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Abstract

Background: Wireless capsule endoscopy has been introduced as an innovative,
non-invasive diagnostic technique for evaluation of the gastrointestinal tract,
reaching places where conventional endoscopy is unable to. However, the output of
this technique is an 8 hours video, whose analysis by the expert physician is very
time consuming. Thus, a computer assisted diagnosis tool to help the physicians to
evaluate CE exams faster and more accurately is an important technical challenge
and an excellent economical opportunity.

Method: The set of features proposed in this paper to code textural information is
based on statistical modeling of second order textural measures extracted from co-
occurrence matrices. To cope with both joint and marginal non-Gaussianity of
second order textural measures, higher order moments are used. These statistical
moments are taken from the two-dimensional color-scale feature space, where two
different scales are considered. Second and higher order moments of textural
measures are computed from the co-occurrence matrices computed from images
synthesized by the inverse wavelet transform of the wavelet transform containing
only the selected scales for the three color channels. The dimensionality of the data
is reduced by using Principal Component Analysis.

Results: The proposed textural features are then used as the input of a classifier
based on artificial neural networks. Classification performances of 93.1% specificity
and 93.9% sensitivity are achieved on real data. These promising results open the
path towards a deeper study regarding the applicability of this algorithm in
computer aided diagnosis systems to assist physicians in their clinical practice.

Background
Capsule Endoscopy

General Considerations

The innovation of wireless capsule endoscopy (CE) has revolutionized the investigation

and management of patients with suspected small bowel disease [1]. Since its introduc-

tion, in the year 2000, a new chapter in the small bowel examination was opened, as

this new technology allows the visualization of the entire gastrointestinal (GI) tract,

reaching places where conventional endoscopy is unable to. In fact, conventional endo-

scopy presents some important limitations in the diagnosis of small bowel problems,

since it is limited to the upper GI tract, at the duodenum, and to lower GI tract, at
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terminal ileum. Therefore, prior to the wireless capsule endoscopy era, the small intes-

tine was the conventional endoscopy’s last frontier, because it could not be internally

visualized directly or in it’s entirely by any method [2]. The small intestine accounts

for 75% of the total length and 90% of the surface area of the gastrointestinal tract [3].

In adults it measures about 570 cm at post mortem, which is substantially longer than

conventional video endoscopes (100-180 cm) [3]. Push enteroscopy (PE) is an effective

diagnostic and therapeutic procedure, although it only allows exploration of the proxi-

mal small bowel [4]. Intraoperative enteroscopy is the most complete but also the

most invasive means of examining the small bowel [5]. On the other hand, CE is a

simple, non-invasive procedure that is well accepted by the patient and can be per-

formed on an outpatient basis, allowing simultaneously the visualization of the entire

GI tract. This technique is especially successful in finding bleeding regions, Crohn’s

disease and suspected tumors of the small bowel [2,6].

The first commercially-available wireless video capsule was the M2ATM (by Given

Imaging Ltd., Yoqneam, Israel), a pill-like device (11 mm × 26 mm), which contains a

miniaturized camera, a light source and a wireless circuit for the acquisition and trans-

mission of signals [7]. The capsule is passively propelled trough the entire GI tract,

through peristalsis, capturing images at a rate of two frames per second. Image features

include a 140° field of view, 1:8 magnification allowing visualization of individual villi,

1-30 mm depth of view and a minimum size of detection of about 0.1 mm.

Examination Procedure

While conventional endoscopy diagnosis procedure consists in an exam that uses a

flexible endoscope, with a video camera in the distal tip, to acquire intra-corporeal

images from the GI tract as the endoscope is pushed into the patient’s body, a capsule

endoscopy exam relies in a small pill-like device, which is ingested and propelled by

natural peristalsis through the GI tract, acquiring images while it travels [7]. Therefore,

major limitations of the conventional endoscopy are solved, since great skill and con-

centration are required to navigate a conventional endoscope. Furthermore, and since

no drugs are administered, some investigators maintain that the use of the capsule

camera is a more physiological form of endoscopy than conventional push enteroscopy

[8]. By the time battery power expires, after about 8 transit hours through the GI tract,

the camera will have captured about 55,000 images, which are transmitted to the hard

drive in a belt worn by the patient [8]. The capsule is excreted in the patient’s stool,

usually within 24-48 h, and not reused [9]. The time required to a physician to analyze

the resulting video is, on average, 40-60 min [9]. The reading time and interpretation

of CE exams is very time consuming given that more than 50,000 images have to be

reviewed [10,11], which contributes to the high cost of a CE exam [12]. Thus, a com-

puter assisted diagnosis tool to help the physicians to evaluate CE exams faster and

more accurately is an important technical challenge and an excellent economical

opportunity.

Small Bowel Tumor Diagnosis using Capsule Endoscopy

After the introduction of CE, it was discovered that prevalence and malignancy rates

for small bowel tumors are much higher than previously reported and that the early

use of CE can lead to earlier diagnoses and reduced costs, contributing hopefully to

cancer prevention [2]. A small bowel tumor is diagnosed in approximately 2.5-9% of
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patients submitted to CE, indicating that the frequency of these neoplasms is consider-

ably higher than previously thought. At least 50% of small intestine tumors identified

with CE are malignant [9]. However, the early diagnosis of small bowel tumor is diffi-

cult, because signs are vague and laboratory tests are unhelpful [13]. However, obscure

GI bleed can be an earlier symptom and a key factor for an early diagnosis of these

lesions [2]. Small bowel tumors are a significant finding at CE and are often missed by

other methods of investigation. Thus, the automatization of the analysis CE can greatly

help in a more efficient screening for these tumor lesions.

Previous Work

Current approaches rely in the fact that alterations in the texture of the small bowel

mucosa can be used in automatic detection methods of abnormalities, which poten-

tially indicate disease. These alterations are just what the physicians usually search for.

For instance, Maroulis et al. and Karkanis et al. proposed two different methods based

on the analysis of textural descriptors of wavelet coefficients in colonoscopy videos

[14,15]. Indeed texture extraction algorithms can be used as feature sources of classi-

fiers, in order to develop automatic classification schemes for CE video frames evalua-

tion. Kodogiannis et al. proposed two different schemes to extract features from

texture spectra in the chromatic and achromatic domains [16]. Although presented for

a slightly different event detection, the works of Cunha et al. and Mackiewicz et al.

suggest that a significant reduction of the viewing time can be achieved by automatic

topographic segmentation the capsule endoscopic videos [17,18]. Szczypinski et al.

have recently proposed a different and very interesting concept to aid clinicians in the

interpretation of capsule endoscopic videos [19]. They propose the use of a model of

deformable rings to compute motion-descriptive characteristics and to produce a two-

dimensional representation of the GI tract’s internal surface. From these maps, certain

characteristics that indicate areas of bleeding, ulceration and obscuring froth can be

easily recognized, allowing therefore the quick identification of such abnormal areas.

Recently, a different approach has also been proposed by Iakovidis et al. to reduce the

capsule endoscopic reading times, through the use of an unsupervised image mining

technique [20]. Using a different rationale than the typical viewing time reduction,

Karargyris and Bourbakis have recently proposed a method to enhance the video and

therefore improve the viewing of the digestive tract, leading to a richer, more qualita-

tive and efficient CE examination [21]. The detection of abnormalities, with special

incidence in blood presence, in CE frames through computational approaches has been

indeed a particularly active topic in the last few years [22-25]. For further notes on the

available methodologies for CE image processing, the reader is advised to consult the

recent review by Karargyris and Bourbakis [26]. In authors’ previous work [27-30], dif-

ferent methods are proposed for classification of capsule endoscopic video frames

based on statistical measures taken from texture descriptors of co-occurrence matrices,

using the discrete wavelet transform to select the bands with the most significant tex-

ture information for classification purposes. Furthermore, the measurement of the

non-Gaussianity of these statistical texture descriptors regarding marginal distributions

was used in [29], in a classification scheme to identify abnormal frames. This paper

proposes extending this approach to the joint distribution modeling, allowing to
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further explore the texture patterns in CE frames, having however the drawback of

strongly increasing the dimensionality of the observation vector.

Proposed Approach

The algorithm proposed in this paper is based on combined information from both

color and texture fields of the image and is an improvement of the approach followed

in [28] and [29], taking into consideration the findings in [14] and [15]. In [14] and

[15], it is observed that both the set of wavelet sub-bands {1, 2, 3} and {4, 5, 6} have

significant texture information and perhaps both must be considered. Therefore tex-

ture description can perhaps be improved by using information from these two levels

of focus. Assuming joint Gaussianity of each descriptor observed at different colors

and different scales, information from both levels of focus can be inserted in the statis-

tical model by correlating the observations. Texture characterization by statistical mod-

eling of texture descriptors at different scales and colors is one of the novelties of this

paper. However by inspecting marginal distributions of texture descriptors we can find

several examples of non-Gaussianity specially in tumoral frames as can be seen in

Figure 1. This fact claims for Higher Order Statistics (HOS), since it is well known

from statistics that marginal non-Gaussianity always origins joint non-Gaussianity.

HOS applied in the context of texture characterization by using the multi-scale con-

cept in synthesized images was proposed in [28] but only applied in the marginal dis-

tributions. The extension of this concept to the joint distributions is another novelty of

this paper, which increases significantly the dimensionality of the observation vectors.

The method proposed in this paper is then based on the multi-scale higher order

statistical features of two images reconstructed from the wavelet coefficients of the

selected wavelet bands, which contain the most important texture information for clas-

sification purposes. Furthermore, and to reduce the dimensionality of the feature set,

PCA is applied, being this the third novel point of the paper justified by the high

dimensionality of the feature vector when compared with the amount of training data.

These features are the input of a Multi-Layer Perceptron classifier, in a classification

scheme used to classify real data gathered at the Hospital dos Capuchos. A flowchart

with the key processing blocks of the proposed algorithm is illustrated in Figure 2.

Figure 1 Non-Gaussianity of texture descriptors. Distribution of F1 texture descriptors for a set of 300
frames (a: normal capsule endoscopic frames, b: abnormal (small bowel tumor) capsule endoscopic frames).
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Methods
General considerations

Although texture can be visually classified as fine, course, grained, smooth, etc., its

mathematical definition is not trivial. Nonetheless, it is clear that the textured informa-

tion in a image corresponds to its medium/high frequency content. Therefore, the tex-

ture can be seen as a multi-scale phenomena and thus appropriate computational tools

are required to deal with its quantification and analysis. The Discrete Wavelet Trans-

form (DWT) is a mathematical tool that allows a spatial/frequency representation by

decomposing the image in different scales with different frequency content. Thus, the

DWT is a multi-resolution representation of the information within the image, being

therefore well suited to deal with multi-scale phenoma as the texture content of an

image. In the present work, we use the DWT to select the appropriate frequency con-

tent to further proceed to the analysis of the texture content of a given image. This

information is mostly present in the scales corresponding to medium/high frequency

content (sub-bands {4, 5, 6} and sub-bands {1, 2, 3}, respectively), and thus an image is

synthesized from each of these scales. Each synthesized image will thus possess rele-

vant texture information at the selected scale of detail. Nevertheless, one should recall

that the sub-band selection is dependent on the image resolution, which imply that a

pre-regularization step may be added in order to account for frames with different

image resolution.

Once the relevant information is selected by using DWT, several statistical texture

descriptors can be extracted. Since texture is a phenomena involving spatial patterns

among neighbor pixels, it can be properly exploited using co-occurrence matrices.

These are usually built by estimating the second order joint-conditional probability

density function f(i, j, d, θ), which is computed by counting all pairs of pixels at dis-

tance d, having pixel intensity of color levels i and j at a given direction θ. The angular

displacement used is the set {0, π/4,π/2, 3 π/4}. Several features can be extracted from

co-occurrence matrices, corresponding to statistical descriptors containing second

Figure 2 Algorithm Flowchart. Data flow throughout the algorithm key blocks. An initial pre-processing
step is applied to the image in order to synthesize two images containing only the texture details
corresponding to the medium and high frequency content of the original image. In order to compute the
proposed texture descriptors, co-occurrence matrices are computed for each synthesized image and
several features are extracted from these matrices. Then, multi-scale higher order statistical modeling is
applied to extract the proposed texture descriptors. An optional dimensionality reduction of the feature
vector can be applied prior to the classification stage.
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order color level information, which are mostly related to the human perception and

discrimination of textures [31]. In the present work only 4 statistical measures are con-

sidered among the 14 originally proposed [31]. They are angular second moment (F1),

correlation (F2), inverse difference moment (F3), and entropy (F4), representing the

homogeneity directional linearity, smoothness and randomness of the co-occurrence

matrix, defined respectively as:

F1 =
Ng∑
i=1

Ng∑
j=1

p(i, j)2, (1)

F2 =

∑Ng

i=1

∑Ng

j=1(i · j) · p(i, j) − μx · μy

σx · σy
, (2)

F3 =
Ng∑
i=1

Ng∑
j=1

1
1 + (i − j)

p(i, j) , j �= i + 1, (3)

F3 =
Ng∑
i=1

Ng∑
j=1

p(i, j)log2p(i, j) , p(i, j) �= 0, (4)

where p(i,j) is the ijth entry of the normalized co-occurrence matrix, Ng the number

of gray levels of the synthesized image and μx, μy, sx and sy are the means and stan-

dard deviations of the marginal probabilities px(i)/Py(j) obtained by summing up the

rows/columns of the matrix p(i,j). In the ambit of this paper these features were

obtained from pre-processed images, which are synthesized from the inverse wavelet

transform of the wavelet transform of source images where information not relevant

for texture analysis was discarded in the wavelet domain, as described in the sequel.

HOS in the color-scale space was added to cope with joint non-Gaussianity that cer-

tainly happens under marginal non-Gaussianity cases. The resulting feature vector will

allow to capture enough information in order to identify characteristic texture patterns

from normal and abnormal small bowel tissue.

Feature Extraction Algorithm

Image Pre-processing

The image pre-processing stage synthesizes two images containing only the most rele-

vant textural information from the source image. The most relevant texture informa-

tion often appears in the middle frequency channels [32]. Texture is the discriminating

information that differentiates normal from abnormal lesions, regarding colorectal

diagnosis [14,15,33,34], hence it might be extrapolated to small bowel diagnosis with

similar characteristics.

The wavelet transform allows a spatial/frequency representation by decomposing the

image in the corresponding scales. When the composition level decreases in the spatial

domain it increases in the frequency domain providing zooming capabilities and local

characterization of the image [35]. This spatial/frequency representation, which pre-

serves both global and local information, seems to be adequate for texture

characterization.
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Color transformations of the original image I result in three decomposed color

channels:

Ii, i = 1, 2, 3, (5)

where i stands for the color channel.

A two level discrete wavelet frame transformation is applied to each color channel, Ii,

as shown in Figure 3. This transformation results in a new representation of the origi-

nal image by a low resolution image and the detail images. Therefore the new repre-

sentation is defined as:

Wi =
{
Lin, D

i
l

}
, n = 2; l = 1, 2, 3, 4, 5, 6, (6)

where l stands for the wavelet band and n is the decomposition level.

Since the textural information is better presented in the middle wavelet detailed

channels, then second level detailed coefficients would be considered. However, the

relatively low image dimensions (256 × 256) limit the representation of the details,

becoming the first level more adequate, than previously expected, for texture represen-

tation [27]. Nevertheless an image resolution normalization might be required for dif-

ferent image resolutions. The image representation consists of the detail images

produced from (6) for the values 1 = 1, 2, 3, 4, 5 and 6, as shown in Figure 3. This

results in a set of 18 sub-images:

Di
l, i = 1, 2, 3; l = 1, 2, 3, 4, 5, 6. (7)

For the extraction of the second order statistical textural information, co-occurrence

matrices would be calculated over the eighteen different sub-images. However, and in

order to diminish the dimension of the observation vectors, the image to be processed

can be synthesized from inverse discrete wavelet transform (IDWT), with the coeffi-

cients of the large scales (lower frequencies) discarded. As the goal is to correlate tex-

ture descriptors obtained at different scales and colors, one image must be synthesized

from each scale and color channel. The number of scales considered in this paper is 2.

Therefore one image must be synthesized from bands {1, 2, 3} and a second image is

synthesized from bands {4, 5, 6}, for each color channel. This procedure reduces the

dimensionality of the observation vector by a factor of 3, since only six images need to

be processed instead of the eighteen obtained in the wavelet domain. Previous results

Figure 3 2D DWT of a CE frame. Example of two level discrete wavelet decomposition scheme of the
original image for color channel i.
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confirmed that the most relevant texture information is maintained with this approach

[27,29]. It is important to emphasize that this selection is mainly related with the detail

level selection. Indeed, the orientation information discarded in the IDWT synthesis

process is not a major concern at this point. Furthermore the orientation information

will be considered at the time of the co-occurrence matrices calculation. Let S be a

matrix that has the selected wavelet coefficients at the corresponding positions and

zeros in all other positions:

Sil = Di
l, i = 1, 2, 3; l = 1, 2, 3 ∨ l = 4, 5, 6. (8)

Two new images, containing the most important texture information, are then

synthesized from the selected wavelet bands, trough the inverse wavelet transform.

Each image represents the original image at a different level of focus. Let Ni,j where j =

{1, 2} represents the level of focus, be the reconstructed images for each color channel:

Ni,1 = IDWT(Sil), i = 1, 2, 3; l = 1, 2, 3, (9)

Ni,2 = IDWT(Sil), i = 1, 2, 3; l = 4, 5, 6, (10)

where i stands for color channel, l for wavelet band and IDTW(·) is the inverse wave-

let transform. Unfortunately the contribution of the detail information regarding tex-

ture characterization can not be visually confirmed since the lack of the coarse scale

(low frequency content) retires almost all the visual information. In this regard we per-

haps should rely in the well established knowledge that textural information is most

present in the higher frequencies (image detail).

Multi-scale textural descriptors

For all the synthesized images Ni,j co-occurrence matrices are calculated. These

matrices capture spatial interrelations among the intensities within the synthesized

image level. The co-occurrence matrices are estimated in four different directions

resulting in 24 matrices:

Cα

(
Ni,j) , α = 0,π/4,π/2, 3π/4, (11)

where a stands for the direction in the co-occurrence computation. Four statistical

measures given by equations (1), (2), (3) and (4) are estimated for each matrix resulting

in 96 texture descriptors:

Fm
(
Cα

(
Ni,j)) , m = 1, 2, 3, 4, (12)

where m stands for statistical measure.

Multi-scale Higher Order Statistical Modeling of Texture Features

Since each feature extracted from the co-occurrence matrices represents a different

property of the synthesized image, it is expectable that similar textures have close sta-

tistical distributions and consequently they present similar features. This similarity

between features can be statistically modeled in a two-dimensional space (color-scale

space) since features can be simultaneously observed in the three channel colors for

both levels of focus.

While the texture descriptors can be considered statistically independent [31], their

occurrence together in the three color channels for both levels of focus is likely to be
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correlated. The correlation between two descriptors measures their tendency to vary

together and constitutes the sufficient statistics when the multivariate density is nor-

mally distributed.

Therefore we propose to model the texture descriptors as a multivariate Gaussian

distribution in the color-scale space. In this framework 21 correlations must be com-

puted for each texture descriptor as shown in Table 1. There, capital letters stand for

the high frequency image while lowercase letters stand for the medium frequency

image. Prom Table 1 and considering 4 texture descriptors, 84 correlations must be

computed for each endoscopic capsule image.

Second order statistics is a well established theory that is completely adequate to

represent random vectors. Nevertheless, it is limited by the assumptions of Gaussianity,

linearity, stationarity, etc. One of the main properties of the multivariate normal distri-

butions is that the marginal distributions are also normal although the converse is not

necessarily true. However, it is very common in practical applications to assume Gaus-

sianity in order to obtain mathematical tractability or to alleviate computational load.

Many multivariate statistics used in practice converge in distribution to a multivariate

normal, which is acceptable regarding the multivariate central limit theorem. For the

most of the Engineering applications, in spite of sometimes the distributions tend to

be clearly non-Gaussian, modeling non-Gaussianity usually improves the performance

only marginally. This is partially due to the fact that usually higher order moments

need much more training data to be accurately modeled than second order moments.

For the current application, statistical descriptors tend clearly to be non-Gaussian,

especially for pathological cases as shown in Figure 1[30].

HOS characterized by higher order moments are adequate to model non-Gaussian

distributions under the assumption that all the moments are finite and so their knowl-

edge is in practice equivalent to the knowledge of their probability function [36]. Third

and fourth order moments have precisely meaning in separating Gaussian from other

distributions. The third central moment:

μ3 = E
{
(x − x̄)3

}
(13)

gives a measure of assymmetricity of the probability density function around their

mean (skewness), while the fourth central moment gives a measure of the peaky struc-

ture of the distribution when compared with the Gaussian. Higher than fourth order

moments are used seldom in practice, hence not tried in the ambit of this paper. How-

ever, and given the authors previous experience [29] and preliminary tests with the

Table 1 Correlations computed for Multi-Scale analysis

H S V h s v

H # # # # # #

S # # # # #

V # # # #

h # # #

S # #

V #

This table highlights how the multi-scale correlation schemes are performed.

Note that H stands for the texture descriptors extracted from the high-frequency content of the Hue channel, while s
stands for the texture descriptors extracted from the medium-frequency content of the Saturation channel.
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proposed algorithm, only the second and third order moments were described in the

present work, given that the fourth order moment does not lead to a relevant increase

in the classification performance. The second order moments or correlation of the

same statistical measure between different color channels and using both scales is

computed as:

φFim,Fkm =
∑

a
Fm

(
Cα

(
Ni,j)) · Fm

(
Cα

(
Nk,j

))
, (14)

where i and k refers to the different color channels and j refers to selected wavelet

band, and can therefore take the values of 1 and/or 2. This approach results in the

computation of 84 coefficients, 21 different correlations computed for each descriptor

as shown in Table 1. The third order moments are computed as:

γFim =
∑
a

(
Fm

(
Cα

(
Ni,j)))3, (15)

ζFim,Fkm ,Ftm =
∑

a
Fm

(
Cα

(
Ni,j)) · Fm

(
Cα

(
Nk,j

))

.Fm
(
Cα

(
Nt,j)) , i �= k �= t.

(16)

From (15) six third order moments are computed for each descriptor, since six color

matrices are available, three in each wavelet scale. Equation (16) provides a larger

number of possible combinations, all of them required for modeling the joint probabil-

ity density function of each descriptor when simultaneously observed in the three col-

ors at each scale. However, and since that correlation of the textural information in

the same color channel at different detail levels is already implicitly calculated in the

second order moments, the third order moments corresponding to combinations that

arise from the same color channel at different scales (eg. HhV) were not calculated in

order to diminish the observation vector. Preliminary tests have shown that this

approximation does not decrease the classification performance. Therefore the third

order moments were calculated for the following cases: HSV, hSV, HsV, HSv, hsv,

Hsv, hSv and hsV, accordingly with the nomenclature of Table 1.

Summing up 56 higher order moments to the 84 second order moments, each frame

is characterized by a set of 140 components in the observation vector.

As the features in the observation vector are mutually correlated at different color

channels it is very likely that some components of the observation vector can have a

negligible effect regarding texture characterization. Therefore, these components must

be located and discarded in order to save computational resources and consequently

accelerating the automatic diagnosis process. Under the assumption of Gaussianity, on

the parameters that characterize the joint and marginal distributions of the second

order textural descriptors, principal components can be obtained by using Principal

Component Analysis, which is a well established theory based on linear algebra

concepts.

Implementation details

In order to compute the co-occurrence matrix for the new image, synthesized from the

wavelet coefficients from the selected bands, a new algorithm was implemented, to

avoid computing co-occurrences in the image corners where no image information
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exists. The co-occurrence computation was done considering d = 1. A similar algo-

rithm was also developed to calculate the histograms of each frame. A 3.2 GHz Pen-

tium Dual Core processor-based with 1 GB of RAM was used with MATLAB to run

the proposed algorithm. The average processing time per frame is about 1 minute,

which is unacceptable to real world applications. However, as stated in [37], the reduc-

tion of the gradation levels of each color channel from 256 levels to 32 levels does not

compromise the texture analysis process. Therefore the processing time per frame

drops considerably, to about 1 second per frame, without significant loss of perfor-

mance. Furthermore it should be noticed that the code was not optimized for speed.

However the vast majority of the pixels in the reconstructed image have a level very

close to zero, so the most of the information is included in a few, very close, levels,

which will lead to a loss of texture information, as very close levels in the 256 levels

image are converted to the same level in the 32 levels image. To overcome this limita-

tion, we have to disperse the pixel values to all available range with a simple multipli-

cation by a constant. Therefore the textural information will be present in all the 256

gray levels, and consequently in all the 32 gray levels, after the conversion. The

selected color space was the HSV, since it is more similar to the physiological percep-

tion of human eye.

Classification Scheme

The features were imported into the open source machine learning package WEKA

(available at http://www.cs.waikato.ac.nz/ml/weka/). A stratified 10-fold cross-validation

procedure was chosen to train a standard multilayer perceptron neural network. The

default parameters were kept in the classifier options. The choice of a simple classifica-

tion scheme, with default parameters, was done in order to make the results more

representative of the choice of the features. The 10-fold cross-validation method is a

standard procedure to validate machine learning classification outputs and has been

found to provide an adequate and accurate estimate of the true error rate [38]. The

10-fold cross-validation algorithm splits the data into 10 partitions, where the propor-

tion of both normal and abnormal frames in each partitions is similar to the entire

dataset. The training and classification process is then repeated 10 times, where 9 par-

titions are used to train and 1 partition is used to assess the classification process. This

way, each frame will be used exactly once as test data, allowing to efficiently use the

available dataset. In order to have an accurate error estimate, the cross-validation pro-

cess was repeated 10 times, being this a standard procedure [39].

Dataset

The experimental dataset contains 700 frames from 14 patients labeled as tumoral

frames. These frames were selected by a team of expert physicians from Capucho’s

Hospital in Lisbon under the criteria of medical unambiguity, which in some cases

required invasive complementary examination. Regarding normal frames only 2300

were used in order to balance the amount of data belonging to each class. Roughly

twenty percent of these normal frames belong to the 14 patients (33 frames from each

one) while roughly 80% of this data belong to 5 normal subjects in order to obtain a

large degree of generalization. Figure 4 and Figure 5 show some examples of frames

belonging to the dataset.
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Experiments

A baseline system for comparison purposes was firstly implemented to serve as a refer-

ence for the current approach. This system is based on the algorithm proposed by

Kodogiannis et al., namely the texture descriptors extracted from the histograms/tex-

ture spectrums of capsule endoscopic video frames, were extracted for the available

dataset [16]. However the classifier did not include the fusion scheme proposed in

[16], since the comparison of the methods must be done with the same classification

algorithm, in order to evaluate which set of features leads to better classification

results. Kodogiannis et al. proposed two different schemes to extract features from tex-

ture spectra in the chromatic and achromatic domains, namely a structural approach

based on the theory of formal languages, which relies on the definition of elementary

texture unit TU and texture unit numbers NTU and a statistical approach, where sta-

tistical texture descriptors are calculated from the histograms of the RGB and HSV

color spaces of capsule endoscopic video frames. A texture unit may be considered as

the smallest complete unit which best characterizes the local texture aspect of a given

pixel and its neighborhood in all eight directions of a square raster. The texture spec-

trum histogram is then obtained as the frequency distribution of all the texture units.

After the determination of the texture spectrum for each of the RGB and HSV color

channels, nine statistical texture descriptors (standard deviation, variance, skew, kurto-

sis, entropy, energy, inverse difference moment, contrast, and covariance) are extracted

from each one, resulting in 54 features. In the statistical approach, the same statistical

descriptors are extracted directly from the color histogram of each of the RGB and

Figure 4 Examples of normal intestinal tissue frames. In this figure, several examples of CE frames
comprising texture patterns from normal tissues are shown.

Figure 5 Examples of abnormal intestinal tissue frames. In this figure, several examples of CE frames
comprising texture patterns from intestinal tumoral tissues are shown.
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HSV color channels, with the obvious drawback of not including any kind of informa-

tion regarding the spatial relationship between the pixels in the image and, therefore,

will most probably fail to distinguish between textures with similar distributions of

grey levels.

For the approach proposed in the present work, a preliminary version of the pro-

posed algorithm, where no multi-scale information is used, was also implemented, dis-

carding (10) (i.e. using just the DWT coefficients of higher frequency). Thus, the

added value of the inclusion of the multi-scale information can be properly evaluated.

Results and Discussion
Table 2 resumes the most relevant results regarding the preliminary version of the pro-

posed algorithm, where no multi-scale information is used. The results are given in

statistical terms, and, to test the importance of the higher order statistics, the classifica-

tion vector for each frame had the second order moments, given by equation (14) or

the second and third order moments, given by (14), (15) and (16), just considering the

lower scale of the DWT transform. The classification results of the methods proposed

in [16] are also shown.

Regarding texture characterization it is well known that the most important informa-

tion lies in the lower to middle scales of the wavelet transform depending on the

image intrinsic spatial resolution which is related to the image size. Conventional

endoscopy [15] frequently uses higher scales (usually the second) than capsule endo-

scopy since the images are of different spatial resolution usually at a rate of 16:1. In

[27] it was shown that second scale of the WT captures less texture information than

the first scale, however results shown that second scale has also an important amount

of textural information. It was also shown that processing the original image, which

contain all the scales, does not improve the system performance regarding to the case

where only the first scale is used. This very important result means that texture infor-

mation contained in the second scale can not be added in the image domain to the

texture information contained in the first scale. However, for a given texture, it is likely

that texture coefficients correlate at different scales and can contribute for texture

characterization. Therefore the idea that correlating texture descriptors at the 2 lower

scales can be an efficient procedure to increase texture information captured by the

small scale of the WT, seems to be confirmed by experimental results.

From the analysis of the classification performance of the baseline algorithms, it is

clear that regarding to the features effectiveness, the baseline for the current approach

is superior to the algorithm proposed in [16], when HOS is included. Therefore, the

additional modeling of the non-Gaussianity in the texture descriptors leads to better

Table 2 Classification performance for the baseline methods

[29] [16]

Classification Vector 2nd order
moments

2nd and 3rd order
moments

Histogram based
features

NTU based
features

Specificity (μ ± s%) 88.0 ± 0.5 90.1 ± 0.3 84.7 ± 0.7 88.2 ± 0.3

Sensitivity (μ ± s%) 88.1 ± 0.4 91.2 ± 0.3 85.5 ± 0.7 89.1 ± 0.5

This table presents the classification performance of the methods used as baseline reference to assess the performance
of the proposed algorithm.
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classification results. One should note that the addition of fourth order moments does

not improve significantly the classification performance (data not shown). Note also

that to correctly estimate higher order moments, larger amounts of data are needed,

and so the classification improvement with the addition of higher order moments will

be perhaps more evident in larger datasets.

Modeling joint non-Gaussianity by using third order moments (HOS) improves in

this manner the system performance at least for the current database. Additionally the

potential for more improvements over larger databases exist since HOS accurate esti-

mates need a large amount of training data. Table 3 shows the results for the current

approach of multi-scale texture analysis and the corresponding reduction in the obser-

vation vector dimensionality by decorrelating the data using PCA. It is clear comparing

tables 2 and 3 that correlations between different scales improve significantly texture

information (Sp. = 93.1 ± 0.4%, Se. = 93.9 ± 0.3%) compared to the case where only

one scale is used (Sp. = 90.1 ± 0.3%, Se. = 91.2 ± 0.3%).

Additionally reducing dimensionality by using PCA reduces performance as expected

but only moderately which indicates data correlation in the multi-band features. Even

a strong reduction from 140 to 40 coefficients, which is the number of coefficients

used in the baseline system for the current approach, maintains a performance slight

higher (Sp. = 91.7 ± 0.1%, Se. = 92.9 ± 0.2%) than when the same dimensionality is

used without multi-scale analysis (Sp. = 90.1 ± 0.3%, Se. = 91.2 ± 0.3%). This clearly

shows that multi-scale analysis can improve texture discrimination regarding classifica-

tion of tumoral tissue in the small bowel.

An important note should be addressed regarding the specificity of the algorithm.

The color of the small bowel tissues may vary between healthy volunteers and patients,

which could lead to unbalances in the classification performance of the proposed algo-

rithm in normal tissue in the GI tract of a diseased patient. However, we have not

detected a significant difference in the false positive detection rate in our dataset, being

this similar in both healthy and diseased subjects. This can be related with the fact that

we are not taking first order descriptors associated with the histogram of the image

content but rather texture descriptors that are mostly related to the local variation pat-

terns in the image.

Regarding the clinical application of the proposed method, we aim indeed to intro-

duce the developed method in a supervised computer-aided diagnostic system, where

the clinicians acts as a final reviewer of the selected frames containing potential tex-

tural abnormalities. Therefore, the primary aim of the present work is to alleviate the

analysis process of a capsule endoscopy video, reducing the time required by the physi-

cian to review the acquired data and to detect abnormalities. This will likely reduce the

overall costs associated with this modality. Additionally, it may contribute to a smaller

dependency on the physician expertise, allowing users with less experience to achieve

Table 3 Classification performance of the proposed method

Proposed algorithm

Classification Vector Multi-scale analysis PCA reduction
(140 ≫ 70)

PCA reduction
(140 ≫ 40)

Specificity (μ ± s%) 93.1 ± 0.4 92.6 ± 0.2 91.8 ± 0.5

Sensitivity (μ ± s%) 93.9 ± 0.3 93.3 ± 0.2 92.7 ± 0.2

This table presents the classification performance of the proposed algorithm.
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better diagnosis performance. Nonetheless, and given the size of CE videos (~50.000

frames), the proposed method will return ~3500 false positives for an entire CE exam.

However, the time required to review these selected frames will likely be smaller than

the total analysis time required to analyze the entire exam. Nonetheless, it should be

stressed that the current performance of the proposed algorithm is still unacceptable

for clinical applications in routine practice, since each frame classified as abnormal tis-

sue will imply a deeper analysis by the operating physician, which will take longer than

the viewing time in the traditional manual CE exam analysis. This may have a cancel-

ing effect on the time savings offered by the proposed algorithm. Therefore, additional

efforts aiming the improvement of the classification accuracy should be taken. We are

aiming to perform this by including the temporal dynamics to improve the detection

rate, by taking into account the classification of neighbor frames to discard wrongly

classified frames. In fact, this is a limitation present in most of the CE computer-aided

diagnosis algorithms, where the CE frames are analyzed independently. This limitation

of the proposed method will be tackled in the near future in order to move towards a

software solution capable to be used in clinical routine.

Conclusions
The results of this paper show that regarding CE video frames classification texture

discrimination can be improved by modeling classical texture descriptors in the color-

scale plane instead of the color plane as usually assumed by classical approaches.

Although a similar approach was proposed in [28] the current statistical model is

richer than the model proposed in [28] where HOS was only applied to marginal dis-

tributions. However the current approach generates almost twice the dimensionality of

the feature vectors that can however be reduced by using PCA with no significant loss

in performance, which suggests data redundancy in the joint non-Gaussianity model-

ing. In spite of this redundancy results presented in this paper are superior to the case

where only marginal non-Gaussianity is modeled as was the case in [28]. Hence HOS

applied to the joint distribution of classical texture descriptors seems to be effective for

texture characterization. Future work will include the augment of the available data-

base, which is important regarding generalization of the presented results, especially

when HOS modeling is involved. Different classification schemes will also be subject of

future investigation. Another point to be explored in the near future is the temporal

dynamics of the texture information, since taking information from neighbor frames

may contribute to the improvement of the classification performance.
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