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Abstract

Background: The Filtered Back-Projection (FBP) algorithm is the most important
technique for computerized tomographic (CT) imaging, in which the ramp filter plays a
key role. FBP algorithm had been derived using the continuous system model.
However, it has to be discretized in practical applications, which necessarily produces
distortion in the reconstructed images.

Methods: A novel scheme is proposed to design the filters to substitute the standard
ramp filter to improve the reconstruction performance for parallel beam tomography.
The design scheme is presented under the discrete image model and discrete
projection environment. The designs are achieved by constrained optimization
procedures. The designed filter can be regarded as the optimal filter for the
corresponding parameters in some ways.

Results: Some filters under given parameters (such as image size and scanning
angles) have been designed. The performance evaluation of CT reconstruction shows
that the designed filters are better than the ramp filter in term of some general criteria.

Conclusions: The 2-D or 3-D FBP algorithms for fan beam tomography used in most
CT systems, are obtained by modifying the FBP algorithm for parallel beam
tomography. Therefore, the designed filters can be used for fan beam tomography and
have potential applications in practical CT systems.

Keywords: Filtered Back-Projection (FBP) algorithm, Computerized tomographic (CT)
imaging, Reconstruction, Projection, Optimization

Background
X-ray CT imaging is a procedure to get internal information of an unknown object, such
as biological tissue, from the projection data collected by illuminating the object from
many different directions using X-ray. The object can be represented by its distribution
of X-ray attenuation coefficient. When a parallel beam of X-rays propagates through the
object, the total attenuation of the beam can be expressed by a line integral, which is the
well-known Radon transform [1,2]

pθ (t) =
∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − t)dxdy,

where f (x, y) denotes the object (or its distribution of X-ray attenuation coefficient); pθ (t)
denotes the projection data when the scanning angle is θ and the distance between the
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projection line and the origin is t; δ(·) denotes the Dirac delta function or the impulse
function; x cos θ + y sin θ − t represents a projection line of X-rays, as shown in Figure 1.
The reconstruction procedure is very important for CT imaging. The properties

of the final reconstructed image heavily depends upon the reconstruction algorithm
used. Many algorithms have been proposed. They can be roughly divided into three
categories: 1) analytical schemes, 2) algebraic reconstruction technique (ART) and 3)
statistical iterative reconstruction (SIR) schemes. Some of the ART and SIR algorithms
have become hot topics in CT reconstruction research, however, these categories suf-
fer from their heavy calculation burden, poor convergence speed and other drawbacks
[3-7]. For example, the SIR algorithms lack an efficient stop criterion, and ART algo-
rithms are sensitive to noise in the projection data. Both categories of algorithms
can only been used in a few special fields. The analytical schemes are much simpler
and faster. Of these FBP algorithm is the most important one [1,8-11]. FBP algorithm
and its modified versions for 2-D and 3-D projection reconstruction, such as FDK
(Feldkamp-Davis-Kress) algorithm, have been used in almost all the fields of straight
ray tomography, such as X-ray CT and PET (Positron Emission Tomography) [12-14].
The projections can be classified into two types: parallel and fan beam projection.
Since the FBP algorithm for fan beam tomography is usually obtained by modi-
fying that for parallel beam tomography, only the latter is studied in this paper.
The derivation of FBP algorithm for parallel beam tomography is rather simple and
straightforward. First, the Fourier slice theorem links 1-D Fourier transform (FT) of
the projection data collected at angle θ , Sθ (ω), with 2-D FT at the frequency samples
(ω cos θ ,ω sin θ), F(ω cos θ ,ω sin θ). That is

Sθ (ω) =
∫ ∞

−∞
Pθ (t) exp(−i2πωt)dt

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y) exp (−i2πω (x cos θ + y sin θ)) dxdy

= F(ω cos θ ,ω sin θ).

(1)

Figure 1 Parallel Projection: an object f (x, y) and its projection Pθ (t) are shown from the angle θ .
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Then the unknown f (x, y) can be reconstructed by the inverse Fourier transform (IFT)
or the dual Radon transform as following

f̂ (x, y) =
∫ π

0

∫ ∞

−∞
F(ω cos θ ,ω sin θ)|ω| exp(i2πω(x cos θ + y sin θ))dωdθ

=
∫ π

0

∫ ∞

−∞
Sθ (ω)|ω| exp(i2πωt)dωdθ ,

where f̂ (x, y) denotes the reconstructed image; t = x cos θ + y sin θ ; |ω| is known as

“ramp” filter in the frequency domain. It is well-known that f̂ (x, y) will be identical with
f (x, y) almost everywhere according to the properties of FT and IFT.
In practice, the projection data and reconstructed images have to be discretized to

record, calculate and display. For the discrete projection data, Pθj(l), l ∈ [−N
2 , · · · , N2 ], the

discrete Fourier transform (DFT) and inverse DFT (IDFT) are employed to approximate
(continuous) FT and IFT, respectively. They are

Sθj(ω) ≈ Sθj(k) =
N
2 −1∑

l=−N
2

Pθj(l) exp(−i2π
lk
L

), k ∈ [−L
2
, · · · , L

2
] ,

f̂ (n,m) ≈ π

K

K∑
j=1

Qθj(l),

Qθj(l) = 1
L + 1

L
2∑

k=− L
2

Sθj(k)
∣∣∣ kL

∣∣∣ exp(
i2π

�n cos θj + m sin θj�k
L

)
,

(2)

where N is a positive even integer denotes the number of projection data; L is an even
integer that is equal to or larger than the maximum number of the discrete projection
data at all directions; �x� denotes the nearest integer of x; θj, j ∈ [1, · · · ,K], denote the
discretized scanning angle, and K is the number of the scanning angles. The discretized
ramp filter, | kL |, is named as the reconstruction filter in this paper.
For the continuous systems, Radon and inverse Radon transforms are solid and per-

fect in the mathematics principle [8-10]. However, it necessarily produces non-negligible
degradation when the projection data are discrete (finite) and Radon and inverse Radon
transforms have to be discretized in calculation. Many scholars have studied this prob-
lem. In [15], a multilevel back-projection method had been presented to improve the
computational speed. The point-spread-function (PSF) convolution techniques had been
proposed to reduce blurring. By those approaches the image quality was similar with or
superior to that using the standard FBP technique. In [16], the spline interpolation and
ramp filtering had been combined to improve the standard FBP algorithm, by which the
image quality could also be improved somewhat.
The question can be summarized as how to reduce the degradation caused by the dis-

cretizing process. Since the degradation cannot be removed completely, the question
can also be simplified as how to design the optimal reconstruction filter for the discrete
inverse Radon transform. In this paper, we try to solve this question in a quite differ-
ent way. First, the discrete image model and discrete projection model are employed in
simulating the scanning procedure. The DFT of projection data is regarded as a special
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2-D DFT of the original image using non-uniform frequency sampling. Then, the recon-
structed image is regarded as a convolution of the original image and a particular kernel.
The kernel is constructed by 2-D DFT, IDFT and the reconstruction filter to be designed.
If the kernel become a 2-D Dirac delta function, the reconstructed image will be identical
with the original image. So, the optimal reconstruction filter can be obtained by an opti-
mization procedure that make the kernel approach the 2-D Dirac delta function as near
as possible.
In order to make the idea behind the design scheme clear, a similar question for 1-D sig-

nal is proposed at first, and then it is extended to 2-D situations to solve the corresponding
question in CT reconstruction.

Methods
The reconstruction filter for 1-D signal

Suppose a 1-D real signal x(n), n ∈ [0, · · · ,N − 1], where N is the length of the signal. A
special form of DFT is defined as following

X(k) =
N−1∑
n=0

x(n) exp (−iθkn) , k ∈ [0, · · · ,N − 1] , (3)

where θk denote N angles on the region [0, 2π ] correspond to N frequency samples.
Similarly, the IDFT is defined as following

x̂(n) = 1
N

N−1∑
k=0

X(k) exp (iθkn) , n ∈ [0, · · · ,N − 1] , (4)

where x̂(n) denotes the reconstructed signal.
If θk = 2kπ

N , (3) and (4) become the standard DFT and IDFT, respectively. It is well-known
the original signal x(n) can be perfectly reconstructed when it is transformed into the
frequency domain and then transformed back using the standard DFT and IDFT. That is

x̂(n) = 1
N

N−1∑
k=0

X(k) exp (i2πkn/N)

= 1
N

N−1∑
m=0

x(m)

N−1∑
k=0

exp (i2πk(n − m)/N) = x(n).

However, it may happen θk �= 2kπ
N in some special situations, i.e., the frequency samples

do not distribute uniformly in the frequency region [0, 2π ]. When θk �= 2kπ
N , the original

signal cannot be reconstructed exactly. That is say, the nonuniformity of frequency sam-
pling will produce distortion in the reconstructed signal. A simple example is presented to
show what will happen when the frequency samples are non-uniform. Suppose the origi-
nal signal is x = n, n ∈ [0, 1, · · · , 15], which is plotted in Figure 2 (a). It is transformed into
the frequency domain and then transformed into the time domain using the frequency
samples θk = ( 2kπN )0.8, k ∈ [0, 1, · · · , 15]. The reconstructed signal is plotted in Figure 2
(b), which is quite different from the original signal.
Generally, the original signal can still be reconstructed exactly from X(k) even in such

a situation according to mathematics analysis. However, it may bring in heavy computa-
tional burden. For example, it may involve the calculation of the inverse orMoore-Penrose
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Figure 2 The original signal and its different reconstructed versions. (a) The original signal, (b) the
reconstructed signal after DFT and IDFT using θk = (2kπ/N)0.8, (c) the reconstructed signal after the identical
DFT, IDFT and a filtering process using the designed filter between DFT and IDFT.

pseudo inverse of a large matrix. In order to avoid such a problem, we propose an
alternative approach. At first, the reconstructed signal is expressed as following

x̂(n) = 1
N

N−1∑
k=0

X(k) exp (iθkn) = 1
N

N−1∑
k=0

N−1∑
m=0

x(m) exp(−iθkm) exp(iθkn)

= 1
N

N−1∑
m=0

x(m)

N−1∑
k=0

exp (iθk(n − m)) =
N−1∑
m=0

x(m)h(n − m),

(5)

where h(n − m) = 1
N

∑N−1
k=0 eiθk(n−m). The reconstructed signal can further be expressed

as the periodic (or circular) convolution of h and x,

x̂ = h � x, (6)

where � denotes the periodic convolution operator; x = [ x(0), · · · , x(N − 1)];
x̂ = [ x̂(0), · · · , x̂(N − 1)]; h = [ h(−N + 1), · · · , h(0), · · · , h(N − 1)], which is referred to
as the convolution kernel.
From (5) or (6), if h(l) = δ(l), l ∈ [−N + 1, · · · ,N − 1], i.e.,

h(l) = δ(l) =
{
1, l = 0,
0, l �= 0,

then x̂(n) = x(n). For example, it can be proven that if θk = 2kπ
N (the standard DFT), it

results h(l) = δ(l), and x̂(n) = x(n). It also means the more h(l) is near δ(l), the more
x̂(n) is near x(n).
In order to improve reconstruction performance and avoid heavy calculation burden,

an additional digital filter F(k) is inserted between DFT and IDFT, which is shown in
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Figure 3. According to (5) or (6), F(k) should be designed to drive the new convolution
kernel h(l) = 1

N
∑N−1

k=0 eilθk F(k) to approach δ(l) as near as possible.

Remark 1. From (6), if h(l) �= δ(l), the aliasing distortion will be produced. The more
h(l) is far from δ(l), the more aliasing distortion will be produced. F(k) acts as a correc-
tion term to make h(l) approach δ(l) as near as possible. However, the residual difference
between h(l) and δ(l) not only depends on F(·) but also depends on the original kernel
1
N

∑N−1
k=0 eiθk l. Generally, the difference can be reduced and cannot be removed. The far-

ther the original kernel is different from δ(l), the more residual difference between h(l)
and δ(l) may remain.

Obviously, the convolution kernel may be a complex number. In order to keep x̂(n)

always as a real number, only the real part of h(l), hr(l) = 1
N

∑N−1
k=0 cos(θkl)F(k), is

retained in reconstructing the signal. The simplification can also reduce the calculation
burden in the design F(k). Since it is unknown and may be very complicated, F(k) has to
be expressed in the approximation models, such as Taylor series expansion,

F(k) =
S∑

n=0
ankn, (7)

where S is the degree of Taylor series; an denotes the coefficient to be estimated. The
coefficient estimation has been achieved by a constrained optimization procedure in this
paper. The requirement hr(0) = 1 has been selected as the constrained condition, and∑

l �=0 h2r (l) has been selected as the objective function. The constrained optimization
problem becomes

min
F(k)

∑
l �=0

(N−1∑
k=0

cos(θkl)F(k)
)2

,

s.t.
1
N

N−1∑
k=0

F(k) − 1 = 0.

(8)

For the example in Figure 2, select S = 18. The fmincon function in Optimization Tool-
box of Matlab is employed in optimizing the nonlinear multivariable objective function
(8). The results of optimization procedure, i.e. the coefficients of Taylor series (7) is shown
Table 1.
In the example, by inserting F(k), hr(l) is very near δ(l), which is shown in Figure 4 (b).
However, without F(k), hr(l) is quite different from δ(l), which is shown in Figure 4 (a).
The objective function in (8) can also be employed as an evaluation criterion. The result

Figure 3 The flow chart of the proposed scheme to improve the reconstruction performance.
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Table 1 The coefficients of Taylor series expansion of F(k)(N = 16, θk = (2πk/N)0.8)

a0 0.001585600279081 a9 0.604131093429063

a1 -0.030192172552822 a10 0.108486066097029

a2 0.213462131921848 a11 -0.404865317972757

a3 -0.686735955366388 a12 -0.674935753170146

a4 1.122118847097341 a13 -0.298926140115388

a5 -0.387130280716676 a14 -0.084322132559712

a6 -0.834889525296690 a15 0.339643128448386

a7 -0.005116780492169 a16 0.662450316746720

a8 0.655962903880333 a17 0.239001712406937

a18 -0.529727742063988

is
∑

l �=0(
1
16

∑15
k=0 cos(θkl)F(k))2 = 0.0013. Without the filtering procedure, the evalua-

tion criterion becomes
∑

l �=0(
1
16

∑15
k=0 cos(θkl))2. It results

∑
l �=0(

1
16

∑15
k=0 cos(θkl))2 =

0.2093. A much bigger value means the much more distortion will be brought into the
reconstruction signal.
In this paper, F(k) is referred to as the reconstruction filter. It can improve the recon-

struction performance significantly, which is illustrated by the same example above. The
new reconstructed signal is plotted in Figure 2 (c), which is quite similar with the original
signal.
The example illustrates the reconstruction performance can be improved by an addi-

tional digital filter designed properly. In the next section, a similar scheme is used in
designing the reconstruction filter for CT reconstruction.

The reconstruction filter for CT reconstruction

Let f (n,m) denote the discrete unknown image, n,m ∈ [−N
2 , · · · , N2 − 1], N is a positive

even integer. The image is projected on a detector from different scanning angles θj, j ∈
[1, · · ·K], which produces the projection data pθj(l), l ∈ [−L

2 , · · · , L2 − 1], L is a positive
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(b)
Figure 4 The convolution vectors with andwithout the reconstruction filter (N= 16, θk=(2πk/N)0.8).
(a) The convolution vector without the reconstruction filter, (b) with the reconstruction filter designed.
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even integer equals to or is larger than the maximum number of the discrete projection
data at all directions. A special 2-D DFT of the image is defined as

S
(
k cos θj, k sin θj

) = S
(
k, θj

)

=
N
2 −1∑

n=−N
2

N
2 −1∑

m=−N
2

f (n,m) exp
(

−i2πk
n cos θj + m sin θj

L

)
,

(9)

where k ∈ [−L
2 , · · · , L2 − 1]. S(k cos θj, k sin θj) can be approximately calculated using the

following equation because of projection mechanism.

S
(
k, θj

) ≈
L
2−1∑
l=− L

2

pθj(l) exp
(

−i2πk
l
L

)
. (10)

The reconstructed image f̂ (n,m) can be obtained by the 2-D IDFT of S(k, θj), which is

f̂ (n,m) = 1
LK

K∑
j=1

L
2−1∑

k=− L
2

S
(
k, θj

)
exp

(
i2kπ

n cos θj + m sin θj

L

)
. (11)

By substituting (9) into (11), it results

f̂ (n,m) = 1
LK

K∑
j=1

L
2−1∑

k=− L
2

N
2 −1∑

n′=−N
2

N
2 −1∑

m′=−N
2

f (n′,m′)

· exp
(
i2πk

(
n − n′) cos θj +

(
m − m′) sin θj

L

)

= 1
LK

N
2 −1∑

n′=−N
2

N
2 −1∑

m′=−N
2

f (n′,m′)

·
⎛
⎜⎝ K∑

j=1

L
2−1∑

k=− L
2

exp(i2πk
(n − n′) cos θj + (m − m′) sin θj

L
)

⎞
⎟⎠

=
N
2 −1∑

n′=−N
2

N
2 −1∑

m′=−N
2

f
(
n′,m′) h (

n − n′,m − m′) .

(12)

where

h
(
n − n′,m − m′)

= 1
LK

K∑
j=1

L
2−1∑

k=− L
2

exp
(
i2πk

(
n − n′) cos θj + (m − m′) sin θj

L

)
.

(13)

Consider n, n′,m,m′ ∈ [−N
2 , · · · , N2 − 1], h(n − n′,m − m′) can be regarded as an ele-

ment of a matrix H = {h(n − n′,m − m′)}n,n′,m,m′ . The matrix, H ∈ R(2N−1)×(2N−1), is
named as the reconstruction matrix in this paper. The reconstruction procedure (12) can
be expressed as following

f̂ = f � H , (14)
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where � denotes the 2-D periodic convolution operator here; H is the 2-D convolution
kernel.
Generally, θj+1−θj = π

K is a constant, i.e., the projection angles distribute equally in the
region [ 0,π ]. However, the frequency samples (2π k

L cos θj, 2π k
L sin θj) do not distribute

equally in the 2-D regions, such as [−π ,π ]2. Therefore, (9) and (11) form 2-D DFT and
IDFT using the non-uniform frequency sampling, and the non-ignorable distortion will
be brought into the reconstructed image. This problem is very similar with the 1-D exam-
ple in the previous subsection. In order to reduce the distortion, an additional filter is
necessary. It is similar with F(k) in Figure 3, and is shown in Figure 5. Further more, the
idea behind the design of the additional filter for CT reconstruction is quite similar with
that for 1-D signal reconstruction.
Similarly, the design has been achieved by a constrained optimization procedure. From

(12) or (14), if h(n,m) = δ(n,m), f̂ (n,m) = f (n,m). That is say, ifH is a δ matrix (a matrix
whose elements all are zeros except that the center element is one), the original image
will be reconstructed exactly. It also means the more h(n,m) is close to δ(n,m), the more
f̂ (n,m) is close to f (n,m). Therefore, F(k) should be designed to drive h(n,m) to approach
δ(n,m) as near as possible. Since it is unknown and is perhaps very complicated, F(k) has
to be expressed in the approximation models, such as (7) or Fourier series expansion as
following

F(k) = a0 +
M∑

m=1

(
am sin

mkπ
N

+ bm cos
mkπ
N

)
, (15)

whereM is the degree of Fourier series; am and bm are the coefficients to be estimated.
With the additional filter F(k), the element of reconstruction kernel or (13) becomes

h(n,m) = 1
LK

K∑
j=1

L
2−1∑

k=− L
2

exp
(
i2π

(
n cos θj + m sin θj

) k
L

)
F(k).

Obviously, h(n,m) usually is a complex number. Similarly, only the real part of h(n,m),
hr(n,m), is retained to ensure f̂ (n,m) to be a real number. So, the Equation (13) has been
simplified as following

hr(n,m) = 1
LK

K∑
j=1

L
2−1∑

k=− L
2

cos
(
2π

(
n cos θj + m sin θj

) k
L

)
F(k).

In the design, the requirement hr(0, 0) = 1 (or 1
LK

∑L−1
k=0 F(k) = 1) is selected as the

constrained condition, and
∑

n�=0,m �=0 h2r (n,m) is selected as the objective function. The

Figure 5 The flow Chart with the filtering process to improve the performance of CT reconstruction.
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constrained optimization problem becomes

min
F(k)

∑
n�=0

∑
m �=0

⎛
⎜⎝ K∑

j=1

L
2−1∑

k=− L
2

cos
(
2π

(
n cos θj + m sin θj

) k
L

)
F(k)

⎞
⎟⎠

2

,

s.t.
1
LK

L−1∑
k=0

F(k) − 1 = 0.

(16)

Remark 2. From (16), it is obvious that F(k) depends on N (the image size) and θj (the
scanning angles). The images of same size with same scanning process will have a same
optimal F(k), vice versa. Generally, F(k) can reduce the difference between hr(n,m) and
δ(n,m), however, it cannot remove the difference completely.

Remark 3. From (10), the projection and reconstruction model are relatively simple in
this paper. There are many factors are not considered, such as the quantization error
(the error that when a pixel is not at any projection line and has to be split between the
two nearest projection lines) and projection noise. Even though for such a model, the
optimization may be rather complicated and difficult. For example, the objective function
is very complicated when the image size is large, and/or the number of projection angles
is large.

Results
Example 1. In the example, the size of image is selected as N = 256, the projection

angles θ =[0o, 3o, · · · , 177o]. In the simulation, the expression of the objective function is
very complicated, especially for the objective function. We used some tools in Symbolic
Math Toolbox ofMatlab in simplifying the procedure. The fmincon function inOptimiza-
tion Toolbox of Matlab is used in finding the minimum of the objective function. The
coefficients for the reconstruction filter F(k) in the form of (15) is shown in Table 2, in
whichM = 9.
The reconstruction filter can drive the reconstruction kernel hr(n,m) to be very close

to δ(n,m), which can be illustrated in Figure 6. In the Figure, the dot curve is the center
row (0-th row, or hr(0,m)) of hr(n,m) using the reconstruction filter designed, while the
dash curve is the corresponding row of hr(n,m) using the ramp filter |k/N |. The dash-
dot curve is the corresponding row without a filter, and the solid curve denotes the ideal
curve δ(l). It shows the curve using the designed filter is closest to the ideal curve δ(l).

Table 2 The coefficients of Fourier series expansion of F(k)(N = 256, θk = 0o,3o, · · · , 177o)
a0 0.122730836679312

a1 0.916483009109464 b1 -0.497982711366623

a2 0.462544582824757 b2 -0.120545376607102

a3 0.128736533815128 b3 0.040355538652453

a4 0.167851665809050 b4 -0.182518259771096

a5 0.315690517777738 b5 -0.094362761222605

a6 0.480769918991562 b6 0.285895915083407

a7 -0.189184291984498 b7 0.563061220832784

a8 -0.335163337055193 b8 -0.086997019632140

a9 0.023005162904716 b9 -0.087383132662148
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Figure 6 The comparison of the 0-th rows of reconstruction matrixes with and without the
reconstruction filters (N= 256, θ=[0o,3o, · · ·, 177o]).

Consider the symmetry of the reconstruction matrix, it implies the designed filter can
make hr(n,m) be more close to δ(n,m) than the ramp filter.
A simulation example is employed to illustrate the availability of the reconstruction

filter designed. The original image is of 256 × 256 pixels, head phantom, which is shown
in Figure 7 (a). The projections are calculated using radon function in Matlab with the
rotation angle interval 3o. Since the noise in the projection data are usually modeled by
the Poisson distribution [17,18], we suppose the projection data is polluted by Poisson
noise whose mean is 5 (also the variance is 5, while the maximum of projection data is 66).
It is then reconstructed using FBP algorithm with different reconstruction filters, which
are shown in Figure 7 (b) and (c). It shows the small white circle in Figure (c) has more
obvious boundary than that in Figure (b).
Three criteria, MSE (Mean Square Error ), UQI (Universal Quality Index) and MI

(mutual information), are employed to assess the efficiency of the designed filter, which
are defined as following [19].

MSE
(
f i, f 0

) = 1
M

√√√√M−1∑
k=0

(
f ik − f 0k

)2,
where f ik and f 0k denote the pixels of the reconstructed image f i and reference image f 0,
respectively;M is the total number of pixels in the selected region. Since it is a simulation

Figure 7 The original image and the reconstructed images using FBP algorithmwith different
reconstruction filters (N= 256, θ=[0o, 3o, · · ·, 177o]). (a) The original image, (b) using the ramp filter
|k/N|, (c) using the designed filter.
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example, the original image is known and selected as the reference image. UQI is defined
as following

UQI
(
f i, f 0

) = 2Cov{f i, f 0}
σ 2
i + σ 2

0

2f̄i f̄0
f̄ 2i f̄

2
0
,

where f̄i and σ 2
i denote the image mean and variance, respectively; Cov{f i, f 0} denote the

covariance of the reconstructed image f i and reference image f 0. The mean, variance and
covariance are defined as the following

f̄ i = 1
M

M−1∑
k=0

f ik ,

σ 2
i = 1

M − 1

M−1∑
k=0

(
f ik − f̄i

)2
,

Cov{f i, f 0} = 1
M − 1

M−1∑
k=0

(
f ik − f̄i

) (
f 0k − f̄0

)
.

UQI measures the pixel-to-pixel similarity between the reconstructed f i and reference
image f 0. It was designed by modeling any image distortion as a combination of three
factors: loss of correlation, luminance distortion, and contrast distortion. Its value ranges
between 0 and 1. The closer to 1 theUQI value is, the more similar to the reference image
the reconstructed image is.
When the reconstructed image and reference image are interpreted as “stochastic

processes”,MI is used for measuring their mutual dependence.

MI(f i, f 0) =
N ′−1∑
k=0

N ′−1∑
n=0

p(f ik , f
0
k ) log

(
p(f ik , f

0
k )

p(f ik)p(f
0
k )

)
,

where p(f ik) and p(f 0k ) denote the marginal densities of f i and f 0, respectively, which are
calculated using the corresponding histograms; the joint density p(f ik , f

0
k ) is estimated

from the joint histogram of f i and f 0; N ′ denotes the number of bins in the histogram.
UQI measures the pixel-to-pixel dependence of the reconstructed image on the reference
image, MI measures the histogram correlation between them.MI can be highly sensitive
to small differences between visually similar images.
The results for the example in the form of the three criteria are showed in Table 3.

The results illustrate the designed filters have better reconstruction performance than the
standard ramp filter.

Example 2. In one example, the size of image is N = 128 × 128, θ = [0o, 4o, · · · , 176o],
the coefficients for F(k) in the form of (15) is listed in Table 4. In another example, the
size of image isN = 256×256, θ = [0o, 1o, · · · , 179o], the coefficients for F(k) in the form
of (15) is listed in Table 5.

Table 3 The results of performance evaluation in Example 1

Criteria MSE UQI MI

The ramp filter 1.237E-3 0.3429 0.2758

The designed filter 9.129E-4 0.4751 0.4563
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Table 4 The coefficients of Fourier series expansion of F(k)

(N = 128, θk = 4ko, k = 0, · · · , 44)
a0 0.167768278296600

a1 0.742071367715883 b1 -0.050516729362635

a2 -0.007222808863187 b2 -0.257039580419913

a3 0.205121481459339 b3 -0.107883292543924

a4 0.080764672022586 b4 0.021273467611896

a5 -0.013240204304737 b5 -0.106948545272204

a6 0.297619345807562 b6 -0.114131247626016

a7 0.184808294809679 b7 0.324654368672888

a8 -0.198785426563876 b8 0.153168707602131

a9 -0.059263999435747 b9 -0.059403297538579

Two similar simulation examples are employed to illustrate the availability of the
designed filters. They are the head phantom of sizes 128 × 128 and 256 × 256 pixels,
respectively. The projections are calculated using radon function inMatlabwith the rota-
tion angle interval 4o and 1o, respectively. The image is reconstructed using FBP algorithm
with different reconstruction filters. The results of performance evaluation in the form
of MSE, UQI and MI are showed in Table 6. The identical small regions of the original
image and reconstructed images for the latter example are shown in Figure 8. It shows the
artifact has been reduced more efficiently using the designed filter at the interior of white
circle and other regions. The results illustrate the designed filters have better performance
than the ramp filter for CT reconstruction.
Summary: The simulation examples demonstrate that F(k) depends on the image size

and the projection angles. The images of different sizes and/or with different projection
angles usually have different optimal F(k), which makes the problem rather complicated.
In order to simplify the expression of reconstruction filter, a much more simple way is to
substitute the expression (15) by fitting the filters designed. It is a hyperbolic function as
following

F(k) = exp(a sin(πk/N)) − exp(−a sin(πk/N))

exp(a sin(πk/N)) + exp(−a sin(πk/N))

where a is a parameter selected in region [0.5, 2]. For example, a = 1.65 for the
Example 1, and a = 1 and a = 0.6 for the filters in Example 2, respectively.
Generally, the more complicated model F(k) is of, the better properties it has. How-

ever, a very much complicated model F(k) means very much heavy burden of calculation,

Table 5 The coefficients of Fourier series expansion of F(k)

(N = 256, θk = ko, k = 0, · · · , 179)
a0 0.209555620787293

a1 0.693546995671764 b1 -0.201010002024803

a2 0.099842536865856 b2 -0.101104690137033

a3 -0.152784751604807 b3 -0.180901677852717

a4 0.248221333497748 b4 -0.353671098582667

a5 0.308013835831055 b5 -0.032248278459190

a6 0.377740474429379 b6 0.104300291184828

a7 0.075385012026711 b7 0.465974969229510

a8 -0.294404584616438 b8 0.114991610901604

a9 -0.056064644119820 b9 -0.088997280339292
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Table 6 The results of performance evaluation in Example 2

(Case 1: Size = 128 ∗ 128, θk = 4ko, k = 0, · · · , 44)
Criteria MSE UQI MI

The ramp filter 1.399E-3 0.6454 0.8022

The designed filter 1.229E-3 0.6914 0.8518

(Case 2: Size = 256 ∗ 256, θk = ko, k = 0, · · · , 179)
Criteria MSE UQI MI

The ramp filter 2.645E-4 0.9219 0.9289

The designed filter 2.415E-4 0.9384 0.9301

which may cause the optimal parameters even the valid parameters cannot be found. On
the other hand, the difference between hr(n,m) and δ(n,m) can only be reduced and can-
not be removed. So a moderate complicated model F(k), such as (7) with S = 18 and (15)
withM = 9, is an appropriate choice.

Conclusion
For the continuous image model and scanning, FBP algorithm is perfect in the
mathematics principle, in which the ramp filter |ω| (it is named as the reconstruction
filter in this paper) plays an important role. However, it necessarily causes degradation
in the reconstructed images when the continuous image model is discretized and the
continuous scanning is substituted by the discrete (finite) scanning in the practical cal-
culation. It means the standard discrete version of ramp filter, |k/N |, is not the optimal
for the discrete FBP algorithm. In this paper, a novel scheme is proposed to design the
new reconstruction filters to substitute the ramp filter. According to analysis, the recon-
structed image can be regarded as the 2-D IDFT of 2-D DFT of the original image using
non-uniform frequency sampling. It is also equivalent to a 2-D periodic convolution of
the original image and a special 2-D kernel (it is named as the reconstruction matrix in
this paper). Themore the reconstructionmatrix is close to a δ-matrix (a matrix whose ele-
ments all are zeros except the center element is one), the more the reconstructed image is
close to the original image. Therefore, the reconstruction filters are designed to drive the
reconstruction matrixes approach δ-matrix as near as possible. The designs are achieved
by the constrained optimization procedures. Some simulation examples have been fin-
ished. The results demonstrate the filters designed can make the reconstruction matrixes

Figure 8 The small regions of original image and the reconstructed images using FBP algorithmwith
different reconstruction filters (N= 256, θ=[0o, 1o, · · ·, 179o]). (a) The original image, (b) using general
filter |k/N| (c) using the designed filter.
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more close to δ-matrix than the ramp filter. The performance evaluation of CT recon-
struction also shows the designed filters have outstanding superiority over the ramp filter
in the term of three general criteria, such as MSE, UQI and MI.
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