature set with another set of 5 features. These include: the mean intensity
of the region, the minimum intensity value of the region, the area, the convex area, and
the frequency with which these regions are used for cervical cell classification [11]. In this
test group there are 3 shape- and 2 texture-based features in the proposed feature set as
well. We used the independent features significance testing method proposed by Weiss
and Indurkhya to compare the significance of both feature sets [17]. Results are given in
Table 3.

Figure 7 Variation of local minima points. Two textural features are observed on twenty cells for two
groups as overlapped and non-overlapped. a) Difference of distances in cases of overlapping is shown.
b) Variation of number of local minima inside the region is shown.
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Table 3 Significance comparison of proposed and test feature sets for 290 Nuclei where
independent features significance test utilized for objective comparison

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Proposed feature set 2.81 4.64 7.74 5.20 4.74

Test feature set 0.77 1.52 3.77 3.91 3.77

For our purposes, malignant and non-malignant nuclei were assumed to be in the same
class. We observed variations in the proposed features in the previously segmented and
classified nuclei regions from theHerlev data set to justify a feature set as sufficient even if
abnormal nuclei were present within the samples. Cluster centroids of features are given
in Table 4. for comparison.
In order to make an objective evaluation of the classification performance of the pro-

posed approach, we compared the empirical and automated classification results with
respect to the 3 performance parameters shown below:

Precision = Tp
(Tp + Fp)

(5a)

Table 4 Cluster Centroids of different classes from independent data sets

HERLEV data set
Normal-single

Feature Number of nuclei Cluster centroid

1 140 0.59

2 140 1.36

3 140 2.16

4 140 33.26

5 140 79.04

Abnormal-single

Feature Number of nuclei Cluster centroid

1 140 0.62

2 140 1.40

3 140 2.11

4 140 76.04

5 140 160.95

Test data set
Normal-single

Feature Number of nuclei Cluster centroid

1 266 0.55

2 266 1.31

3 266 2.79

4 266 16.16

5 266 17.60

Overlapped nuclei

Feature Number of nuclei Cluster centroid

1 24 0.86

2 24 2.39

3 24 2.17

4 24 75.27

5 24 48.05
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Recall = Tp
(Tp + Fn)

(5b)

Fscore = 2
Precision ∗ Recall

(Precision + Recall)
(5c)

where Tp, Tn, Fp, and Fn are the number of true positive, true negative, false positive, and
false negative pixels, respectively. We measured the classification performance of the two
clustering approaches using the same experimental environment during the study. These
comparison results are given in Table 5, where the “Total Time” column indicates the total
elapsed time during the clustering process.
The classification capacity of the proposed approach is also represented with a plot of

the graphical receiver operator characteristics (ROC), as shown in Figure 8. The ROC
plot uses multiple variables to show that the FCM algorithm may successfully classify
overlapped, adjacent nuclei with the proposed features set. The clusters of segmented
nuclei at the end of the classification process are shown in Figure 9.
Overall success of the system is presented by fully-automated and semi-automated

experimental setups in this study. All nuclei are segmented and processed without any
human intervention in fully-automated setup. Besides, a semi-automated setup is uti-
lized for observing the affect of segmentation stage on overall decision success. In the
semi-automated setup, each of the nuclei within the samples are segmented by human
observer, than computer analysed the pre-segmented regions. Outputs of each process
with samples from our test set and ISBI data set is given in Figure 10.

Discussion
Overlapping occurs in most of the Pap smear samples in different degrees. Overlapped
and adjacent nuclei regions appear mostly as larger, irregular objects in the samples [1].
That excessive growth in size occurs in malignant cases is a matter of a priori knowledge
about nuclei in Pap smear samples [2]. Therefore a fully automated classification system
for histological abnormalities should be able to differentiate and also separate overlap-
ping/aggregating candidate objects.In this study we proposed a prerequisite approach
for a fully automated separation system which involves a pre-classification system for
advanced abnormality detection and interregional border extraction of nuclei. Most of the
separation studies in the literature do not have any particular detection mechanism for
locating and differentiating overlapping/aggregating nuclei. In this study, our goal was to
propose an approach that could be used with previously introduced separation methods.
Accordingly, we propose a new combination of features for clustering and for detecting
overlapping regions even if there are abnormal nuclei inside the regions.
The gradient magnitude of the samples is processed with an edge filter initially, to

extract the borders of the nuclei. The actual walls are then filtered from the remain-
ing pixel groups using morphology-based filtering. We evaluated the capability of the
proposed basic automated segmentation method by determining the Tanimoto coeffi-
cient (also known as Jaccard Index), which is a frequently used similarity measure for

Table 5 Classificationperformance comparison of K-means and fuzzy C-means

Classified nuclei F-Score Recall Precision Time elapsed (ms)

C-means 290 0.791 0.674 0.957 64

K-means 290 0.766 0.666 0.955 145
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Figure 8 ROC graphic of proposedmethod. Receiver operator characteristics curve is given as a success
criteria to the fuzzy c-means algorithm used.

evaluating the similarity between two binary images [16,18]. According to our Tanimoto
similiarity criteria results in Table 2, the examined methods are capable of segmenting
most of the nuclei regions. There are many studies that prefer similar morphologi-
cal operations for pre-segmenting or preprocessing cervical cell nuclei [11,19], and the
proposed differentiating mechanism may also be integrated with other automated seg-
mentation methods such as the watershed, active contours, and machine learning-based

Figure 9 Clustered features. Clusters of extracted nuclei on feature space where single and overlapped
regions are shown as red and green circles, respectively.
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Figure 10 Visual demonstration of classification success. Results, generated by proposed methods are
presented. Automatically segmented and judged samples are included in fully-automated setup category.
Samples, segmented by human eye and analysed with computer are included in semi-automated category.
1,2,3 and 4 numbered samples are from ISBI 14 Challenge data set which are taken from http://cs.adelaide.
edu.au/~carneiro/isbi14_challenge/dataset.html, 5,6,7,8 numbered samples are picked from our data set.
Overlapped regions are indicated by red boundaries and black frames.

http://cs.adelaide.edu.au/~carneiro/isbi14_challenge/dataset.html
http://cs.adelaide.edu.au/~carneiro/isbi14_challenge/dataset.html
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segmentation approaches [4,5,10]. The success of the segmentation stage directly affects
the overall classification ability of the proposed approach [12]. Proposed combination of
features are also evaluated with semi-automated setup where nuclei were segmented by
an observer. Results of semi-automated experiments, presented in Figure 10 showed that,
some of the undetected nuclei within the fully-automated test samples are probably an
effect of non-adaptive nature of preferred segmentation methods. It should be noted that,
our approach may be highly compatible with semi-automated systems or a better adap-
tive segmentation mechanisms. An adaptive segmentation approach, perhaps based on a
non-linear decisionmechanism, could be adapted in future work to increase the detection
capability.
We combine size and textural features in this study to achieve optimum results. We

also evaluated the significance of the proposed feature combination by comparing it with
an alternative feature set which is formed by frequently used features for classification of
nuclei. Both feature sets were then compared with samples from the test data set for 290
nuclei. Results of this comparison given in Table 3 showed that the proposed feature set
achieves a higher level of significance for nuclei overlapping. In previous studies, simi-
lar feature sets were used for segmentation and separation of overlapped nuclei [5,11,12].
Also, the experiments in previous studies showed that conducting a clustering analysis
on size-dependent features only may not be sufficient for recognition of overlapping [3].
So, there are also many studies that have combined textural and shape-based features
[5,11,12]. However, the combination of features we introduce in this study is unique for
use in the discrimination of overlapping. It should be noted that most studies did not
have any particular mechanism for classifying overlapped regions before the segmenta-
tion process. Usually, morphological operations or alternative preprocessing stages were
carried out prior to any further analyses [1,3]. Methods, introduced in the study should
be seen as a supporting approach to potentially increase the separation capabilities of
existing overlapping nuclei segmentation methods.
In the present work, we classified the extracted nuclei features from nuclei using

clustering-basedmethods. Since there is no need for a training set or stage with data clus-
tering approaches, this system may be promising for the varying conditions of different
samples. We also examined and compared two well-known fuzzy (FCM) and non-fuzzy
(k-means) clustering approaches [14,15]. According to Table 5, both of these methods
are capable of discriminating overlapping. However the fuzzy c-means is faster and has
a higher f-score, so it is computationally more effective and a better choice for our work.
In addition, some consideration should be given to the idea that an optimizing fuzzy
clustering approach may increase the classification capability [20].
The proposed features were also examined with samples from the Herlev data set, a

well-known data set frequently used for performance testing benchmark data [21]. Sam-
ples from the HDS were pre-classified and segmented. These samples are preferred for
determining the centroids of clusters, since the data include both malignant and nor-
mal samples. We expected that the developed system would cluster overlapped and
non-overlapped nuclei even in data containing abnormal cells data.
Table 4 presents that, both of the textural features tend to increase due to expanded

area of nuclei in abnormal cases. However, it should be noted that most of the nuclei
preserves it’s circular or ellipsoid structure in abnormal cases which is also indicated in
the table. All shape based feature centroids are closer to normal single nuclei centroids in
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abnormal class in Table 4. Moreover textural features tend to change more significantly
in overlapped class. In the presented data centroids of malignant and normal cell features
are closer in value, which may indicate that abnormal and normal nuclei are most likely
being classified in the same cluster.
Previous studies show that, features extracted from both cytoplasmic region and nuclei

are essential for detection of abnormality in an automated Pap smear screening system
[2,5,7,22].We proposedmethods for discrimination of overlapped nuclei which should be
suggested as an elimination mechanism before feature extraction for abnormality detec-
tion [3]. As a result of refined samples from overlapped regions, classification abilities of
automated systems are expected to be improved. It should be noted that eliminated over-
lapped regions can be separated in further stages for searching abnormality inside the
region.

Conclusions
The developed and proposed methods in this study may be considered as a supporting
approach for studies of the segmentation of interregional borders of nuclei where over-
lapping occurs. Our method does not depend on a certain quantity of nuclei inside the
region. In fact, greater numbers of nuclei inside a region may be an advantage for clas-
sifying local minima-based features. In a practical sense, the main contribution of our
method is as a pre-classification approach which includes specialized features for effec-
tive discrimination despite the varying overlapping conditions. We hope this study may
serve as a new basis for further studies in automated Pap smear screening.
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