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Abstract

Background: Disorders of rotator cuff tendons results in acute pain limiting the
normal range of motion for shoulder. Of all the tendons in rotator cuff, supraspinatus
(SSP) tendon is affected first of any pathological changes. Diagnosis of SSP tendon
using ultrasound is considered to be operator dependent with its accuracy being
related to operator’s level of experience.

Methods: The automatic segmentation of SSP tendon ultrasound image was
performed to provide focused and more accurate diagnosis. The image processing
techniques were employed for automatic segmentation of SSP tendon. The image
processing techniques combines curvelet transform and mathematical concepts of
logical and morphological operators along with area filtering. The segmentation
assessment was performed using true positives rate, false positives rate and also
accuracy of segmentation. The specificity and sensitivity of the algorithm was tested
for diagnosis of partial thickness tears (PTTs) and full thickness tears (FTTs). The
ultrasound images of SSP tendon were taken from medical center with the help of
experienced radiologists. The algorithm was tested on 116 images taken from 51
different patients.

Results: The accuracy of segmentation of SSP tendon was calculated to be 95.61%
in accordance with the segmentation performed by radiologists, with true positives
rate of 91.37% and false positives rate of 8.62%. The specificity and sensitivity was
found to be 93.6%, 94% and 95%, 95.6% for partial thickness tears and full thickness
tears respectively. The proposed methodology was successfully tested over a
database of more than 116 US images, for which radiologist assessment and
validation was performed.

Conclusions: The segmentation of SSP tendon from ultrasound images helps in
focused, accurate and more reliable diagnosis which has been verified with the help
of two experienced radiologists. The specificity and sensitivity for accurate detection
of partial and full thickness tears has been considerably increased after segmentation
when compared with existing literature.

Keywords: Ultrasound image segmentation, Supraspinatus (SSP) tendon, Curvelet
transform, Morphological operations
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Introduction
Ultrasound is a medical imaging modality preferred by radiologist and physicians due

to its capability to produce real time imaging data, reduced time in diagnosis, and high

patient acceptability. Musculoskeletal (MSK) ultrasound is rapidly gaining importance

for the assessment of joints and soft tissue disorders [1,2]. Occurrence of MSK disor-

ders are mostly found in sports, adulthood (>30 years of age) or in accidents due to

sudden impact which leads to reduced functions of daily life.

Supraspinatus (SSP) tendon is among the four muscles found in rotator cuff in shoul-

der; it runs from supraspinatus fossa superior of scapula to the greater tuberosity in hu-

merus. Supraspinatus (SSP) tendon disorders are third most prevalent in MSK [3,4].

The disorders in SSP tendon occur in the form of tear (loss of connective tissues bind-

ing collagen fibre), tendinosis (inflammation) and results in acute pain, insomnia and,

reduced mobility of shoulder. SSP tendon as imaged using ultrasound equipment is

shown in Figure 1. In ultrasound images, soft tissues such as muscle, fat, and other

connective tissues reflect different echogenic pattern allowing the radiologist to differ-

entiate between healthy and ailing tissue. Healthy muscle tissues have uniform and or-

ganized patterns which tend to absorb the ultrasound beam and appear hypoechoic

compared to fat [5,6]. However, tendons with pathological conditions are disorganized,

diffused and have hypoechoic appearance compared to healthy tendons. Convention-

ally, health of tendons was visually examined based on image texture provided by ultra-

sound images which makes modality highly operator dependent. Recently, ultrasound

applications are being trained to provide quantitative information about diagnostics of

patient’s health and fitness [7-10]. To date, for supraspinatus tendon quantitative ana-

lysis is limited to cross sectional area and thickness calculation [11]. In one study [12],

quantitative ultrasound techniques were employed wherein it computes structural mea-

surements and mean echogenicity to discriminate between muscle pathologies and

healthy conditions. In another recently published research, musculoskeletal ultrasound

was used to quantify muscle kinematics during dynamic activities such as drop landing

in healthy subjects [1]. Reliability study was conducted for the use of ultrasound as a

quantitative information tool by a research group for inter-rater and intra-rater relia-

bility, the study reveals that appropriately designed protocol will allow radiologist to

identify structural changes within tendons [13,14].
Figure 1 SSP tendon ultrasound image.
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Despite growing interest and established techniques, few attempts are made to auto-

mate quantitative analysis of pathologies existing in tendon. In [15,16], Horng et al.

used feature extraction method based on gray level co-occurrence matrix (GLCM) and

texture feature coding method (TFCM) to classify lesions in tendon. In [17], Nielsen

et al. proposed method for tissue characterization using first order and higher order

statistics for SSP tendon and thigh muscles. In [18], Michael et al. suggested a meas-

urement method to estimate muscle dystrophy and sarcopenia via echogenicity meas-

urement using grayscale analysis for musculoskeletal muscles. This work is focused

towards automatic segmentation of SSP tendon from ultrasound image for focused ana-

lysis and serves as first step towards automated diagnosis of tendon.

Segmentation in ultrasound images can be difficult for numerous reasons such as

contrast and resolution of image, speckle noise which is inherent property of ultra-

sound imaging modality, operator dependency of the modality. The paper addresses the

issue of contrast enhancement, despeckling and issues occurring due to operator de-

pendency for accurate segmentation of SSP tendon.

Related work

Delineating boundaries and region of interest segmentation is a challenging task due to

low contrast, resolution and inheritance of high intrinsic noise (speckle) in ultrasound im-

ages. Researchers [19-40] have suggested application specific segmentation technique for

segmentation of ultrasound images. In [19], a brief review about ultrasound image seg-

mentation techniques has been covered. The feature based segmentation techniques are

often used in segmentation of ultrasound images. Image features such as gray level distri-

bution [20], phase information [21], gradient information [22], shape of anatomical region

[24] and temporal information have been exploited for accurate segmentation. In [24,25],

Rayleigh model has been extensively used in numerous occasions with anisotropic diffu-

sion for removal of speckle noise and segmentation of ultrasound images. Rayleigh mix-

ture model [26] was used for segmentation of skin lesions from ultrasound image.

Rodtook [24] and Wang [27] have incorporated gradient information using active contour

method and level set method for extraction of region of interest from ultrasound images.

Intensity gradients are used along with anisotropic diffusion [28], morphological filtering

[29], total variation filtering [30] and other filtering techniques [31,32] for ultrasound

image segmentation. Using shape priors is also very popular technique for segmentation

of ultrasound images and has been used for segmentation of kidney [23], intravascular

ultrasound (IVUS) [33], cardiac [34], and prostate ultrasound images [35]. Curvelet de-

composition [36,37] has recently been introduced in medical imaging for segmentation

and enhancement of images. In [38], curvelet features are used for analysis of retinal im-

ages along with connected component analysis. Semi-supervised ultrasound image seg-

mentation [39] technique is proposed using curvelet features and texture analysis. In [40],

curvelet features are used in ultrasound images for segmentation of kidney images for bet-

ter and enhanced diagnosis.

This is the pioneer work towards focused and automated segmentation of SSP tendon

for accurate, focused and more reliable diagnosis. In this work, automatic segmentation

of SSP tendon from ultrasound image is proposed. The method uses curvelet transform

for feature extraction based on energy analysis of features followed by connected com-

ponent analysis and morphological operations to accomplish the task.
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Material

The database of 116 images of SSP tendon ultrasound image with and without pa-

thological condition was collected with the help of trained radiologist from Universiti

Malaya Medical Centre. The data was collected over a period of three years with pa-

tients varying in age group from 19–54 years of age. The database was collected using

Philips iU22 ultrasound and GE Logiqe BT2011 ultrasound machines. The database

consists of images of patients with abnormalities such as single or multiples tears and

tendinosis. 80 patients were observed to be suffering from only tendinosis, 100 patients

were suffering from single or multiple tears in tendinosis or healthy tendon. The imple-

mentation of proposed methodology was done on MATLAB version 8.0.

Proposed methodology

Ultrasound image of the SSP tendon when observed using database of collected images

acquired by two different radiologists on two different machines with around 51 pa-

tients found to contain variations such as:

1) The width of the tendon,

2) Topography or location of tendon in images,

3) Intensity level of SSP tendon in image,

4) Radius of curvature of convex SSP tendon.

The observed differences are due to inter and intra-operator variability, acquisition

system and patients anatomy. Therefore, for a method to be able to segment automatic-

ally the SSP tendon, it should be robust towards above variations. Despite above varia-

tions, invariants or unique features in ultrasound image of SSP tendon irrespective of

machines, patients and radiologist are:

1) Convex nature of SSP tendon.

2) Compressed between bursae at the top and cortical bone at the bottom.

3) High intensity of bursae and cortical bone compared to nearby structures.

Convex nature of SSP tendon which is evident from Figure 1, is found in all the im-

ages of the database. The location of SSP tendon runs from supraspinatus fossa super-

ior of scapula to insert in greater tuberosity in humerus which makes it suppressed

between bursae and cortex in all the images. Bursae and Cortex due to its high echo-

genic property exhibits hyperechoic structure compared to neighboring areas. These

three unique features for SSP tendon were exploited to propose a robust method in-

variant to above variations for segmentation of SSP tendon. The process flow for pro-

posed methodology for automatic segmentation of SSP tendon is shown in Figure 2.

Consequently, the proposed algorithm for automatic segmentation of SSP tendon fol-

lows the steps:

Step 1: Select ultrasound image of SSP tendon from database.

Step 2: Apply image enhancement using Rayleigh adaptive contrast enhancement

followed by despeckling using anisotropic diffusion method.

Step 3: Decomposition of enhanced image by real valued curvelet coefficients using

wrapping function.
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Figure 2 Process flow for proposed model.
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Step 4: Morphological, Logical and Area filtering operation to remove the regions

that do not belong to SSP tendon or are outliers.

Step 5: Polynomial curve fitting to smooth tendon and recover lost boundary points

and construct the mask as per radiologist requirement.

The detailed methodology for proposed work is discussed in subsequent section.

Image enhancement and feature extraction

The ultrasound image suffers from poor resolution and contrast which causes tra-

ditional segmentation algorithm to poorly segment region of interest from the given

image. In proposed method, ultrasound image obtained is first contrast enhanced. The

contrast enhancement is performed using Rayleigh distribution following the concept

that speckle in ultrasound image follows Rayleigh pattern [41]. The probability and cu-

mulative density function of Rayleigh distribution is exploited to map the contrast en-

hanced pixel to image grid. The image pixels are mapped to the contrast enhanced

image using the following equations.

Mapping for pixels in contrast enhanced image is performed using cumulative density

function (CDF) of Rayleigh distribution which is described below

F xð Þ ¼ 1−e−x
2=2σ2 ð1Þ

The probability density function (PDF) for Rayleigh distribution is given by,
f x; σð Þ ¼ 1
σ2

e−x
2=2σ2 ð2Þ

The pixel wise mapping was done using,
Enhanced pixel value ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ2

log 1− pð Þ

s
ð3Þ

where,

p ¼ 1− e−x
2=2σ2

� � Xk
j¼0

nj
n

 !
ð4Þ

nj gives the number of pixels in image with jth gray level and x is the gray value. The

value of σ for enhancement was empirically selected to be 0.4.
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Contrast enhancement makes the boundaries as well as speckle in ultrasound image

more prominent. Therefore removal of speckle noise from the homogeneous region so

as to keep the boundaries prominent is performed using anisotropic diffusion method

[42]. Number of iterations of anisotropic diffusion performed for smoothing image

is 10. The resultant image from contrast enhancement and despeckling is shown in

Figure 3(b) and Figure 3(c) respectively. The preprocessing performed enhances the

features needed for automatic extraction of tendon. The feature extraction from

preprocessed image is performed using curvelet transform and is discussed in sub-

sequent section.

Directional edge feature extraction

The capability of curvelet transform to extract directional edge features at different orien-

tations is exploited for extracting edge features from ultrasound image. Curvelet trans-

form provides details such as spectral information successfully at different orientations

with reduced complexity. Curvelet decomposition using wrapping function method and

real coefficient is used because of reduced complexity and faster computation. The feature

extraction from ultrasound image is performed using method illustrated in Figure 4.

Detailed description about curvelet transform can be found in literature [37].
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3 Sequence of Steps for segmentation of SSP tendon (a) Original image (b) Contrast
enhanced (c) Despeckled image (d) Curvelet transform (6.5% coefficient) (e) Area filtering (f)
Morphological operations (g) Segmented tendon image (h) Polynomial interpolation (i) Final
SSP tendon.
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Curvelet transform decomposes the image in different direction and frequencies in

the curvelet domain. Curvelet coefficients after decomposition are well adapted to con-

tain edges from the image. SSP tendon ultrasound image consist of bright features,

which comprise of Bursae and Cortex along with some outliers in the form of muscle

fat mixture or abnormalities such as calcification. The brightest structures along with

some outliers are likely to present in biggest curvelet coefficients after decomposition.

To find best scale and percentage of coefficients, energy analysis is conducted at scales

2, 3, 4 and 5 with orientation 16 and 32. The percentage of curvelet coefficients were

varied from 5 to 10. The method used for calculating the optimum number of features

was based on the energy of the region delineated by radiologist. The energy of the region
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delineated by radiologist is correlated with the energy of the reconstructed image using

curvelet coefficients at different scales and orientation.

The manual delineation of SSP tendon was performed by radiologist and is shown in

color outline in Figure 5. The segmentation region includes bursae and cortex. The big-

gest curvelet coefficients contains region with highest intensity values which in this

case happens to be: bursae, cortex and outliers. The idea is to filter out coefficients of

high intensity values and remove outliers generating a mask to segment SSP tendon.

The energy of manually segmented bursae and cortex by radiologist was calculated

using the formula

Energy ¼
X

i;j
p i; jð Þð Þ2

m � n ð5Þ

where, p(i, j) is the pixel intensity at (i, j) and m* n are the total number of pixels in an

image. The fraction of the energy contained in the area segmented by radiologist is

computed. The ratio is calculated for the amount of energy contained in manual seg-

mented region to that of total energy of the image.

Ratio ¼ energy of segmented region by radiologist
total energy of an image

ð6Þ

The amount of energy contained in region extracted by radiologist was found to be
consistent at 40 ± 5%, with almost all the images of the database. The best scale and

orientation from curvelet decomposition was selected based on the energy analysis per-

formed over scales: 2, 3, 4 and 5 with different orientation. The results of the analysis

are shown in Table 1.

Table 1, shows the ratio of energy when 5%-10% of the curvelet coefficients are used

to reconstruct ultrasound image. The ratio is calculated between the image recon-

structed using varying percentages from 5%-10% to that of total energy of the image. It

suggests that scales 3, 4, 5 at different orientation provides energy ranging from 95%-

99.9% with curvelet coefficients percentage from 5%-10% respectively.
Figure 5 Manual segmentation of Bursae and Cortex by radiologist.



Table 1 Results with varying percentage of coefficients at different scales and orientation

Percentage of curvelet coefficients (%)

Scales/orientation 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

2/16 54.7 57.6 61.4 64.06 69.0 70.6 73.1 74.68 82.2 80.9 82.8

2/32 54.7 57.6 61.4 64.06 69.0 70.6 73.1 74.68 82.2 80.9 82.8

3/16 95.83 96.64 98.8 99.10 99.1 99.11 99.0 99.2 99.5 99.7 99.8

3/32 97.4 97.4 98.6 99.4 99.8 99.4 99.3 99.3 99.6 99.8 99.7

4/16 96.8 96.43 97.0 97.78 98.5 98.8 98.9 98.91 99.4 99.47 99.6

4/32 97.7 97.3 98.6 98.1 97.9 98.2 98.0 98.8 99.2 99.4 99.3

5/16 95.18 95.7 95.7 96.3 96.5 97.4 97.5 98.4 98.8 98.9 99.1

Gupta et al. BioMedical Engineering OnLine 2014, 13:157 Page 9 of 18
http://www.biomedical-engineering-online.com/content/13/1/157
From the analysis performed above, on segmented image by radiologist, it has been

found that bursae and cortex together contains 40 ± 5% of energy. Therefore, the de-

composition of curvelet at higher scales was avoided. The decomposition at scale 2

with orientation 16 and 32 was performed, as evident from Table 1, and it is found that

the amount of energy contained, when two different orientations are chosen is almost

same. Therefore, in order to save computational time scale 2 with 16 orientations

were chosen. The energy level increases with increasing percentage of coefficient

from 5-10%. The image reconstructed with percentage coefficient 6.5%-7% was found

to contain the region manually segmented by radiologist along with outliers in the

form of muscle fat-mixture.

The reconstructed images with 6.5% curvelet coefficient are shown in Figure 6 and

Figure 3(d). The image contains several outliers that are unavoidable along with bursae

and cortex. If lower percentage of coefficients is chosen, then, the structure for bursae

and cortex starts to deteriorate. The reconstructed image with 6.5% curvelet coeffi-

cients contains 64.06% of the energy, wherein the bursae and cortex along with ap-

proximately 15%-20% of outliers is found. The energy test was conducted on several

images from dataset and the results were found to be consistent. The second level with

16 orientations was found to be giving the best approximation for energy and was clos-

est to radiologist’s segmentation. The increase in the energy of the reconstructed image
Figure 6 Image reconstructed with 6.5% of curvelet coefficients at scale 2 and 16 orientations.
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is consistent with the outliers that are generated in the process to automate the seg-

mentation. The next step of the algorithm focuses on removing the outliers. In the sub-

sequent steps, the removal of outliers is performed using mathematical concepts of

morphological operations and area filtering.

Area filtering and connected component analysis

The outliers in the reconstructed image remain in the form of bright structures which

could be either muscle fat mixture or some form of an abnormality, i.e. calcification. The

reconstructed image is rescaled to gray levels (0 ~ 255) to perform connected component

analysis and thresholding. The removal of intensity components with lower intensity

levels is performed by applying threshold based on formula introduced in [43] that is,

T ¼ μ− ασ ð7Þ

where, μ is the mean and σ is the standard deviation respectively. The value of α (α < 1)

is chosen small enough. The thresholding is performed based on

p i; jð Þ ¼ p i; jð Þ if p i; jð Þ > T
0 if p i; jð Þ < T

�
ð8Þ

where, p(i, j) is the value of pixel intensity at location (i, j) in an image. To remove un-

desired pixels or blobs from image area filtering is applied. To perform this, connected

component analysis (CCA) with eight neighborhood is performed where the connected

pixel component that are identified below certain threshold are removed. The threshold

value is specified empirically, which involves analyzing the number of pixels in bursae

or tendon for reconstructed image. From the analysis of more than 100 images with

the size (421x580), it has been found that blobs with total number of pixels values less

than (~ < 5000) tend to be the outlier. The thresholding value is relative to the size of

the image. The image formed after the thresholding is shown in Figure 3(e).

Although most of the undesired objects are removed in this step, but some of the com-

ponents connected with bursae and tendon are still inevitable. Therefore, desired mask

for segmentation of SSP tendon is obtained by removal of these remaining outliers.

The dilation, erosion, opening, closing are standard mathematical morphological op-

erations that helps in the removal of distorted texture and noise from image using

structure element. For this application, disk was used as structure element. Morpho-

logical operations leave the structures bigger than SE unchanged. The drawback of con-

ventional dilation and erosion is that they do not preserve edge information perfectly.

The new operator proposed by Bangham et al. [44], takes care for above drawback and

emphasizes on size of structure but forgets the shape completely. Morphological opera-

tors that take care of above problem and consider both shape and size were proposed

[45]. If the image is I(x, y) and g is the mask image, then general equation for geodesic

dilation is defined by equation

δ kð Þ
g Ið Þ ¼ δg δk−1g Ið Þ

h i
ð9Þ

And, the equation for geodesic erosion is written as

� kð Þ
g Ið Þ ¼ �g �k−1g Ið Þ

h i
ð10Þ
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Step by step execution and pointwise application of maximum (minimum) operator

after each iteration of elementary geodesic erosion (dilation) is necessary to control the

marker image. In general, after execution of some steps both the above equations be-

comes stable and no further changes occur that means

δ kð Þ
g Ið Þ ¼ δk−1g Ið Þ and � kð Þ

g Ið Þ ¼ �k−1g Ið Þ ð11Þ

based on above definitions, opening and closing operation by reconstruction is per-

formed as below:

I�oS ¼ δ reconsð Þ
g I o Sð Þ ð12Þ

I •– S ¼ δ reconsð Þ
g I • Sð Þ ð13Þ

Application of conventional morphological operations sometimes introduces new
edges and contours which are not needed. Reconstruction by geodesic morphological

operations yields results wherein these drawbacks are removed. Sample test of geodesic

morphological operations is shown in Figure 7. The morphological operation shown

uses disk as the structure element.

The morphological operation is performed to remove the remaining objects. The me-

thod involves two steps: one is morphological dilation followed by erosion operation.

The structure element used for morphological operations is a disc with the size 17x6.

The result obtained from morphological operations is shown in Figure 3(f ). In the final

step, the area filtering is applied wherein the high threshold value is chosen so as to ob-

tain the mask for SSP tendon. The sequence of steps for image segmentation is shown

in Figure 3.

Therefore, the algorithm is scripted as follows:

1) A thresholding operation is performed to remove high intensity values. The

threshold value is chosen based on Eq. (27).

2) Connected component analysis (CCA) with 8-neighborhood is performed for

removal of blobs not belonging to SSP tendon which are considered as outliers.

3) Area filtering is performed to remove the blobs with small number of pixels which

do not belong to tendon.

4) Morphological operation of opening is performed using structure element of 17×6.

5) In last step, again area fileting is used to obtain the clear structure of tendon.
Figure 7 (a) Original image (b) Result of conventional opening (c) Result of opening
by reconstruction.
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The results at this stage, shown in Figure 3(g), were presented to radiologist for as-

sessment. After discussion, recommendation was put forward to extract smooth bound-

ary for SSP tendon which enclose bursae and cortex.

Polynomial curve fitting and morphology

The boundary for extracted mask was found and polynomial curve fitting is applied to

make the boundary of the mask smooth for better visualization of the tendon. Two dif-

ferent quadratic functions were estimated based on the boundary point of the extracted

region. The curve fitting was performed by using quadratic polynomial function. The

result for this step is shown in Figure 3(h).

The curve fitting also recovered some of the missing boundary points from images

thereby increasing the accuracy of the results. The experimental results of proposed al-

gorithm and radiologist assessment of segmentation is discussed in next section.

Performance evaluation

The proposed algorithm was assessed based on the quantitative and qualitative analysis.

The quantitative analysis for the assessment of proposed methodology for segmentation

was assessed using three metrics: 1) false positive rate (FPR); 2) true positive rate (TPR)

[46]; 3) Accuracy (ACC). The radiologist were requested to delineate SSP tendon

manually ultrasound image. The comparison of the area delineated by radiologist and

automatic segmentation performed by proposed algorithm was done based on the area

of true positive, false positive, true negative, false negative. The Pictorial representation

for corresponding area is shown in Figure 8.

The formula used to calculate FPR, TPR and Accuracy is,

TPR ¼ Am ∩ Aaj j
Amj j ; ð14Þ

FPR ¼ Am ∪ Aa−Amj j
Amj j ; ð15Þ

ACC ¼ Am ∩ Aaj j
Am ∪ Aaj j ð16Þ

where , Am is the manual segmentation for area of SSP tendon performed by an experi-

enced radiologist. Aa is the automatic segmentation of SSP tendon performed by pro-

posed methodology.
Manual Segmentation by
Radiologist

Automatic Segmentation
using Algorithm

True Positive

False Negative

False Positive

Figure 8 Corresponding areas for false positive, false negative and true positives.
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In the second round of assessment, the segmented images were provided to radiolo-

gist and blind evaluation was performed for partial thickness tear (PTTs) and full thick-

ness tear (FTTs). And the results obtained by radiologist assessment were modelled so

as to give sensitivity and specificity value for the method. The true positives, false posi-

tives, false negatives and true negatives in this were defined as

True Positives- pathology existent and diagnosed correctly

False positives- pathology not present and diagnosed

False negatives- pathology present but not diagnosed

True Negatives- pathology not present and not diagnosed

The sensitivity and specificity were calculated using the formula below

Sensitivity ¼ True positives
True positivesþ False negatives

; ð17Þ

Specificity ¼ True negatives
True negativesþ False positives

ð18Þ

The results for assessment of pathological condition were computed and compared

with the diagnosis of PTTs and FTTs using ultrasound images.

Experimental results

The result of tendon segmentation as per radiologist assessment was performed with

the set operations described in proposed methodology section. The results of each step

are shown in Figure 9.

Figure 10, shows qualitative comparison of the results using manual segmentation

by radiologist and result obtained using proposed algorithm. Figure 10(a) shows the

true positive results wherein accurate segmentation as per radiologist requirement

was attained. Figure 10(b) it can be seen that the region segmented by radiologist is

present in the result with an outlier region shown. The false positives arise because of

the inaccurate detection of muscle fat outlier which plays important role in segmenta-

tion. In Figure 10(c), result shows inaccuracy of the algorithm in the form of detec-

tion of false negatives, wherein the reason for inaccuracy is poor visibility of bursae.

No cases of true negatives were found (true negatives are cases when the segmenta-

tion area completely lies outside the region manually segmented by radiologists). The

quantitative assessment of results obtained using proposed algorithm was performed

using the above mentioned parameters.

Table 2 shows the accuracy of the results in the form of true positive rate, false posi-

tive rate and accuracy of the result.

The performance of proposed method was also tested for focused assessment with

the help of two radiologist and result were compared with the existing literature

[47-49]. The results were compared for the diagnosis of partial thickness and full thick-

ness tear using sensitivity and specificity values.

The results of comparison are shown in Table 3. In [47], authors used 40 images to

compute the sensitivity and specificity of the diagnosis of PTTs and FTTs in SSP tendon,

whereas Singh et al. in [48] uses 36 images to quantify the diagnosis of PTTs and FTTs in

SSP tendon and Rutten et al. in [49] uses a database of 68 images to quantify the diagnosis

of PTTs and FTTs in SSP tendon using ultrasound images. In this work, authors have

used a set of 116 ultrasound images to qualitatively evaluate the performance of proposed
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Figure 10 Results from manual segmentation of radiologist and automatic segmentation using
proposed algorithm (a) True positive (b) False positive (c) False negative (d) True negative.

(a) (b) (c)

(d)
(e) (f)

(g) (h) (i)

Figure 9 Stepwise results of proposed method (a) Original image (b) Contrast enhanced (c)
Despeckled image (d) Curvelet transform (6.5% coefficient) (e) Area filtering (f) Morphological
operations (g) Segmented tendon image (h) Polynomial interpolation (i) Final SSP tendon.
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Table 2 Performance result of the algorithm

Performance metric Evaluation result

TPR 0.9137

FPR 0.0862

ACC 0.9561
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method for assessment of PTTs and FTTs in ultrasound images. The sensitivity and speci-

ficity values for PTTS computed using [47,48], and [49] are 92.3% and 92.6%, 66.7% and

93.5%, 92% and 33.5% whereas using the proposed method the values are 94% and 93.6%.

Similarly, for FTTs sensitivity and specificity for [47,48], and [49] are 92.6% and 94%,

92.3% and 94.4%, 94% and 94% resp. whereas sensitivity and specificity for diagnosis of

FTTs using segmented SSP tendon are 95.6% and 95% respectively.

Algorithm run-time for automatic segmentation of SSP tendon is 1.4 s. The algorithm

was implemented using i7, 3.4 GHz processor and 8GB RAM. The enhancement of image

for segmentation takes 0.55-0.65 s and segmentation part takes about 0.75-0.85 s. There-

fore, the proposed approach is fast, reliable with scope of possible future application in

real time diagnosis. The assessment parameter and computation time for the algorithm

suggests high performance for proposed methodology.

Transportability of method

Ultrasound is a deterministic imaging modality which means images acquired under

identical circumstances will yield similar result. Despite being deterministic in nature

ultrasound image is highly operator dependent. In the proposed method, the attempt

has been made to decrease the operator dependency of ultrasound machine for diagno-

sis of pathological conditions in SSP tendon. The image features are studied from im-

ages taken from different operator and machines and analyzed for unique features. The

method uses image processing methods to extract features from the tendon and recon-

struct SSP tendon. In all 116 images taken from different source and two different radi-

ologists it was found that SSP tendon is convex in nature and is always compressed

between bursae at the top and humeral cortex at the bottom. Both bursae and cortex

have hyperechoic texture as compared with tendon. Since proposed method is based

on the redundant nature of occurrence of SSP tendon in ultrasound image and the al-

gorithm is tested for variability in equipment and operators visualization of SSP tendon.

Therefore, proposed method can be used in clinical settings for post processing of SSP

tendon ultrasound image for pathologies in SSP tendon with reduced inter and intra

observer variability. The method can also be effectively used for training of medical

officers for focused and effective diagnosis of SSP tendon pathology. The future work
Table 3 Comparison of results for focused pathology (PTT- Partial thickness tear;
FTT- Full thickness tear)

Author Patient Partial thickness tear Full thickness tear

Sens. Spec. Sens. Spec.

E. ElGawad et al. [47] 40 92.3 92.6 92.6 94

Singh et al. [48] 36 66.7 93.5 92.3 94.4

Rutten et al. [49] 68 92 33.5 94 94

Prop. Method 116 94 93.6 95.6 95
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is intended to reduce the complexity of algorithm so that it can be effectively used as

real time imaging tool embedded in ultrasound equipment for clinical analysis of SSP

tendon.

Discussion and future work

Before starting the research, literature survey on the existing methods for diagnosis of

SSP tendon was studied. Also, several rounds of discussions with radiologist were per-

formed regarding the state of art methods for diagnosis of SSP tendon. The problems

faced by patients and radiologist during examination were consulted. It was found that

MSK ultrasound techniques provide subjective evaluation regarding existing patholo-

gies in tendon and are also painful because of duration of examination. The initiative

was taken to automate the pathologies in SSP tendon. To further the research and

automate pathologies first challenge was to locate region of interest i.e. SSP tendon

automatically so that focused and accurate diagnosis for the ailment can be performed.

In this paper, a novel method for automatic segmentation of SSP tendon from ultra-

sound image is proposed. The method involves image enhancement and feature extrac-

tion from ultrasound image. The image was contrast enhanced using statistically

adaptive method followed by speckle removal using anisotropic diffusion method. The

image was then decomposed using curvelet transform. The energy analysis of decom-

position was performed to select the amount of curvelet features needed for mask gen-

eration. It was found, that 6.5% of curvelet features, at scale 2 and 16 orientations,

provides best mask for segmentation. Images were reconstructed using extracted curve-

let features and geodesic morphological operations were used to extract edges and re-

move outliers. Connected component analysis and area filtering were applied to

remove the remaining false areas and perform accurate detection. There is a trade-off

between selecting curvelet features and removal of false areas. High percentage of cur-

velet features results in increase of false positives. The polynomial curve fitting is used

to smooth the area of SSP tendon as per radiologist’s recommendations. The seg-

mented SSP tendon will assist the radiologist for focused and accurate diagnosis of ab-

normalities in the tendon. The quantitative assessment performed for segmentation

and results of diagnosis for pathological conditions suggests the effectiveness of pro-

posed algorithm. Also the computation time for algorithm shows the capability of the

algorithm to be made available for real time diagnosis of pathologies in SSP tendon.

In future, the work will be focused to provide an automated system for pathology in

SSP tendon. The computation time of the algorithm will be reduced by refining ex-

tracted coefficients so that possible implementation in real time diagnosis is possible.

Conclusion
The automatic segmentation of SSP tendon was successfully achieved and radiologist

assessment for segmentation was performed. As per radiologist comments, the results

help in enhancing the accuracy of diagnosed pathology because of focused assessment

of tendon. The accuracy for the assessment of segmentation of SSP tendon is 95.61%.

When diagnosing tendinosis, tear or calcification in SSP tendon segmented tendon pro-

vide focused and more reliable result with increased sensitivity and specificity. The pro-

posed algorithm well suited for real time applications for musculoskeletal ultrasound in

SSP tendon.
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