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Abstract

Background: Extracorporeal membrane oxygenation (ECMO) can replace the lungs’
gas exchange capacity in refractory lung failure. However, its limited
hemocompatibility, the activation of the coagulation and complement system as
well as plasma leakage and protein deposition hamper mid- to long-term use and
have constrained the development of an implantable lung assist device. In a tissue
engineering approach, lining the blood contact surfaces of the ECMO device with
endothelial cells might overcome these limitations. As a first step towards this aim,
we hypothesized that coating the oxygenator’s gas exchange membrane with
proteins might positively influence the attachment and proliferation of arterial
endothelial cells.

Methods: Sheets of polypropylene (PP), polyoxymethylpentene (TPX) and
polydimethylsiloxane (PDMS), typical material used for oxygenator gas exchange
membranes, were coated with collagen, fibrinogen, gelatin or fibronectin. Tissue
culture treated well plates served as controls. Endothelial cell attachment and
proliferation were analyzed for a period of 4 days by microscopic examination and
computer assisted cell counting.

Results: Endothelial cell seeding efficiency is within range of tissue culture treated
controls for fibronectin treated surfaces only. Uncoated membranes as well as all
other coatings lead to lower cell attachment. A confluent endothelial cell layer
develops on fibronectin coated PDMS and the control surface only.

Conclusions: Fibronectin increases endothelial cells’ seeding efficiency on different
oxygenator membrane material. PDMS coated with fibronectin shows sustained cell
attachment for a period of four days in static culture conditions.
Background
In the European Union, 700 lung transplantations are performed for the treatment of lung

failure per year [1]. Because organ shortage limits this number, 20% of patients on the

waiting list for a transplant die every year [2]. Lung transplantation’s associated risks such

as acute and chronic graft rejection, the need for life-long immunosuppression and a five

year survival rate of just above 50% [2] lead to its classification as a treatment of last resort.

Leading to transplantation early in life, Mucoviscidosis is the most frequent inborn cause

of terminal chronic respiratory insufficiency with an incidence of 1 in 3000 live-births [3].

End stage treatment of other chronic respiratory diseases such as chronic obstructive
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pulmonary disease (COPD), idiopathic pulmonary fibrosis or pulmonary arterial

hypertension also involves lung transplantation as the final treatment option.

Extracorporeal membrane oxygenation (ECMO) can replace the lungs’ gas exchange

capacity until recovery or may be used as bridge-to-transplant in terminal lung failure

[4]. However, limited hemocompatibilty associated with possible subsequent plasma

leakage and loss of gas transfer capacity due to unspecific protein adsorption on the

gas exchange membranes as well as inflammatory processes initiated by the foreign

material’s surface limit its use for long-term application. Also, the limitations delineated

above constrained the development of a fully implantable lung assist device.

Tissue engineering’s new strategies for enhancing biocompatibility comprehend methods

that allow the fabrication of a confluent endothelial cell layer on biological and artificial

surfaces [5]. The confluent endothelial layer of blood vessels regulates coagulation by tightly

controlling the plasmatic coagulation cascade and the adherence of thrombocytes. The in-

tact endothelium also orchestrates the delicate balance between pro- and anti-inflammatory

stimuli at its surface, the complement cascade and leukocyte mediated processes being the

most important ones. Hence, a confluent endothelium on the surface of a gas exchange

membrane should be able to control the activation of coagulation and inflammation

observed on current oxygenator membranes. In a tissue-engineering approach, this

endothelialisation could be performed in vitro prior to the possible implantation of

the device.

Material characteristics have hampered surface endothelialization in several instances.

Bengtsson et al. implanted endothelialized mechanical heart valves made from pyrolytic

carbon in pigs in the pulmonary position [6]. The endothelial cells were swept away by the

blood flow within one hour. Herring et al. observed similar results for the endothelialization

of vessel grafts fabricated from Polytetrafluoroethylene [7]. Still, extensive surface modifica-

tion as proposed by Haverich et al. resulted in a confluent endothelial cell layer on

Polymethylpentene (TPX) [8], a material employed in the production of gas exchange

membranes. These membranes, also manufactured from Polypropylene (PP) and Polydi-

methylsiloxane (PDMS), have been developed with a focus on lowering adhesion of proteins

and cells and endothelial cell seeding on these surfaces might not be straightforward.

Regarding simpler adsorption strategies for protein coating onto oxygenator membranes

and their effects on endothelial cell adhesion, growth and differentiation, no workup has

been performed thus far that provides a head-to-head comparison of a wider array of

adsorbed proteins on all currently used oxygenator materials.

Material characteristics and different protein coatings might influence endothelial cell

adhesion and proliferation. Thus, membranes from TPX, PP and PDMS were coated

with gelatin, collagen IV, fibroectin or fibrinogen. Initial cell attachment as well as cell

proliferation were measured.
Methods
Membranes & protein coating

Polymethylpentene (TPX) and PP membranes were purchased from Goodfellow

(Germany), cut into discs (diameter 15 mm) and fixed at the bottom of a 24-well

microtiter plate (Becton & Dickinson, Germany). PDMS membranes were directly

cast to the bottom of a microtiter plate using a two-part PDMS rubber (ELASTOSIL,
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Wacker Chemie, Germany). One week prior to protein coating, the membranes were ste-

rilized using low-temperature hydrogen peroxide gas plasma (STERRADs 100S sterilisa-

tion system; Ethicon, Germany). Lyophilized proteins (all from Sigma, Germany) were

dissolved in double-distilled water according to the manufacturer’s instructions at a

concentration of 10 μg / mL except for gelatin, as it is standard to use it at a concentration

of 20 μg / ml for cell culture. Following sterile filtration, 500 μl of the respective protein

solution were used to coat the membranes for 24 hours at 37°C. Gelatin coating

was performed for 15 minutes to avoid crystallization. Three samples of each possible

membrane – protein combination were fabricated.
Cell isolation and culture

Sheep carotid arterial endothelial cells were used for this experiment as sheep are a

widely accepted animal model in cardiovascular tissue engineering. For cell isolation,

carotid arteries were harvested from juvenile sheep deceased during other experiments

under sterile conditions and immediately placed in sterile transport buffer (100 mM

HEPES, 140 mM NaCl, 2.5 mM KCl, 10 mM glucose, 1% antibiotic/antimycotic solution

(penicillin G-streptomycin-amphotericin B; Gibco, Karlsruhe, Germany); pH 7.4). The pro-

cedures used conform to the “guide for the care and use of laboratory animals” published

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Endothelial cells were isolated from the explanted carotid arteries. The artery was

washed with phosphate-buffered saline (PBS; Gibco, Karlsruhe, Germany) before removing

endothelial cells using 1 mg / ml collagenase (Sigma, Germany). Endothelial cells were

re-seeded on 2% gelatin pre-coated tissue culture flasks in endothelial basal medium

(PAA Laboratories GmbH, Pasching, Austria) supplemented with endothelial medium

supplement (PAA Laboratories GmbH) and 1% antibiotic-antimycotic solution

(penicillin-streptomycin-amphotericin B; Gibco) and maintained in a humidified incuba-

tor at 37°C and 5% CO2. Upon 80% confluence, cells were serially passaged using 0.25%

trypsin/0.02% EDTA solution (Gibco). Cells in passage 4 were used for this study.
Cell seeding

Cells were suspended in endothelial basal medium with supplement and seeded onto the

protein coated membranes at a concentration of 5 * 104 / cm2. Uncoated, tissue-culture

treated wells on the same multiwell-plates served as positive controls while uncoated

membranes served as negative controls. Cells were maintained in a humidified incubator

at 37°C and 5% CO2. Medium was changed on day 2.
Conventional light microscopy

Untreated samples were analyzed with routine bright field microscopy (AxioImager; Carl

Zeiss GmbH, Germany) and scaled images were acquired using a digital camera (AxioCam

MRm; Carl Zeiss GmbH). Software assisted cell counting was performed on the acquired

images (Image-Pro Plus Version 6.2; Media Cybernetics Inc., MD, USA).
Statistics

Continuous variables are expressed as mean ± SD or median and interquartile range in

parenthesis unless stated otherwise. Due to the small sample size the analysis is rather
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descriptive. Data analysis was performed using commercially available software

(SAS enterprise guide version 4, SAS Institute Inc., NC, USA & Microsoft Excel 2007,

The Microsoft Corporation, USA).
Results
Endothelial cell seeding efficiency is within range of tissue culture treated controls for fibro-

nectin treated surfaces only (Table 1). After 24 hours 72% (± 15%) cells seeded on control

surfaces adhere while 93% (± 5%) adhere on fibronectin coated PDMS (Figure 1). Adhe-

rence of cells on fibronectin coated PP and TPX is 55% (± 7%) and 56% (± 4%), respectively.

All other surface coating / material combinations lead to attachment rated below 25%.

Uncoated membranes allow for the attachment of less than 20% of the seeded cells.

Cells seeded onto the control surface proliferate throughout the culture period with cell

numbers increasing by 60% (± 30%) during four days. On day four, cells are almost con-

fluent on the control surface (Figure 2). Cells also grow to confluence on fibronectin coated

PDMS while cell proliferation remains lower at 34% (± 2%) due to the high initial

cell density (Figure 3). Cell morphology reveals the “cobblestone pattern” on both surfaces,

which is typical of differentiated endothelial cells in monolayer culture (Figure 2).

Cells seeded onto fibronectin coated PP also proliferate well with an increase in cell

number of 50% (± 22%) from day 2 to day 4 (Figure 3). Keeping in mind the lower

seeding efficiency, this does not result in a confluent endothelial cell layer (Figure 2).

Cell morphology does not show the typical “cobblestone pattern”. Instead, elongated,

branching cells make dedifferentiation of the endothelial cells obvious.

Cells seeded on fibronectin coated TPX begin to detach from the surface from day 1

to day 2 already. Only 38% (± 6%) of the initially seeded cells remain on the surface
Table 1 Median and interquartile range of cell numbers / mm2 with respect to material,
protein coating and culture time

Material Protein Day 1 (cells / mm2) Day 2 (cells / mm2) Day 4 (cells / mm2)

Control 504 [493 – 505] 559 [543 – 589] 673 [626 – 690]

Polypropylene (PP) No Coating 99 [95 – 104] 93 [82 – 93] 130 [114 – 136]

Gelatin 75 [72 – 82] 127 [105 – 133] 343 [278 – 348]

Fibronectin 252 [241 – 303] 215 [188 – 299] 439 [360 – 466]

Fibrinogen 109 [100 – 110] 105 [99 – 123] 194 [169 – 209]

Collagen IV 98 [89 – 103] 108 [99 – 116] 182 [173 – 288]

Polymethyl-pentene (TPX) No Coating 57 [49 – 59] 15 [11 – 21] 35 [23 – 39]

Gelatin 28 [27 – 29] 30 [22 – 31] 3 [3 – 5]

Fibronectin 302 [269 – 304] 230 [211 – 246] 114 [110 – 115]

Fibrinogen 50 [41 – 55] 25 [25 – 26] 41 [37 – 44]

Collagen IV 43 [39 – 46] 41 [27 – 42] 21 [21 – 23]

Polydimethyl-Siloxane (PDMS) No Coating 2 [2 – 6] 1 [1 – 4] 1 [1 – 1]

Gelatin 9 [6 – 13] 4 [4 – 65] 2 [2 – 74]

Fibronectin 463 [440 – 484] 572 [531 – 588] 622 [611 – 623]

Fibrinogen 10 [9 – 11] 4 [4 – 5] 2 [2 – 3]

Collagen IV 8 [8 – 9] 6 [5 – 8] 2 [2 – 5]

Footnote: The typical maximum of cell density of endothelial cells in vivo and under in vitro culture conditions is 1,000
cells / mm2.



Figure 1 Box plot of cell density after 24 hours of culture on fibronectin coated materials. Median –
bar, Quartiles – boundaries of box, maximum and minimum – whiskers, intial seeding 500 cells / mm2. This
diagram illustrates the high seeding efficiency on fibronectin coated PDMS which is on par with seeding
efficiency on standard tissue-culture treated labware (control). Seeding on fibronectin coated PP and TPX is
less efficient.
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after 4 days (Figure 3). Cells show signs of dedifferentiation after the first day of culture

already (Figure 2).

Cells seeded onto uncoated membranes or membranes coated with gelatin, fibrinogen

or collagen IV all reveal a dedifferentiated morphology with elongated, branching cells.

On uncoated as well as gelatin coated PP, cells are able to proliferate with an increase

in cell number of 30% (± 12%) and 457% (± 15%) respectively. Still, no confluent cell

layer is present and cells exhibit signs of dedifferentiation.
Discussion
Among other design considerations, one important limiting factor in the development

of an implantable lung assist device is the polymeric surface of commercially available
Figure 2 Phase contrast microscopy of cultured endothelial cells on day 4. A – tissue culture plastic,
B – Polymethylpentene, C – Polypropylene, D – Polydimethylsiloxane. Scale 100 μm. All materials except A
are coated with fibronectin. Endothelial cells form confluent monolayers after 4 days of culture on tissue
culture plastic (A) and PDMS (D) but neither on TPX (B) nor on PP (C).



Figure 3 Normalized cell count on fibronectin coated materials. Cell numbers were normalized to the
number of cells after 24 hours of culture to illustrate changes in cell number. A steady but slow increase in
cell number is observed for cells on tissue-culture treated labware as well as fibronectin coated PDMS. On
TPX, the cell number continuously drops while on PP, the low initial cell attachement leads to a marked
increase in cell number.
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oxygenators, causing limited hemocompatibility, activation of the coagulation and com-

plement system, plasma leakage and protein deposition and, finally, loss of function. To

overcome these issues and render these systems more suitable for long-term use,

endothelialisation of these membranes may be a solution. In a tissue-engineering

approach, this endothelialisation could be performed in vitro prior to the possible

implantation of the device. While small defects in the oxygenator’s surface can lead to

an increased activation of the blood clotting cascade in oxygenators currently used, a

living cell lining might be able to repair endothelial defects.

Endothelial cell seeding depends on surface characteristics, as became obvious in the

efforts of Bengtsson et. al and Herring et al. to endothelialize a mechanical heart valve

and a synthetic vessel prosthesis [6,7]. In the present study, we demonstrate that seeding

of endothelial cells to uncoated oxygenator membranes is ineffective. We also show that

surface treatment by adsorption of gelatin, fibrinogen or collagen IV does not enhance the

cell seeding process, but that adsorption of fibronectin to oxygenator membranes

increases cell attachment. Fibronectin coated PDMS emerges as the surface best suppor-

ting endothelial cell attachment. A confluent endothelial cell layer develops on fibronectin

coated PDMS and the control surface only. Similarly, cells display a “cobblestone pattern”,

which is a sign of well differentiated endothelial cells, throughout the culture period only

on fibronectin coated PDMS and the control surface.

Unlike these results, fibronectin [9], gelatin [10], fibrinogen [11] and collagen IV [12]

are all in use for coating cell culture surfaces and generally allow endothelial cell attach-

ment and growth. They do also support differentiation of immature cells towards endo-

thelial lineage. Thus, the low attachment rates, the detachment and the dedifferentiated

appearance of the seeded endothelial cells are likely due to low protein adsorption onto

the materials’ surfaces. This is rather unsurprising, as oxygenator membranes have been
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designed and optimized for low protein adsorption to enhance hemocompatibility and to

avoid a decrease in gas transfer due to protein deposition. However, fibronectin is able to

adsorb to PP and PDMS well enough to support initial cell attachment. On PDMS, this

adsorption is stable enough to support a confluent endothelial cell layer for 4 days.

Polydimethylsiloxane (PDMS) is in use for microfluidic applications and is known to well

support extensive surface modification [13]. Proteins and peptides facilitating cell culture

adhere to PDMS by adsorption or covalent bonds. Wang et al. immobilized fibronectin

and collagen on PDMS by adsorption and showed good cell attachment and growth rates

for intestinal epithelial cells [14] while Lee et al. demonstrated growth of human umbilical

artery endothelial cells on PDMS coated with fibronectin by adsorption [15].

Plasma or aggressive chemicals create reactive groups on PDMS that are highly unstable

due to its low glass transition temperature of -120°C [16], but allow for further covalent

immobilization of proteins. Sui et al. demonstrated this approach by covalently immobili-

zing RGD peptides onto PDMS, which resulted in adequate attachment of A427 cells

(a colon cancer cell line) [17]. Feinberg et al. employed this approach to immobilize fibro-

nectin in a microprinted dot array onto PDMS that supported an endothelial layer of an

exceptionally high density for a culture period of up to 18 days [18].

Singular reports exist that extensive surface modification allows for endothelial cell

attachment on oxygenator membranes. Haverich et al. coated TPX membranes by

adsorbing a combination of human albumin and sodium-heparin to the surface, while

N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride allowed for subsequent

cross-linking of the coating. This resulted in a confluent endothelial cell layer on TPX [8].

This process is highly complex and creates a protein coating that is multilayered, which

might well lead to a decrease in gas transfer, as is well known for protein deposition on

oxygenator membranes [19].

Takagi et al. coated PP hollow fiber membranes with fibronectin by adsorption or covalent

bonding, reporting confluent cell layers after 1 day of culture. Still, no data on long-term

stability exceeding one day of culture is given [20].

Regarding simpler adsorption strategies for protein coating onto oxygenator membranes

and their effects on endothelial cell adhesion, growth and differentiation, no workup has

been performed thus far that provides a head-to-head comparison of a wider array of

adsorbed proteins on all currently used oxygenator materials. The present study reveals that

adsorption of gelatin, fibrinogen or collagen IV does not support a confluent endothelial cell

growth on currently used oxygenator membrane materials. Adsorbed fibronectin does allow

for initial cell attachment on all tested oxygenator membrane materials and endothelializa-

tion sustains for a period of 4 days on fibronectin adsorbed to PDMS, but not on any other

tested membrane material.
Conclusions
Our results pave way for further analysis of simple protein adsorption procedures to

PDMS surfaces and underline the necessity of more complex coating strategies for

other oxygenator membrane materials to allow endothelialization as a first step towards

the development of an implantable lung assist device.
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