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Abstract

Background: Clinical diagnosis and therapy for the lumbar disc herniation requires
accurate vertebra segmentation. The complex anatomical structure and the
degenerative deformations of the vertebrae makes its segmentation challenging.

Methods: An improved level set method, namely edge- and region-based level set
method (ERBLS), is proposed for vertebra CT images segmentation. By considering
the gradient information and local region characteristics of images, the proposed
model can efficiently segment images with intensity inhomogeneity and blurry or
discontinuous boundaries. To reduce the dependency on manual initialization in
many active contour models and for an automatic segmentation, a simple
initialization method for the level set function is built, which utilizes the Otsu
threshold. In addition, the need of the costly re-initialization procedure is completely
eliminated.

Results: Experimental results on both synthetic and real images demonstrated that
the proposed ERBLS model is very robust and efficient. Compared with the
well-known local binary fitting (LBF) model, our method is much more computationally
efficient and much less sensitive to the initial contour. The proposed method has also
applied to 56 patient data sets and produced very promising results.

Conclusions: An improved level set method suitable for vertebra CT images
segmentation is proposed. It has the flexibility of segmenting the vertebra CT
images with blurry or discontinuous edges, internal inhomogeneity and no need
of re-initialization.
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Background
Lumber disc herniation is an important cause of lower back pains. Clinical diagnosis

and therapy for the lumbar disc herniation requires the knowledge of the stress and

strain throughout the lumbar region [1]. The finite element method based on medical

images is able to analyze the biomedical characteristic of lumbar in the compression.

We are sure that accurate 2D vertebra segmentation will help us reconstruct 3D

vertebra geometric model because 3D vertebra segmentation modeling is fundamentally

performed based on a set of axial slices. The understanding of geometrical information

about the normal anatomy and the degenerative bony deformations of the spine

necessitates vertebra CT image segmentation for the clinical diagnosis and the preoperative

planning of spinal diseases.
© 2013 Huang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:haiyunli@ccmu.edu.cn
http://creativecommons.org/licenses/by/2.0


Huang et al. BioMedical Engineering OnLine 2013, 12:48 Page 2 of 16
http://www.biomedical-engineering-online.com/content/12/1/48
There are several proposed approaches in the literature for vertebra segmentation.

Statistical shape models (SSMs) [2,3], which generated mean shapes using their own

shape parameters by Fourier and wavelet descriptors, used shape constraints to overcome

ambiguous boundary information. Active shape models (ASMs) [4] was a kind of SSMs

that iteratively searched a boundary while maintaining shape constraints. Although SSMs

and ASMs could overcome an ambiguous boundary problem, they could not converge into

an unusual shape or represent small variations in a boundary. Active appearance models

(AAMs) [5] which combined appearance information and shape constraints, could provide

better robust results than ASMs in many medical segmentation applications. However, its

application to vertebra segmentation was difficult because the texture patterns of vertebra

bodies are different among patients. A deformable spine model [6] using landmarks

exploited shape information and gray-level inhomogeneities using necklace and string

models. The necklace model captured variations in vertebra structures while the string

model represented spinal curvatures. However the deformable spine model could be

trapped into a local minimum and failed to segment abnormal vertebra. Yao J [7]

segmented a vertebra by fitting a four-part vertebra model, but the segmentation could not

separate the vertebra region into composing vertebra bones, where a spinous process

belonging to the upper vertebra exists with a transverse process pertaining to the current

vertebra. Hong S [8] proposed the concept of localized priors which guided the level set to

avoid leakage and local minimum at the places where most necessary, then segmented the

completed individual vertebras from the complex neighboring structures. Multiple level set

methods [9,10] were used to extract only vertebra bodies but not to segment spinous parts.

Kim Y [11] presented a fully automatic vertebra segmentation method using 3D deform-

able fences (3DDF) for 3D CT images, which extracted 2D curve with a deformable model

that utilized 3D valley information and was expanded to form a 3D surface. However, it

was not robust to segment the vertebral images with weak valley information occurring in

abnormal cases. Klinder T [12] first used various kinds of models, such as shape, gradient,

and appearance information, and applied 3D deformable model approach to segment the

vertebra CT images. Although they achieved very competitive identification rates for verte-

brae, their algorithm depends heavily on spatial registration of the deformable model,

which is computationally very expensive. Interactive tools for spine segmentation [13]

were developed to achieve more accurate results. Although the interactive method

provides protocols for segmentation, it still required a laborious manual process.

Poay et al. [14] focused on 3D segmentation firstly introducing willmore flow into

the level set method (WFLS). The framework incorporated prior shape knowledge

through the KDE and local geometrical features by introducing Willmore flow into the

level set segmentation and obtained good 3D segmentation results of normal spinal verte-

bra images.

The shape of the vertebra exhibits complicated topological characteristics. The

boundaries in vertebra CT images are ambiguous and discontinuous, while the intensity

in vertebra CT images is highly inhomogeneous. The complex shape and inhomogen-

eous intensity in the vertebra CT images makes its segmentation challenging. In this

paper, we developed an improved level set model to achieve a 2D vertebra extraction

method. By introducing the edge detection function (edf ) and region detection function

(rdf ) into the proposed model, the images with ambiguous or discontinuous boundary

and intensity inhomogenity can be effectively segmented. At the same time, we
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automatically initialize the level set function by Otsu threshold, thus roughly obtain the

regions of interest and multiple initial curves. The curves evolve stably and quickly

according to the evolution equation, with its zero level set curves converged to the

exact boundary of regions of interest. The algorithm can obtain the accurate segmentation

results not only when the internal intensity of vertebra CT images is inhomogeneous,

but also when the boundary in CT images is ambiguous or discontinuous. Besides, the

algorithm needs no costly re-initialization because of the regularization term, which

improves the segmentation speed greatly.

This paper is organized as follows. We briefly review some vertebra segmentation

methods and well-known level set methods in "Background". Our edge- and region-

based level set (ERBLS) model is presented in "Methods". In "Results", our proposed

model is validated by some experiments on synthetic and real images. In "Discussion",

we discussed our proposed method and compared our segmentation results with those

of 3DDF method [12] and WFLS method [14]. Finally, some conclusive remarks are in-

cluded in "Conclusion".

The related methods

Level set method was developed by Osher and Sethian in 1988 [15], which was an

effective method of contour evolution. It utilizes dynamic variational boundaries for

image segmentation and can be categorized into two types: edge-based models [16] and

region-based models [17].

Early level set methods [18-22] mostly belong to edge-based models, which mainly

use image gradient to construct an edge detecting function to stop the contour evolution

on the object boundary. The popular formulation for level set segmentation is [23]

∂ϕ
∂t

¼ g ∇ϕj j div
∇ϕ
∇ϕj j

� �
þ ν

� �
ð1Þ

where div(∇ϕ/|∇ϕ|) approximates mean curvature, ν is a balloon force and φ is the level

set function. The function g is image gradient, namely an edge detecting function (edf(I)),

which is defined as

edf Ið Þ ¼ 1
1þ ∇Gσ � Ij j ð2Þ

where Gσ * I stands for the convolution of the image I with a smoothing Gaussian kernel

Gσ. The range of edf (I) is between 0 and 1. This edge detector has low values close to 0 at

the object boundary, and high value closes to 1 at homogenous background.

The regularity of φ is very important for stable evolution and accurate computation

in level set methods. A common way to reinitialize φ is to set |∇ϕ| = 1 before the curve

deviates from the level set function, so that the curve can evolve stably and accurate

segmentation results can be obtained. However, the re-initialization is very complicated

and may bring some side effects, e.g., the evolving level set function can deviate remarkably

from the signed distance function with a few iterations, especially when the time step

chosen is not small enough. In order to overcome the problem, a fast level set formulation

was proposed [24]

∂ϕ
∂t

¼ μP ϕð Þ þ η g;ϕð Þ ð3Þ
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where μ>0 is a parameter controlling the strength with which the deviation of φ from a

signed distance function is penalized. The first term P (φ) penalizes the deviation of φ from

a signed distance function during its evolution and is defined as the following:

P ϕð Þ ¼ Δϕ−div
∇ϕ
∇ϕj j

� �
ð4Þ

The second term η(g,φ) incorporates the image gradient information by

η g;ϕð Þ ¼ λδ ϕð Þdiv g
∇ϕ
∇ϕj j

� �
þ νgδ ϕð Þ ð5Þ

where δ(φ) denotes the Dirac function. The parameters μ, λ and ν control the individual

contributions of these terms.

In essence, the term η(g,φ) attracts φ towards the variational boundary, which is similar

to the standard level set method. The penalty term P(φ) eliminates the computationally

expensive re-initialization for signed distance functions. This modification leads to a fast

level set algorithm for image segmentation. However, the edge-based level set method

only uses the edge detecting function to stop evolving curves, which results in the active

contours leaking out the ideal contours when the edges are ambiguous.

To solve the boundary leaking problem, Zhang et al. [25] proposed a region-based

active contour model with a region-based signed pressure force (SPF) function which

can efficiently stop the contours at weak or blurred edges. This model only uses the

image statistical information of the entire region inside and outside the contour, and is

unable to successfully segment images with intensity inhomogeneity.

To overcome the difficulty caused by intensity inhomogeneities, Li et al. proposed

the local binary fitting (LBF) model [26,27], which makes use of the local intensity

information. In the LBF model, two spatially varying fitting functions f1(x) and f2(x) are

introduced to approximate the local intensities on the two sides of the contour, and for

a given point x∈Ω, the local intensity fitting formulation is:

∂ϕ
∂t

¼ δ ϕð Þðμdiv ∇ϕ
∇ϕj j

� �
−λ1e1 þ λ2e2Þ þ νð∇2ϕ−div

∇ϕ
∇ϕj j

� �
Þ ð6Þ

Where λ1 and λ2 are positive constant, and e1 and e2 are the functions as the following

e1¼∫Ω Kσ y�xð Þ I xð Þ�f 1 yð Þj j2dy
e2¼∫Ω Kσ y�xð Þ I xð Þ�f 2 yð Þj j2dy

8<
: ð7Þ

Where Kσ(y − x)is a Gaussian kernel function, and f1(x) and f2(x) are two values that
approximate image intensities inside and outside contour C, respectively.

f 1 xð Þ ¼ K σ xð Þ H ϕ xð Þð ÞI xð Þ½ �
Kσ xð Þ H ϕ xð Þð Þ½ �

f 2 xð Þ ¼ K σ xð Þ 1−H ϕ xð Þð Þð ÞI xð Þ½ �
K σ xð Þ 1−H ϕ xð Þð Þ½ �

8>><
>>:

ð8Þ

The LBF model is able to obtain desirable segmentation sometimes in the presence

of intensity inhomogeneity. At the same time, the time-consuming re-initialization is

avoided. However, the computational cost is still very high, which is pointed out by Zhang

et al. [28]. In addition, the LBF model is sensitive to initialization to some extent [29],



Huang et al. BioMedical Engineering OnLine 2013, 12:48 Page 5 of 16
http://www.biomedical-engineering-online.com/content/12/1/48
which limits its practical applications. Recently, Liu et al. [30] proposed LRCV model,

which have similar capability of handling intensity inhomogeneity as LBF model.

Methods
In this section, we present and discuss in detail the proposed edge- and region-based

level set model (ERBLS). For a point x ∈Ω, its intensity can be approximated by a

weighted average of the image intensity I(y) where y is the neighborhood of x. Then

region detecting function (rdf(I(x))) can be defined by the following:

rdf I xð Þð Þ ¼ gσ x−yð Þ � I xð Þ− c1þc2
2

maxð gσ x−yð Þ � I xð Þ− c1þc2
2

�� ��Þ ; x∈Ωð Þ ð9Þ

c1andc2are given by:

c1 xð Þ ¼ ∫Ωgσ x−yð Þ � I yð Þ⋅H φ yð Þð Þdy
∫Ωgσ x−yð Þ � H φ yð Þð Þdy

c2 xð Þ ¼ ∫Ωgσ x−yð Þ � I yð Þ⋅ 1−H φ yð Þð Þð Þdy
∫Ωgσ x−yð Þ � 1−H φ yð Þð Þð Þdy

ð10Þ

where gσ(x − y)is a Gaussian kernel function with an averaging filter of k × ksize and can

be considered as the weight assigned to each intensity I(y) at y. Due to the location

property of the kernel function gσ (x-y), the contribution of the intensity I(y) to c1(x) and c2
(x) decrease and approach to zero as the point y goes away from the center point x. There-

fore, c1(x) and c2(x) are determined by the intensities of the points in the neighborhood of

the point x. Then the region detection function (rdf) is also dominated by the intensities of

the points in the neighborhood of the point x.

The energy functional consists of three parts: edge information termβEE, local region

information term γELR and regularization termER, which is defined as following:

E φð Þ ¼ βEE þ γELR þ ER

¼ β∫Ωedf xð Þδ φð Þ ∇φj jdxþ γ∫Ωðrdf I xð Þð ÞH −φð Þdxþ ∫Ω
1
2

∇φj j−1ð Þ2 dx
ð11Þ

where β and γ are fixed constants.

Fixing c1(x) and c2(x), we minimize Equation (11) and obtain the corresponding vari-

ational level set formulation as follows:

∂φ
∂t

¼ βδ φð Þdivðedf xð Þ ∇φ
∇φj jÞ þ γðrdf I xð Þð Þδ φð Þ þ 1

2
Δφ−divð ∇φ

∇φj jÞ
��

ð12Þ

It is obvious that the above equation has the merits of both edge-based models and
region-based models. When the contour is far away from object boundaries, the force

from the local region intensity information is dominant and has a certain capture

range. When the contour is close to the object boundaries, the force from the gradient

information becomes dominant, which attracts the contours and finally stop the contours

at the object boundaries. The technique of using local region information can improve the

robustness to the initialization of contours. When the boundary is blurred or discontinuous,
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the interference from the local intensity force is able to result in contours’ stopping at the

real object boundary. Furthermore, due to the region stopping function making use of local

region information, the ERBLS model is able to provide desirable segmentation results even

in the presence of the images with intensity inhomogeneity. Besides, our method introduces

a new penalizing energy to the regularization term, therefore the computational cost is

heavily decreased.

In order to effectively calculate the level set function φ, the Heaviside function H(φ)

here is normalized as

H zð Þ ¼ 1
2

1þ 2
π
arctanðz

ε
Þ

� �
ð13Þ

δε zð Þ ¼ H ′
ε zð Þ ¼ 1

π

ε

ε2 þ z2
ð14Þ

In the proposed ERBLS model, the main computational cost comes from computing
c1(x) and c2(x) in Equation (10). At the first sight, there are four convolutions to compute c1
(x) and c2(x). It can be noticed that the expression can be rewritten to the combination of

the four convolutions: ∫Ωgσ(x − y)dy, ∫Ωgσ(x − y)H(ϕ(y))dy, ∫Ωgσ(x− y)I(y)dy and ∫Ωgσ(x − y)

(I(y)H(ϕ(y)))dy. Because the two convolutions ∫ Ωgσ(x − y)dy and ∫ Ωgσ(x − y)I(y)dy can

be computed only once before the iterations, the terms ∫ Ωgσ(x − y)dy and ∫ Ωgσ(x − y)

I(y)dy do not depend on the evolution of level set functionφ. Therefore there are

only two convolutions ∫ Ωgσ(x − y)H(ϕ(y))dy and ∫ Ωgσ(x − y)(I(y)H(ϕ(y)))dy to be

computed at each iteration. In comparison, there are at least four convolutions in

the LBF model [27]. As a result, the computational cost of the ERBLS model is

about half that of the LBF model for each iteration.

The region detecting function (rdf (I(x)))

The implication of Equation (9) can be explained as follows. Suppose that the inten-

sities inside and outside the object are homogeneous. It is intuitive that min (gσ(x − y) * I

(x)) < c1, c2 < max (gσ(x − y) * I(x)) and the equal signs cannot be obtained simultaneously

because min gσ x−yð Þ � I xð Þ� �
< c1þc2

2 < max gσ x−yð Þ � I xð Þ� �
wherever the contour is. The

signs of the region detecting function rdf(I(x)) inside and outside the object are opposite.

The signs of the rdf(I(x)) inside the object are negative and those outside the object are

positive. The curve of the level set function expands when rdf(I(x)) is negative, and con-

tracts when rdf(I(x)) is positive. Besides, the larger the magnitude of rdf(I(x)), the faster

the level set evolves. It is obviously advantageous to make the level set function evolve

faster, if contours are far away from the real boundary. On the contrary, the evolution vel-

ocity of the level set function should have been slowed down once contours approach the

boundary. Moreover, the level set function should alter its direction of movement auto-

matically, while passing through the boundary of interest.

Automatic initialization by Otsu threshold

Thresholding is an essential region-based image segmentation technique that is

particularly useful for separating objects from the background [31-33]. In our

proposed method, an optimal threshold can be obtained automatically by Otsu
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algorithm implemented in Matlab 7.0. Otsu’s method could be used to perform

histogram shape-based image thresholding. The Otsu’s method assumes that the

image has two classes of pixels or bi-modal histogram and then intra-class vari-

ance is minimal and the two classes are separated by the optimum threshold

[34]. The vertebra images were assumed to have the two classes, one is object

and the other is background. According to Otsu’s method, the Otsu threshold of

a vertebrae CT image can be obtained automatically. Figure 1(a) is original image,

Figure 1(b) is histogram of the original image, the Otsu threshold of the original

image is 83, and Figure 1(c) is the initialized image by Otsu threshold.

After the level set function is initialized by the optimal threshold obtained auto-

matically, the regions of interest are roughly and automatically delineated [35].

Then we can use these regions to construct the initial level set function, which

also affects computational efficiency. The initial curves (level set function) will

evolve stably according to the evolution equation, with its zero level set curves

convergence to the exact boundary of the region of interest. Figure 2 shows the

segmentation process of a vertebral image using our improved method. The ob-

jective is to extract the vertebra which appears brighter than the background in
Figure 2 Automatic initialization by Otsu threshold. (a) original image; (b) histogram; (c) initialized
image by Otsu threshold.



Figure 3 Illustration of segmentation procedure. (a) original image, (b) initial contours, (c) 10th
iteration; (d) 30th iteration; (e) 60th iteration; (f) 100th iteration; (g) 140th iteration; (h) final segmentation
result at 180th iteration. Size=482×423.
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the image, as shown in Figure 2(a). The initial contours are obtained by Otsu

threshold, as shown in Figure 2(b). As shown in Figure 2(c) (d) (e) (f ) (g) (h), the

evolving curves continue to expand, contract, split or merge, then the vertebra is
Figure 4 Comparisons of the LBF model and the proposed ERBLS model on segmenting synthetic
and two real blood vessel images with intensity inhomogeneity. Column (a): initial contours. The initial
contours in row (f) (i) and (l) are obtained by Otsu threshold. Column (b): final segmentation results using
the LBF model. Column (c): final segmentation results using our proposed ERBLS model. Size=127×96,
111×110, 103×131.
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successfully segmented at the 180th (Figure 2(h)). During the process, controlled

by the region detecting function and the edge detecting function, the contours expand,

contract, split or merge, and stop at the desired places. As a result, accurate segmentation

is obtained.

With the above procedures, the initialization of level set function by Otsu

threshold can be completely automatic without any human interfaces. The segmenta-

tion result can then be taken as the initial contours for the evolution of the ERBLS

model.
Results
The clinical image data set was acquired by the Department of Neurosurgery of

Beijing Xuanwu Hospital Affiliated to Capital Medical University in China in com-

pliance with the Helsinki Declaration approved by Guojun Zhang. The data set

consists of 56 CT images of intervertebral disc protrusion images of patients aged

18 to 66. The patients are carefully selected by radiologists to form a representa-

tive group. These images are acquired from 64-detector row Siemens CT System.

The in-plane resolution for these images is 1 mm with slice thickness of 1.5 mm.

Original images have fixed sizes of 512×512 and the total number of vertebrae is

293. The ground truths are delineated by clinical experts. Our algorithm is

implemented in Matlab 7.0 on 2.79-GHz Intel Pentium IV PC. Unless otherwise

specified, we used the following parameters in our model: σ=3.0, ε=1.0, β=5.0,

γ=2.0, time increment Δt=1.0.

The proposed method has been tested with synthetic and real images. First we

used the LBF model [27] and the proposed ERBLS model to segment one synthetic

image and two blood images with intensity inhomogeneity in Figure 3. As we

discussed in "Methods", the LBF model usually needs to perform four convolution

operations at each iteration and is sensitive to the selection of governing parame-

ters and the location of initial contour. We tried many times and selected the best

governing parameters μ = 0.001 × 2552 (the length controlling parameter), sigma=5/

5/3.5 (the standard deviation of Gaussian kernel for two images). In Figure 3, col-

umn (a) shows various initial contours; column (b) and column (c) are the
Table 1 Iteration number and processing time for the LBF model and proposed ERBLS
model in segmenting the images in Figure 3

LBF model ERBLS model

Iteration numbers CPU time (s) Iteration numbers CPU time (s)

Row (d) 300 26.172 220 6.0625

Row (e) 300 26.563 210 7.1285

Row (f) 160 10.016 100 2.3280

Row (g) 300 3.734 230 0.8212

Row (h) 330 4.5720 300 1.0680

Row (i) 150 2.9531 60 0.8125

Row (j) 300 6.2969 260 3.5469

Row (k) 400 11.7969 260 3.728

Row (l) 220 5.2594 100 1.3750



Figure 5 Comparisons of the LBF model and the proposed ERBLS model on segmenting five
vertebra CT images with the intensity inhomogeneity. Column (a) original images; Column (b) initial
contours by using Otsu threshold; Column (c): final segmentation results using our proposed ERBLS model;
Column (d): final segmentation results using the LBF model.
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segmentation results by the LBF model and the ERBLS model. The initial con-

tours in Rows (d), (e), (g), (h) (j) and (k) are generated manually. The initial con-

tours in row (f ) (i) and (l) are obtained by Otsu threshold. For some initial

contours, as shown in Rows (e) (h) and (k), the LBF model fails. For all initial

contours, the right segmentation results can be obtained from the ERBLS model.

The numbers of iteration and CPU running time of the two models are listed in

Table 1. It can be seen from Table 1 that iteration numbers and processing time

for the ERBLS model are both less than that of LBF model for all three image

segmentation. Considering that the parameters and initial contours of the LBF model

are selected elaborately, so the ERBLS model is proved to be more efficient in

segmenting the image with the intensity inhomogeneity.

We show the segmentation results on vertebra CT images with intensity inhomogen-

eity which boundaries are somewhat ambiguous and discontinuous in Figure 4. Refer

to Figure 4, column (a) is original images; column (b) is the initial contours obtained

by using Otsu threshold columns; (c) and (d) are the segmentation results by the

ERBLS model and the LBF model, respectively. Shown in Figure 4, we can see that for

the images with ambiguous, discontinuous boundary and intensity inhomogeneity,

the LBF model cannot obtain the right segmentation results. In our improved

method, the initial curves evolve according to Equation (9), even if the boundaries

in the images are obscure and discontinuous, the ideal segmentation results are

obtained. The numbers of iteration and CPU running time of the two models are



Table 2 Iteration number and processing time for the LBF model and the proposed
ERBLS model in segmenting the images in Figure 4

LBF model ERBLS model

Iteration numbers CPU time (s) Iteration numbers CPU time (s)

Row (e) 420 20.2813 180 2.9375

Row (f) 300 9.5321 150 0.4844

Row (g) 400 19.5000 200 2.2813

Row (h) 380 27.0625 150 2.0625

Row (i) 300 14.625 140 0.7965
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listed in Table 2. This illustrates that the proposed ERBSL is more robust than the

LBF model in segmenting vertebral CT images.
Discussion
In order to further evaluate our segmentation algorithm, we reconstructed 3D vertebra

images based on 2D segmentation results by using our proposed method. The proposed

method has been applied to 56 patient data sets and the segmentation results are

compared with those of 3D deformable fences method (3DDF) [11] and introducing

willmore flow into level set segmentation (WFLS) [14].

Because the vertebral boundaries of neighboring slices are usually similar (shown

in Figure 5), the evolving contours of current slice provide a good initialization

for the neighboring ones, hence we use the current slice to initialize the contour

in adjacent slice [36]. This can save computation and improve the efficiency and

accuracy of the results. For example, the segmentation result of slice 31 is used to
Figure 6 Neighboring slices are similar in 2D CT image data set. (a) image slice 31; (b) image slice 32;
(c) image slice 33; (d) image slice 34.



Figure 7 2D segmentation results. Columns (a) (b) (c) are segmentation results of 2D CT slices.
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initialize the slice 32, thus vertebral regions and non-vertebral regions are roughly

obtained. We then compute c1、c2 and region detecting function rdf(I(x)) as de-

scribed in "Methods". After iteration, the entire volumetric image is processed.

Segmentation results for 2D slices are shown in Figure 6 and the reconstructed

3D images based on the 2D segmentation results are shown in Figure 7.

Segmentation accuracy is very important for clinical image diagnosis. We adopted

the Dice similarity coefficient (DSC) [37] and Hausdorff distance (HD) [38] to

evaluate the segmentation accuracy. The manual segmentation results by clinical

experts are considered as ground truth. DSC measures the spatial overlap between

two segmentations, HD measures the relative differences between boundaries of

the segmented objects. The DSC is formulated as

D ΩO;ΩGð Þ ¼ 2 ΩO∩ΩGj j
ΩOj j þ ΩGj j ð15Þ

where Ωj j and Ωj j represent the volumes of segmented object Ω and the ground-

truth Ω respectively. The measurement (varies from 0 to 1) indicates the corres-

pondence between two volumes, i.e., 0 indicates the two volumes do not overlap

and 1 shows they are perfectly matched.

On the other hand, the HD is the maximum distance of a set to the nearest point in

the other set, defined as

dH A;Bð Þ ¼ max sup infd a; bð Þ
a∈A b∈B

; sup infd a; bð Þ
b∈B a∈A

	 

ð16Þ

where A and B are the boundaries of two different segmented volumes, respect-

ively. It measures the distance between the farthest point of a set to the nearest

point of the other. The measurement (varies from 0 to ∞ theoretically) represents

the difference between two closed surfaces, e.g., 0 shows that both volumes share

exactly the same boundaries, and larger HD values indicates larger distances be-

tween the boundaries. In summary, a high DSC and a low HD are desirable for

good segmentation.



Table 3 Average DSC and HD (mm) with standard deviation for segmentation of
vertebra CT images using our ERBLS method, 3DDF method and WFLS method

ERBLS method 3DDF method WFLS method

DSC 0.94±0.02 0.80±0.02 0.88±0.03

HD (mm) 10.06±1.71 16.23±2.13 14.03±2.18
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Results for 293 vertebrae from 56 patient data sets are summarized in Table 3.

As can be seen, our proposed method produces good segmentation results (DSC

0.94±0.02, HD 10.06±1.71 mm) compared with 3D deformable fence method

(DSC 0.80±0.02, HD 16.23±2.13 mm) and introducing willflow into level set

method (DSC 0.88±0.03, HD 14.03±2.18 mm). In our improved method, the initial

curves evolve according to Equation (9), even if the boundaries in the images are

obscure and discontinuous, the ideal 2D segmentation results are obtained. The

3D vertebra images are reconstructed based on the ideal 2D segmentation results,

therefore, the DSC value of the 3D segmentation results obtained by our proposed

method is large and the HD value of that is low.
Conclusion
We have described an edge- and region-based level set method for accurate seg-

mentation of vertebra CT images. The ERBLS model can efficiently segment the

images with intensity inhomogenity and blurry or discontinuous boundaries by

employing the image gradient information and the local image information.

Meanwhile, the level set function is automatically initialized by Otsu threshold,

which segmentation result is taken as the initial contours of the EBRLS model.

Experimental results on both synthetic and real images demonstrated that the

proposed ERBLS model is very robust and efficient. Compared with the well-

known local binary fitting (LBF) model, the ERBLS model is not only much more

computationally efficient and but also much less sensitive to the initial contours.

The proposed method has also applied to 56 patient data sets and has produced

very promising results.
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