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Abstract

Background: Selecting an appropriate number of surface electromyography (EMG)
channels with desired classification performance and determining the optimal
placement of EMG electrodes would be necessary and important in practical
myoelectric control. In previous studies, several methods such as sequential forward
selection (SFS) and Fisher-Markov selector (FMS) have been used to select the
appropriate number of EMG channels for a control system. These exiting methods
are dependent on either EMG features and/or classification algorithms, which means
that when using different channel features or classification algorithm, the selected
channels would be changed. In this study, a new method named multi-class
common spatial pattern (MCCSP) was proposed for EMG selection in EMG
pattern-recognition-based movement classification. Since MCCSP is independent on
specific EMG features and classification algorithms, it would be more convenient for
channel selection in developing an EMG control system than the exiting methods.

Methods: The performance of the proposed MCCSP method in selecting some
optimal EMG channels (designated as a subset) was assessed with high-density EMG
recordings from twelve mildly-impaired traumatic brain injury (TBI) patients. With
the MCCSP method, a subset of EMG channels was selected and then used for
motion classification with pattern recognition technique. In order to justify the
performance of the MCCSP method against different electrode configurations,
features and classification algorithms, two electrode configurations (unipolar and
bipolar) as well as two EMG feature sets and two types of pattern recognition
classifiers were considered in the study, respectively. And the performance of the
proposed MCCSP method was compared with that of two exiting channel selection
methods (SFS and FMS) in EMG control system.

Results: The results showed that in comparison with the previously used SFS and
FMS methods, the newly proposed MCCSP method had better motion classification
performance. Moreover, a fixed combination of the selected EMG channels was
obtained when using MCCSP.

Conclusions: The proposed MCCSP method would be a practicable means in channel
selection and would facilitate the design of practical myoelectric control systems in
the active rehabilitation of mildly-impaired TBI patients and in other rehabilitation
applications such as the multifunctional myoelectric prostheses for limb amputees.
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Introduction
Surface electromyography (EMG) is an electrical manifestation of muscle contractions,

which has been used as a convenient and proprioceptive control signals for the opera-

tions of limb prostheses [1], assistive exoskeletons [2], and rehabilitation robots [3]. In

recent years, one of the most popular applications of EMG signals would be to use

EMG-based pattern recognition (EMG-PR) algorithms to control multifunctional po-

wered prostheses [1,4-7]. More recently, the EMG-PR also was adopted in the neural

rehabilitation of the motor impaired patients who suffer from neurological injuries for

development of an active rehabilitation system. The previous studies have proved that

the active rehabilitation is promising in enhancing the therapeutic effect [8] and acce-

lerating the brain plasticity [9]. In light of these findings, the EMG-PR algorithm was

proposed to identify the motor intentions of stroke survivors and patients with incom-

plete cervical spinal cord injury [10,11]. The results of these previous studies have sug-

gested that EMG-PR algorithms would be feasible and useful in active rehabilitation of

patients suffering from neurological injuries.

High density EMG recordings have been increasingly applied in EMG-PR algorithms

[12-14] with an attempt to capture more temporal and spatial information about the

muscle activities and electrophysiology. With more channels of temporal information

that can reflect the activities of some small forearm muscles, a better motion classifica-

tion performance could be achieved when using high density EMG recordings [13,14].

And the topographical maps of EMG amplitude can be used to examine the exact elec-

trode locations where the strong myoelectric activity is experienced during a motion

task [12-14]. However, the data processing of high-density EMG recordings from a

large number of EMG electrodes is computationally expensive, making it impractical in

real-time myoelectric control. Additionally, the high dimensional EMG recordings may

cause the classifier to over-fit the training data due to the irrelevant or redundant infor-

mation. Therefore, selecting an appropriate number of EMG channels with desired

classification performance and determining the optimal placement locations of elec-

trodes would be necessary in the practical myoelectric control for a potential user.

Currently, there are two commonly used ways to determine the number and the loca-

tions of EMG electrodes in the applications of EMG-based motion classification. One

direct way is based on the physiologically known anatomical knowledge of skeletal

muscles [15-17], in which the electrode sites would be chosen by viewing the intensity,

repeatability and consistency of multi-channel EMG signal recordings. For the persons

with the intact functions of skeletal muscles, using the muscle-physiology-based way

we may quickly and easily determine the appropriate sites of EMG electrodes since

their almost consistent muscle anatomy could ensure producing very similar muscle

contractions when they actuate a limb activity. However, for the persons with some

muscular issues such as the patients with a post-stroke, traumatic brain injury or limb

amputation, when doing a limb activity, their muscle contractions would be different

from healthy people and may be various between patients since the extents, the posi-

tions and the causes of their muscular damages might be inconsistent. Thus it would

be hardly to use this kind of clinical method for determining the appropriate electrode

sites in patients.

Another way to determine a subset of appropriate EMG channels is based on a cer-

tain optimizing criterion. A commonly used method is the sequential forward selection
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(SFS)-based channel selection algorithm [14,16], in which the most informative EMG

channels were determined by an optimization procedure with an optimizing objective

of high motion classification accuracy. Since SFS method requires to repeatedly per-

form the searching procedure for the optimal channels until obtaining a given number

of channels, this classification-accuracy-based method would take a long computation

time to get a relatively optimal subset of EMG channels. Moreover, SFS method must

rely on a specific set of EMG features and a specific EMG pattern-recognition algo-

rithm to do the selection of the optimal channels for an EMG control application.

When the EMG features and/or pattern-recognition algorithm would be changed for

some reasons such as trying to use different features or algorithms for higher classifica-

tion performance, the selected EMG channels might be not optimal yet. Thus the

optimization procedure would be executed again to search the optimal channels ac-

cordingly. Some feature-dependent algorithms such as the quasi-optimal channel selec-

tion method based on partial Kullback-Leibler information [18] and coefficient-based

channel selection method using principal component analysis [19] also have been

proposed and used for channel selection. In addition, another two feature selec-

tion methods, Fisher-Markov selector (FMS) based on Fisher criterion [20] and

the minimal-redundancy-maximal-relevance based on mutual information [21], also

fall into the group of feature-dependent channel selection methods. It is obvious that

these feature-dependent channel selection methods would rely on the EMG features.

Similarly, when changing the set of EMG features such as increasing/decreasing a

feature to/from it, the selected channels might not work well again, thus another chan-

nel selection procedure would be required to re-determine the appropriate channels

accordingly.

Alternatively, the direct channel selection method (i.e., variable selection) which dir-

ectly works on the raw EMG data also has been proposed to determine a set of appro-

priate channels for EMG recordings. The Monte Carlo method reported by Nagata

et al. for hand motion classification is one of such kinds of the direct channel selection

approaches [22]. Unlike the classification-accuracy-based and the feature-dependent

channel selection methods, this raw-data-based method is independent of EMG fea-

tures and classification algorithms. Thus a unique set of optimal EMG channels might

be determined from the multi-channel EMG recordings. As a result, when the features

and/or classification algorithm are changed, the selected EMG channels would be

retained. In this study, we proposed a novel direct channel selection approach named

multi-class common spatial pattern (MCCSP) for channel selection in EMG pattern-

recognition-based movement classification. Since MCCSP would be independent on

EMG features and classification algorithms, it would be more convenient for channel

selection in developing an EMG control system than the exiting methods. The per-

formance of the proposed MCCSP method in selecting an optimal set of EMG channels

was assessed with high-density EMG recordings from twelve mildly-impaired traumatic

brain injured (TBI) patients. Generally, the TBI patients would suffer from the physical

and behavioral disorders, so appropriately physical therapy should be employed for the

rehabilitation of their physical functions. The EMG-control active rehabilitation sys-

tems would be a promising way for TBI patients’ neural function recovery [23]. In

addition, the performance of the proposed MCCSP method was compared with that of

two exiting channel selection methods, SFS and FMS.



Geng et al. BioMedical Engineering OnLine 2014, 13:102 Page 4 of 16
http://www.biomedical-engineering-online.com/content/13/1/102
Methods
Data collection

Twelve mildly-impaired male patients with TBI participated in this study. They were

chosen based on the upper limb motion impairment level assessed by a physical therapist.

According to the definition of the stages in the Brunnstrom Assessment Scale, they were in

stage IV-V and got the scores of 49 to 61 with the Fugl-Meyer Assessment of Sensorimotor

Recovery after stroke, in which a zero score denotes no any function and a score of 66 des-

ignates as normal function. All of the subjects did not have any experience of attending this

kind of research study before. In the experiment, they were asked to use their unilateral

arm with severer motor impairment to perform 21 forearm and hand movements (Figure 1)

plus one “no movement”. Each movement was maintained for 6 s with a moderate force

and repeated 6 times. A rest time of 8 s was set between two successive movements in each

trial. All subjects could choose to finish all or part of the 22 movements based on their

own motor ability. The Research Ethics Board of the Shenzhen Institutes of Advanced

Technology, Chinese Academy of Sciences, approved the experimental protocol of this

study, and each subject gave written informed consent and provided permission for publi-

cation of photographs for a scientific and educational purpose.

The high-density EMG acquisition system (Refa-128, TMS International BV, Netherlands)

was used to record the EMG signals during the experiment. The 56 monopolar electrodes

(5 mm in diameter) were placed on the forearm and hand of subjects, as shown in Figure 2.

The 48 of 56 electrodes were placed on the forearm in an 8 × 6 grid from 1 cm proximal to

the elbow crease to 1/3 distal to the wrist joint with an electrode inter-distance of around

2 cm and other eight electrodes were placed on the hand muscles with two electrodes on

the first dorsal interosseous, three on the thenar group muscles, and three on the hypothe-

nar group muscles. A reference electrode was fixed on a nylon bracelet that was worn on

subject’s wrist. The sampling rate of EMG signals was set as 1024 Hz.

EMG data preprocessing

The EMG signals recorded with 56 electrodes were digitally filtered with a five-order

Butterworth high-pass filter at 30 Hz, and then the 50 Hz power line interference was

reduced with a notch filter from EMG recordings. Two electrode configurations,

monopolar mode and bipolar mode, were considered in the study with an attempt to

see if the two modes of EMG signals would provide different performance in classifying
Figure 1 21 classes of forearm and hand movements included in the study.



Figure 2 Electrode placement in the experiments.
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the movements. The raw recordings were 56 monopolar EMG signals (Figure 3(a)).

The bipolar EMG recordings were formed with the differential values between two ad-

jacent monopolar channels along the orientation of muscle fibers from the 56 monopo-

lar EMG signals, resulting in 45-channel bipolar EMG signals, as shown in Figure 3(b).

EMG channel selection

The proposed MCCSP-based channel selection algorithm as well as the SFS and FMS

were applied on the two modes of high-density EMG recordings to select an optimal

set of EMG channels (1-20), respectively.

MCCSP algorithm

MCCSP-based channel selection algorithm considers the EMG data from all the chan-

nels simultaneously. To clearly explain its principle and implementation, the principle



1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

(a) Monopolar Configuration

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45

(b) Bipolar Configuration

Figure 3 Two electrode configurations. (a) 56-channel monopolar electrode configuration (b) 45-channel
bipolar electrode configuration.
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of two-class common spatial pattern (CSP) algorithm, the CSP-based channel selection

algorithm, and the MCCSP-based channel selection algorithm were successively intro-

duced as follows.

CSP algorithm

CSP is a supervised two-class filter algorithm by calculating the linear spatial filters that

maximize the variance of one class and meanwhile minimize the variance of another

class [24,25]. In this way, the two classes can be maximally separated by their variances.

Suppose we want to classify two motion tasks, class A and class B, and use XA and XB

to denote their corresponding signal matrix with a dimension n × d, where d is the

number of channels and n is the number of samples per channel. The object becomes

to find a spatial filter matrix W which can maximize the variance of class A and

minimize the variance of class B, which would correspond to an optimization problem

that can be formulated as:

W ¼ argmax
W

WTΣAW

WTΣBW
ð1Þ

By solving a generalized eigenvalue problem, the linear spatial filter matrix W can be

obtained by simultaneously diagonalizing the covariance matrix ΣA and ΣB:

WΣAW
T ¼ DA WΣBW

T ¼ DB DA þ DB ¼ I ð2Þ

where ΣA ¼ 1= n−1ð Þ�XA
�XT

A and ΣB ¼ 1= n−1ð Þ�XB
�XT

B . With the constraint condition

DA +DB = I, the eigenvectors with the largest eigenvalues for DA have the smallest ei-

genvalues for DB and vice versa. Applying the filter matrix W to the raw signals X

would give d output signals Y =W * X that were also called components. The variance

of each component is indicated by its corresponding eigenvalue on the principal diag-

onal of DA, for class B of DB. In the binary classification problem of EEG signals, the

first component that has the largest variance for class A and the smallest variance for

class B and the last component that has the smallest variance for class A and the lar-

gest variance for class B were commonly used [25].
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CSP-based channel selection

With W−1 (inverse matrix of W) that is called spatial patterns, the original signal matrix

X can be reconstructed by X =W−1 * Y. The first and last columns of W−1 would be the

most important spatial patterns that explain the largest variance of one motion and the

smallest variance of the other. If considering the coefficients of spatial patterns as pro-

jection weights, the two channels corresponding to the maximal coefficients of spatial

pattern vectors may be the channels that are most correlated with the motion specific

sources. This method has been used by Wang et al. to select four EEG channels from

118 channels for classifying three motor imaginary tasks and achieved a high classifica-

tion accuracy [24].

MCCSP-based channel selection

Given a problem with multiple classes of movements in the study, we firstly extended

the two-class CSP into multi-class form by using one-versus-rest (OvR) scheme, as

done in [26]. For each motion class, a corresponding filter matrix WC
−1 was calculated

by maximizing the variance of the class and minimizing the sum of the variances of all

other classes:

WC ¼ argmax
Wc

WT
CΣCWC

WT
C Σi≠CΣið ÞWC

ð3Þ

Accordingly, multiple spatial pattern matrices corresponding to all the included mo-

tion classes would be obtained, where c denotes the class label. Then we used these

spatial pattern matrices to select the optimal channels for subsequent pattern recogni-

tion analysis. In the study, we adopted similar coefficients-based channel selection

method as did in the two-class CSP. For each spatial pattern matrix corresponding to a

specific motion class, the two channels corresponding to the maximal coefficients of

the first and the last spatial pattern vectors were selected, and then all the selected

two-channel from each spatial pattern matrix WC
−1 were combined together, which

were then used as the optimal channels in the subsequent pattern recognition analysis.

Note that for the two channels selected from a specific spatial pattern matrix, e.g., WA
−1,

one or both of which may be overlapped with that obtained from another spatial pattern

matrix WB
−1. So the selected channels for all movements were ranked in the order of their

occurrence frequency from high to low. The number of selected EMG channels might

vary for different subjects.

SFS algorithm

SFS is an iterative searching procedure, in which one optimal channel that produces

the highest classification accuracy was firstly selected among all the channels, and then

another channel that can achieve the maximum classification accuracy with the com-

bination with the selected channels was added [14,16]. Suppose we require to choose

an optimal subset with n channels from all the 56 channels, the classification computa-

tion procedure would be repeatedly implemented by (56 + 56 + 1 − n) * n/2 times.

FMS algorithm

FMS is essentially a feature selection algorithm, which was proposed to select the glo-

bally optimal subset of features from high-dimensional feature space in the spirit of



Geng et al. BioMedical Engineering OnLine 2014, 13:102 Page 8 of 16
http://www.biomedical-engineering-online.com/content/13/1/102
Fisher’s class separation criterion [20]. By using specific kernel functions and the

Markov random field optimization techniques, the FMS is capable of selecting features

and has efficient computational complexity. In this study, we firstly applied FMS to the

EMG feature matrix to get the indices of all the features that were ranked in the order

of their importance coefficients, and then the feature indexes were mapped to their cor-

responding channel indexes. In this way, the optimal EMG channels could be selected.

Feature extraction and motion classification

With a selected subset of EMG signals, a shifting analysis window with a time length of

150 ms and an increment of 100 ms (50 ms overlapping) was used to segment the

EMG signals into a series of analysis windows. Then two commonly used time-domain

feature sets were extracted from each analysis window, respectively. They were (1) four

time-domain features (TD) [6], mean absolute value (MAV), number of zeros crossings

(ZC), number of slope sign changes (SSC), and waveform length (WL), and (2) the six

order autoregressive (AR) model coefficients [27] plus the root mean square (RMS)

amplitude of EMG signals (TDAR). For each analysis window, the features extracted

from all the selected EMG channels was concatenated to form a feature matrix, which

was then fed into a classifier for motion classification.

Two classifier algorithms, the linear discriminant analysis (LDA) and the k-nearest

neighbor (KNN), were used in this study. The LDA classifier was used for its merit of

algorithm simplicity and low computational cost [5], and the KNN classifier was used

for its tolerance to arbitrary data distribution [28]. In order to find the best feature-

classifier combination for each selected EMG subset, each of the two classifiers was

separately combined with each of the two feature sets, yielding four different feature-

classifier combinations.

Performance evaluation

The classification accuracy, defined as the percentage of the number of correct classifi-

cation decisions over the total number of classification decisions, was used to assess

the motion classification performance [7]. Five-fold cross validation was performed in

motion classification when using the EMG subset selected via MCCSP and FMS for the

purpose of evaluating their performance in EMG-PR. The EMG feature matrix ex-

tracted from the selected EMG recordings was randomly divided into five subsets with

equal length. Four of the five subsets were used as a training set and the remaining one

subset was considered as a testing set in each classification process to compute the

classification accuracy. The classification accuracies were averaged over the five valid-

ation results from the folds. For the EMG subset selected by SFS method, the first half

of the feature matrix was used as the training set and its second half was used as the

testing set. No cross validation was conducted herein considering the newly added

EMG channel was determined according to the maximum classification accuracy dur-

ing last round repetition.

Statistical analysis

To assess the statistical difference among the three channel selection methods, one-

way ANOVA was performed in terms of motion classification accuracy with SPSS

Statistical Modeling Software (SPSS 17.0 IBM Corp., Chicago, IL). In addition, we also
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analyzed the effect of feature set, classifier, and combination of feature set and classifier

on the classification performance by performing two-way ANOVA. The interaction ef-

fect of feature set and classifier on classification performance was firstly assessed. If the

effect was insignificant, the main effects of features set and classifiers were examined.

The level of statistical significance was set to p < 0.05.

Results
Number of selected EMG channels using MCCSP

Figure 4 illustrates the numbers of selected EMG channels by MCCSP for all the 12

subjects when using EMG signals from monopolar and bipolar channel configurations,

respectively. It can clearly observe from Figure 4 that the number of selected EMG

channels varied for different subjects, ranging from 18 to 30 for the two channel con-

figurations. And we can see that the numbers of selected channels by using monololar

and bipolar EMG signals, respectively, were similar (in 10 subjects) or same (in two

subjects). In order to make the following results comparable among all the subjects,

the maximum number of selected EMG channels was set as 18. Note that for a subject

the number of selected channels were corresponding to the movement classes that

could be completed by him/her. Since the motor impairment of all the subjects was dif-

ferent, the number of completed movement classes (nClass designated by the yellow

squares in Figure 4) would vary with a range of nClass = 19-22.

Optimal feature-classifier combination

To find the optimal feature-classifier combination for each selected EMG subset, the

average classification accuracy across all subjects were calculated and shown in Figure 5

when using TD-LDA, TDAR-LDA, TD-KNN, and TDAR-KNN, respectively. The x-axis

denoted the number of involved EMG channels that were selected by using MCCSP

(Figure 5(a) and (d)), SFS (Figure 5(b) and (e)), and FMS (Figure 5(c) and (f )), respect-

ively. These results show that with monopolar configuration (Figure 5(a)-(c)), TD-KNN

outperformed other three feature-classifier combinations when using the EMG subsets

determined by MCCSP and FMS, while TDAR-LDA was the best feature-classifier

combination when using the EMG subset selected by SFS. It was almost the same case

for bipolar configuration (Figure 5(d)-(f )). The difference was that when using the
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Figure 4 Number of selected EMG channels when using MCCSP. The red dots, blue diamonds, and
yellow squares denote the number of selected monopolar EMG channels, the number of bipolar EMG
channels, and the number of movement classes (nClass) completed by a subject, respectively.
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Figure 5 Comparison of feature-classifier combinations in terms of classification performance. The
average classification accuracy across all subjects was calculated when using four different feature-classifier
combinations and three different EMG subsets selected via MCCSP (a)(d), SFS (b)(e) and FMS (c)(f),
respectively. Both monpolar electrode configuration (a)(b)(c) and bipolar electrode configuration
(d)(e)(f) were considered.
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EMG subset selected by MCCSP, TDAR-KNN and TD-KNN had almost the same clas-

sification performance. In addition, when using the EMG subset determined by SFS,

the difference among all the four feature-classifier combinations became smaller.

We further investigated whether the feature set, classifier, or the combination of fea-

ture and classifier had a significant impact on the classification performance when

using the EMG subset determined by MCCSP (Figure 6(a) and (b)), SFS (Figure 6(c)

and (d)), and FMS (Figure 6(e) and (f )), respectively. The results demonstrate that when

using the monopolar EMG channels determined by MCCSP (Figure 6(a)), the mono-

polar EMG channels determined by SFS (Figure 6(c)), and the bipolar EMG channels

determined by SFS (Figure 6(d)), the classification performance was relatively stable

with respect to different feature sets and classifiers. However, when using the bipo-

lar EMG channels selected by MCCSP (Figure 6(b)), the monopolar EMG channels

selected by FMS (Figure 6(e)), and the bipolar EMG channels selected by FMS

(Figure 6(f )), the classification performance became sensitive to the choice of fea-

ture set and/or classifier.
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Figure 6 Impact of feature set, classifier, and feature-classifier combination on classification
performance. The selected EMG subset was determined by using MCCSP (a)(b), SFS (c)(d), and FMS (e)(f)
method, respectively. Both monopolar electrode configuration (a)(c)(e) and bipolar electrode configuration
(b)(d)(f) were considered. The blue triangles denote significant interaction effect of feature set and
classifier, the red dots and yellow blocks denote significant main effect of classifier and feature set,
respectively.
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Comparison of channel selection methods and electrode configuration

Figure 7 shows the comparison of average classification accuracy across all subjects

when using the EMG subsets (1-18 channels) selected by MCCSP, SFS, and FMS and

their corresponding optimal feature-classifier combinations. The results indicate that

applying TD-KNN to the EMG subset determined by MCCSP brought the highest clas-

sification accuracy and the best convergence when 4 to 13 optimal monopolar elec-

trodes (Figure 7(a)) and 2 to 18 optimal bipolar electrodes (Figure 7(b)) were utilized.

But the difference was not significant (p-value > 0.05).

Figure 8 compares the two electrode configurations in terms of motion classification

accuracy, which was obtained by using the EMG subset selected via MCCSP and the

TD-KNN feature-classifier combination. The results show that the bipolar configur-

ation was consistently better than the monopolar configuration with the increase of the

number of included EMG channels. In addition, 18 EMG channels might be sufficient
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Figure 7 Comparison of channel selection methods in terms of classification accuracy. Both (a)
monopolar electrode configuration and (b) bipolar electrode configuration were used, respectively.
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to get a proper motion classification performance. Because the average classification ac-

curacy was 93.03% when using 18 optimal monopolar EMG channels, only 1.47% lower

than that when using all 56 monopolar EMG channels (94.50%), and 18 optimal bipolar

EMG channels brought an average classification accuracy of 95.58%, only 2.59% lower

than that when using all 45 bipolar EMG channels (98.17%).

Comparison of distribution of selected EMG channels

We also analyzed the distribution of selected EMG channels when using different

feature-classifier combinations for each subject. Figure 9 demonstrated a representative

example from a subject (BI01), where 20 monopolar EMG channels (Figure 9(a)) and

10 bipolar EMG channels (Figure 9(b)) were selected, respectively. It was found that for

both electrode configurations, the distribution of EMG channels selected by SFS varied

with the choice of feature-classifier combination. When using FMS, the distribution of

selected EMG channels varied slightly following the change of feature set. When using

MCCSP, however, a fixed channel distribution was obtained independent of feature and

classifier. The channel distributions for other subjects almost presented the similar pat-

terns as the subject.

Discussion
Generally speaking, using more EMG electrodes could capture more electrophysio-

logical information that may improve the performance of movement classification in

EMG-PR-based control system such as multifunctional myoelectric prostheses and ac-

tive rehabilitation robots. However, this would simultaneously increase the complexity

and cost of the EMG controlled systems. Thus it becomes necessary and important to

find an appropriate number of electrodes and their locations for the high performance

of a myoelectric control system before it is clinically viable. Theoretically, to get the op-

timal channels from high density channels, all the combinations of desired number of

channels should be involved in the pattern recognition analysis. But it often be imprac-

tical to search a global optimal solution when a large number of channels are involved.

For example, searching 6 from 56 channels would result in 32,468,436 different combi-

nations. So some suboptimal methods have been proposed and used in the previous

studies [14,16,18,19]. Two commonly used methods for channel selection are SFS and
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FMS, which are dependent on either classification accuracy or EMG features. While

these methods might be applicable for channel selection, they have some limitations, as

mentioned above in Introduction section. In this study, a novel direct channel selection

algorithm was proposed and its performance in selecting the appropriate channels has

been evaluated by a high-density EMG recordings from twelve mildly-impaired TBI pa-

tients. Since the newly proposed method (MCCSP) for channel selection is independent

on EMG features and classification algorithms, it should be more convenient for chan-

nel selection in comparison to the SFS and FMS, especially when changing the EMG

features or the classification algorithms is needed.

By examining two different types of EMG features and two pattern-recognition algo-

rithms, we found that the TD features combining with a KNN classifier would be a

better configuration for the selected EMG subset via MCCSP, and TDAR features with

a LDA classifier would be a better one for the determined channels by using SFS

(Figure 5). In addition, the electrode configuration is also a factor that would affect

the motion classification performance. When the number of selected electrodes was

increasing, the motion classification accuracy in bipolar electrode configuration

reached a plateau (Figures 5 and 7) more quickly than that in monopolar electrode

configuration. Furthermore, using same number of EMG channels, the bipolar
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electrode configuration always achieved higher classification accuracy than the

monopolar electrode configuration (Figure 8). These findings are similar as the con-

clusions obtained by Zhou and Huang et al. [14,16]. Generally, a monopolar electrode

can provide more electrophysiological information than a bipolar electrode. However,

different EMG applications may need different information involved in EMG signals.

For the EMG-based motion classification, the useful information should be these

components of EMG signals that are characteristic of discrepancy for different move-

ments, which could make a classifier to easily identify a movement. This may be one

reason why the bipolar electrodes would outperform the monopolar electrodes in

movement classification. Another possible reason underlying these findings would be

that compared to a monopolar electrode, a bipolar electrode acts as a differential op-

erator that can remove some common components such as direct-current part and

common-mode noise in EMG signals. These common components in different chan-

nels might not provide any discriminate information for movement classification,

even making the classification performance worse. In future study, we are interested

in exploring the reasons.

As a commonly used channel selection method in EMG-PR based classification, the

previous studies have shown that SFS would be an effective method in selecting the ap-

propriate EMG channels [7,13,14,16]. However, in comparison to the proposed MCCSP,

SFS was consistently worse just with one exception of using only one EMG channel

(Figure 7). With SFS method, the first chosen EMG channel would be the global

optimum. However, when more channels were considered, it was impossible to get the

globally optimal EMG subset by using the SFS method. Compared with FMS, the pro-

posed MCCSP performed slightly better (Figure 7) in classifying different arm/hand

movements. In addition, the computational cost should be also an interesting perform-

ance metric in channel selection. In this study, we found that the average cost time

taken by searching 18 optimal monopolar EMG channels was about 0.98 s when using

the proposed MCCSP, significantly lower than that when using SFS (with TD feature

and LDA classifier) (about 2096 s), FMS (with TD feature) (10.56 s), or FMS (with

TDAR feature) (18.67 s), respectively. Additionally, a fixed combination of the selected

EMG channels could be achieved when using MCCSP (Figure 9). These outcomes of

this study may suggest that as an alternative, the MCCSP might be an effective and

practicable choice for channel selection in the design of a practical myoelectric control

system. Note that the channels selected by the three different methods in the study

were inconsistent, but the similar classification performance was achieved by these se-

lected channels. This would be because the three methods depend on different princi-

ples in channel selection. As mentioned above, as a direct channel selection algorithm

the proposed MCCSP uses the raw EMG data to select the appropriate channels, the

FMS and the SFS rely on EMG features and classification accuracy for searching the

optimal channels, respectively. Thus the different channel combinations would be ob-

tained by using the three methods. However, this does not mean there is no need to

carefully select the channels. In the EMG-PR movement classification, it is the patterns

of EMG signals from the selected channels that are considered as a whole to train and

test a classifier for movement classification. Although different channel combinations

were determined by the three methods, their EMG patterns all could provide identifi-

able information to properly classify different movements. So a similar classification
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performance could be achieved by the three methods. This may indicate that the chan-

nel combination for similar classification performance would be not only one.

It should be noted that all the results of this study were conducted by means of post-

processing and evaluated with offline classification accuracy which might not reflect

the real-time performance directly [29]. In real-time applications, the EMG signals

would be easily affected by some factors like muscle contraction force [30], skin impe-

dance [31], electrodes shift [30,32], arm position variation [33,34], and muscle fatigue

[30,35]. The stability of the proposed channel selection algorithm was not considered

in current study. Note that Huang et al. investigated the temporal stability of the

SFS-selected electrodes by validating the EMG data recorded from follow-up experi-

ment in terms of classification performance [16]. The repeatability of EMG signals re-

corded from the selected electrode sites and their inter-parameter agreement [15]

would be also necessary to examine the stability of channel selection algorithm. With

these important issues, we will examine the stability of the channels selected by the

proposed MCCSP in our future work.
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