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Abstract

Background: Falls can cause trauma, disability and death among older people.
Ambulatory accelerometer devices are currently capable of detecting falls in a
controlled environment. However, research suggests that most current approaches
can tend to have insufficient sensitivity and specificity in non-laboratory
environments, in part because impacts can be experienced as part of ordinary daily
living activities.

Method: We used a waist-worn wireless tri-axial accelerometer combined with
digital signal processing, clustering and neural network classifiers. The method
includes the application of Discrete Wavelet Transform, Regrouping Particle Swarm
Optimization, Gaussian Distribution of Clustered Knowledge and an ensemble of
classifiers including a multilayer perceptron and Augmented Radial Basis Function
(ARBF) neural networks.

Results: Preliminary testing with 8 healthy individuals in a home environment yields
98.6% sensitivity to falls and 99.6% specificity for routine Activities of Daily Living
(ADL) data. Single ARB and MLP classifiers were compared with a combined classifier.
The combined classifier offers the greatest sensitivity, with a slight reduction in
specificity for routine ADL and an increased specificity for exercise activities. In
preliminary tests, the approach achieves 100% sensitivity on in-group falls, 97.65% on
out-group falls, 99.33% specificity on routine ADL, and 96.59% specificity on exercise
ADL.

Conclusion: The pre-processing and feature-extraction steps appear to simplify the
signal while successfully extracting the essential features that are required to
characterize a fall. The results suggest this combination of classifiers can perform
better than MLP alone. Preliminary testing suggests these methods may be useful for
researchers who are attempting to improve the performance of ambulatory fall-
detection systems.

Background
Falls are recognised by the World Health Organization as a major cause of hospitaliza-

tion of older people [1]. If no preventative measures are undertaken, it is estimated

that costs associated with fall-related trauma will double over the next 20 years [1].

Ambulatory accelerometer devices are currently capable of detecting falls in a con-

trolled environment, and these devices are also potentially useful for assessing gait and
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tremor in older people with Parkinson’s disease [2,3]. Research regarding acceler-

ometer-based fall detection typically uses thresholding algorithms [4-6]. Those algo-

rithms typically determine if a person experiences an acceleration above a certain value

- that is, an impact acceleration as a person hits the ground - and sometimes combine

this with an approach for measuring whether the impact is followed by a period of

lying down/not moving. However, research suggests that those approaches can tend to

have limited sensitivity for soft-falls (for example, where a person falls against a wall)

and break-falls (for example, where a person reduces the impact of their fall by putting

out an arm) [e.g. [7]]. Current fall-detection approaches can also tend to result in poor

specificity, in part because impacts can be experienced as part of ordinary daily living

activities.

The fall-detection work undertaken at the University of Technology Sydney is part of

a larger research program focused on health technologies that also focuses on issues

associated with sensor-transceivers that stream data such as heart rate, electrocardio-

gram (ECG), oxygen saturation, body temperature, and body position [8-11].

Method
The method described here builds on prior work including the work of Shi and others

who combined threshold techniques and Support Vector Machines (SVM) to improve

the performance of fall detection classifiers [7]. Our approach attempts to improve the

specificity even while only using one sensor device, a waist-worn tri-axial

accelerometer.

A block diagram describing the whole data processing scheme can be seen in Figure

1. Key steps in the process include real time testing of whether the magnitude of accel-

eration at any given moment is greater than a specified threshold. Each time the

threshold is exceeded, an interval of the signal is instantiated and queued. A third

order Discrete Wavelet Transform (DWT) transform is applied to each interval in the

queue, and features are extracted. The extracted features are passed to the classifiers.

Figure 1 Block diagram of the system . The block diagram shows the flow, starting with the
accelerometer and ending with a decision as the whether or not a fall has been detected.
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The feature extraction stage makes use a custom method we refer to as Gaussian

distribution of Clustered Knowledge (GCK) signal generation. Clustering is done with

Regrouping Particle Swarm Optimization (RegPSO). Classification is undertaken by a

newly developed “Augmented Radial Basis Function” (ARBF) neural network [12]

alongside a multilayer perceptron (MLP).

The input data consists of sampled acceleration values in three dimensions. The

main accelerometer module used is the RD-3152 MMA7260Q - Zstar2 from Freescale

Semiconductor. The module provides 3-axis acceleration data using an MMA7260Q

accelerometer set to ± 6 g sensitivity range. Wireless communication is established

using a ZigBee protocol 2.4 GHz band to communicate with the receiver board [13].

The accelerometer sensor is placed inside the right pocket of a vest.

At the receiving end of the wireless link, the samples are handled in real time using

Java2SE and Matlab. Each signal has a length of 5 seconds sampled with 20Hz sam-

pling frequency. Signals are divided into 2 classes: fall signals and Activities of Daily

Living (ADL) signals.

Data preprocessing is undertaken in three steps: uncommon acceleration detection,

normalization, and data filtering.

• Uncommon acceleration detection: uncommon accelerations, regardless of

whether they are due to falls or not, can be observed when the magnitude of accel-

eration is above a specified threshold. When an uncommon acceleration occurs at

time τ, a window is constructed at τ ± 2.5 s and acceleration data in that window is

pushed to the classification queue.

• Normalization: raw acceleration data �a (t) has an offset due to the static force of

gravity that differs depending on orientation of the accelerometer. Acceleration sig-

nals are normalized by subtracting every sample from �a (t = 0) .

• Data Filtering: the DWT decomposes discrete time signals using a digital filter

approach. The DWT computes successive convolutions between input signal with

discrete low pass and high pass filters [14]. The application of this filter in the system

can be seen in Figure 2. The DWT filters the acceleration signal and down-samples it

up to the third order using Haar wavelets. The intention is to reduce the signal com-

plexity while still providing sufficient relevant information to the classifiers.

Previous work suggests that K-means Particle Swarm Optimization (PSO) can be a

reliable tool for data clustering [15]. The approach was originally introduced by

Figure 2 The application of the Haar Discrete Wavelet Transform. Convolutions between the original
signal A[n] and low pass filters G0, G1, and G2 produces down sampled signal A↓[n]. ↓2 block denotes
down-sampling, which increase the sample time by two, effectively reducing the number of samples.
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Kennedy and Eberhart [16]. It has two base models: Local Best (lbest) PSO and Global

Best (gbest) PSO. Our approach makes use of the gbest PSO method. Each particle has

xi: current coordinate, vi: current velocity, and pi: personal best coordinate. The

Regrouping Particle Swarm Optimization (RegPSO) approach was proposed by Evers

and Ghalia in 2009. RegPSO is designed to remedy premature convergence and stagna-

tion due to local minima problems [17]. We use a RegPSO method to cluster N vec-

tors �z in the dataset S (1). The clustering algorithm is given in Figure 3.

The new GCK method was inspired by Monte Carlo approaches. The GCK method

is intended to help classify clustered patterns of statistical characteristics. It refers

incoming input signals to cluster centroids, and multiplexes them based on the Gaus-

sian characteristics of the clusters. Each input signal γ is queried against the cluster

centroids and passed through a Radial Basis Kernel (25) to get the rate of membership

θi(γ) . The cluster with the highest rate of membership, Cluster I, is selected as the

GCK seed. A knowledge signal ȳ is obtained by generating a vector of Gaussian ran-

dom numbers with mean μ̄I and standard deviation σ̄I (26). The generated GCK sig-

nal ȳ is fused with γ using a significance ratio of A:B (typically 0.8:0.2) to create signal

ϑ̄ (γ̄ ) (27).

θi(γ̄) = e

‖γ̄ − μi‖
2σi2

(25)

ȳ (γ̄) = N (μ̄I, σ̄I) , I ∈ max θi (γ̄) |1 ≤ i ≤ Nc (26)

ϑ̄ (γ̄) =
Aγ̄ + Bȳ (γ̄)

A + B
(27)

Augmented Radial Basis Function neural networks (ARBF) have previously been used

in time signal classification of head movement patterns, with promising results [12].

ARBF consists of an RBF layer and an MLP augmentation layer, shown in Figure 4.

ARBF is reported to have a sensitivity advantage over conventional RBF and a specifi-

city advantage over MLP [12].

The ARBF function uses a Gaussian radial basis kernel. It can be described as a K-

dimensional Gaussian distribution, where K is the number of dimensions of the input.

The output of the RBF layer is a vector where μn and sn correspond to cluster cen-

troids and the standard deviation of each RBF node. The RBF centroids are optimized

using RegPSO. The MLP layer uses a sigmoid kernel in the hidden layer and a linear

kernel in the output layer. No normalization method is required at this stage because

the RBF layer has already normalized the input signals from 0 to 1. The MLP layer is

trained with resilient back-propagation. This combination of MLP and ARBF was used

because of each classifier’s different characteristics. MLP networks tend to perform

better in global generalization, while RBF-kernel based classifiers such as ARBF tend to

perform better in local generalization [12]. The ensemble receives the collection of sig-

nals consisting of the original signal γ and N GCK-Fused signals ϑ̄, and each neural

network outputs N + 1 classifications of the input vectors. The outputs are then com-

bined based on majority vote.
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Figure 3 The clustering algorithm. A RegPSO method is used to cluster N vectors �z in the dataset S (1).
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A brief summary of the steps taken is as follows:

1. Pre-process the data;

2. Create the clustered-knowledge database using RegPSO;

3. Separate the In-group fall data and ADL data into training and validation sets with

ratio of 4:1;

4. Train MLP using resilient back propagation;

5. Train ARBF;

6. Create an RBF layer with cluster centroids taken from the clustered-knowledge

result from RegPSO;

7. Pass the pre-processed data to the RBF layer;

8. Pass the output of the RBF layer to MLP layer;

9. Train the MLP with resilient back propagation;

10. Merge the RBF layer with the MLP layer.

Table 1 provides a description of each set of data. The project was conducted in

compliance with the Helsinki Declaration, and in accordance with the University of

Technology Sydney (UTS) research guidelines and clearance granted by the UTS

Human Research Ethics Committee.

Results and Discussion
An example of the output from the Haar DWT third order filtering processing stage is

given in Figure 5 The original signal A[n] is shown on the left, and the processed sig-

nal A↓[n] is shown on the right. It can be seen that the processed signal appears to

have reduced complexity, but still retains the essential features. Figure 6 shows 150

pre-processed fall signals stacked together. Figure 7 provides an example of the pro-

gression though the first 250 iterations of the classification algorithm. Figure 8 shows a

fall signal, and Figure 9 shows an ADL sit down signal.

Table 2 shows the results comparing ARB + MLP combined with ARB alone and

MLP alone, where the number of GCK signals equals 5. The table shows that the

Figure 4 The Augmented Radial Basis Function classifier. The ARBF classifier consists of an RBF layer
and an MLP augmentation layer.
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combined classifier offers the greatest sensitivity, with a slight reduction in specificity

for routine ADL and an increased specificity for exercise activities. Figure 10 shows the

sensitivity and specificity of each approach where GCK = 5. This number was selected

because trials indicated that sensitivity improves up to GCK = 5 but stays the same at

greater than 5, while specificity of the system decreases when GCK greater than 5 is

used. The GCK effects to the classifier performance can be seen in Figure 11.

In preliminary tests, the approach achieves 100% sensitivity on in-group falls, 97.65%

on out-group falls, 99.33% specificity on routine ADL, and 96.59% specificity on exer-

cise ADL.

Limitations applicable to these results include the following. First, the number of

subjects is relatively small. Second, the method for acquiring the falls data did not

Table 1 The data

Data Participants Signals

In-group fall data Collected from 5 healthy volunteers, 2
females and 3 males. Volunteers aged

between 19 and 28 years.

293 fall signals were collected. Of these, 153
signals were used for training, and 140

signals used for testing (in-group
performance)

Out-group fall data Collected from 3 different healthy male
volunteers whose data was not included in
the training data. Volunteers aged between

19 and 28 years.

This set included 85 signals, all used to test
“out-group” performance. The term “out-
group” is used to indicated that these

people’s data was not used as training data.

The Activities of
Daily Living (ADL)

training data

Collected from 3 people. A total of 8 hours
of ADL data was collected in a home

environment. An additional hour of exercise
data was recorded from 2 people in a gym
environment. Volunteers aged between 19

and 28 years.

1831 ADL signals were collected. 1000
randomly selected ADL signals were used
for the training set while 831 were used for

testing. Of the 1000 randomly selected
signals used for training, 750 related to ADL
routine, and 250 related to ADL exercise. Of
the 831 signals used for testing, 400 related
to ADL routine and 381 related to ADL gym

exercise.

Validation set Taken randomly from the training set with
the ratio of training versus validation = 4:1.

Figure 5 Original signal and down-sampled signal. Signal in the left is original signal, signal in the right
is downsampled signal. The dimension has been reduced from 100 to 13 while the important features are
conserved.
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Figure 6 Clustered pre-processed fall signals. In this figure 150 signals are stacked for visualization
purpose. The sample number indicates sample number 1 to 150. After third order DWT, the original signal
dimension is reduced to 13 dimensions.

Figure 7 The progression through 250 iterations of the classification algorithm. g(t) is the best
cluster combination at time t, f(g(t)) is the fitness function, rn denotes regroup episodes. Note that f(g(t))
improves greatly at each regroup episode.

Figure 8 Example of a fall signal. A fall signal is characterized by the high impact magnitude and
posture change, determined by the drift of the starting acceleration and the final acceleration.
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include truly accidental falls - the falls data was acquired when subjects deliberately fell

onto a mattress. Third, the ADL data included only activities around the home and

activities in the gym - data relating to ordinary work, transportation and other non-

home activities would likely be more representative of some people’s typical daily activ-

ities. Fourth, the data was acquired from people aged 19-28 years - it would be prefer-

able for future work to include people from older age brackets.

These results are an exploratory step towards gaining knowledge about potential ele-

ments of a fall detection system. The implications of the results are somewhat limited

due to limitations of the data acquisition processes. Notwithstanding, the results sug-

gest the methods described here warrant further development and experimental

investigation.

A further implication of these results is that some of the methods described here

may also be applicable for body movement analysis and gait analysis relating to condi-

tions that affect balance such as Parkinson’s disease.

Future research will include acquiring data from different age groups, and developing

methods to make use of data from ambulatory devices that include gyroscopes and a

magnetometer.

Figure 9 Example of ADL Sitting Down signal. Sitting down signal is characterized by an impact and no
posture change, determined by the indiscriminate drift of the starting acceleration and the final
acceleration.

Table 2 Comparison of the results for the three classifier method

Classifier Scheme Ingroup Fall
Sensitivity
(N = 140)

Outgroup Fall
Sensitivity
(N = 85)

Routine ADL
Specificity
(N = 450)

Exercise ADL
Specificity
(N = 381)

ARBF 95.56% 92.94% 99.78% 96.06%

MLP 97.14% 95.29% 99.33% 95.28%

Ensemble MLP +
ARBF

98.57% 97.65% 99.56% 96.85%
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Figure 10 Results - comparison of classifiers. Ensemble MLP + ARBF generally perform better than the
individual MLP or individual ARBF classifier.

Figure 11 The effects of GCK on classifier performance. True Positive Rate is measured using Out-
group fall data, the false positive rate is measured using exercise data. Using more than 5 GCK does not
seem to improve sensitivity. A reduction in specificity can be observed as the number of GCK signals is
increased.
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Conclusions
Preliminary testing suggests the methods described here are noteworthy particularly for

researchers who are attempting to improve the performance of ambulatory fall-detec-

tion systems. The methods should also be of interest for researchers who use (or are

considering using) accelerometers to measure body movement. The pre-processing and

feature-extraction steps appear to simplify the signal while successfully extracting the

essential features that are required to characterize a fall. The results suggest that the

approach used here performs better than MLP alone.
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