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Abstract

Background: The detection of T-wave end points on electrocardiogram (ECG) is a
basic procedure for ECG processing and analysis. Several methods have been
proposed and tested, featuring high accuracy and percentages of correct detection.
Nevertheless, their performance in noisy conditions remains an open problem.

Methods: A new approach and algorithm for T-wave end location based on the
computation of Trapezium’s areas is proposed and validated (in terms of accuracy
and repeatability), using signals from the Physionet QT Database. The performance of
the proposed algorithm in noisy conditions has been tested and compared with one
of the most used approaches for estimating the T-wave end point: the method
based on the threshold on the first derivative.

Results: The results indicated that the proposed approach based on Trapezium’s
areas outperformed the baseline method with respect to accuracy and repeatability.
Also, the proposed method is more robust to wideband noise.

Conclusions: The trapezium-based approach has a good performance in noisy
conditions and does not rely on any empirical threshold. It is very adequate for use
in scenarios where the levels of broadband noise are significant.

Background
The Electrocardiogram (ECG) analysis is the heart diagnostic technique most used in

the clinical practice due to its excellent benefit-cost relationship. From the ECG signal,

the following features are evaluated: amplitude, morphology and duration of its waves,

intervals and segments as well as their appearance sequence.

The diagnostic using the ECG signal has numerous approaches. One of them is the

beat-to-beat analysis of the time intervals between the Q-wave onset and the T-wave

end or interval QT (see Figure 1) during periods of time, typically, from 5 min to

24 hours. Sometimes the interval QT is estimated as the time interval between the

peak of the R-wave and the end of the T-wave (RTe). The QT or RT intervals depend

on the accuracy with which both points (onset and offset) are determined, especially of

the T-wave end (Tend) due to the slow transition in the signal around this point, even-

tually contaminated by noise and interference on ECG signal.

Three variants of studies with QT interval have been done: (a) QT mean duration or

QT length (QTL), (b) QT time variability or QT variability (QTV), and (c) spatial

variability or QT dispersion (QTD). The last two ones are measures of the ventricular
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repolarization (VR) heterogeneity degree and they are typically computed using the

standard deviations of QT intervals series measured through the time or the different

ECG leads.

The prolongation of QTL was reported as a predictor of sudden death in patients

with myocardial infarction [1]. QTD and QTV are techniques relatively recent in com-

parison with QTL, but there are reports of studies showing high QTV for isquemic

patients [2] and high QTD as a marker of tachycardia ventricular [3].

As mentioned before, ECG signals are very often contaminated by noise and interfer-

ences. In [4] several sources of these are described and modelled: electromiographic

(EMG) noise (due to muscle contractions), instrumentation noise generated by electro-

nic devices, electrode contact noise, motion artefacts, electrosurgical noise, power-line

interference and base-line drift due to respiration. In situations of high physical activity

(ex. during the realization of physical exercises or stress tests), the EMG noise is the

main source of error in the Tend detection because their random nature strongly

affects the slow transition speed around each T-wave end. This type of noise has

broad-band frequency characteristics which overlap with the frequency spectrum of

T-wave, and also occur in instrumentation noise. The motivation of this work has

been to research an algorithm for Tend detection that is the least sensitive to the pre-

sence of broad-band noise or Gaussian white noise (WN). The detection of T-wave

end (Te) point on ECG with high accuracy is determinant for QTV analysis because of

its small variability (few milliseconds), mainly, in presence of broadband noise. For

instance, if a sampling period is equal to 4 ms, a detection error of 4 samples (16 ms)

could introduce a negative bias on the diagnostic.

Various methods have been proposed for detection of Tend point based on: intersec-

tion of lines [5], threshold on the amplitude of T wave [6], threshold on the first deri-

vative of ECG signal [7], computation of: distances [8], angles [9] and areas [10],

correlation with a template [11], mathematical models of ECG [12], and wavelet trans-

form [13], among others methods. All have some advantages and some drawbacks in

relation to complexity, computational cost, waveforms morphological variations, noise

QT(1)

RT(1) RT(n)

QT(n)

Tend

Qon

R

Figure 1 The beat-to-beat analysis of the QT (or RT) interval variability in presence of wideband
noise requires an accurate T-wave end detection because of the small variability of the QT (or RT)
interval.
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sensitivity and Tend dependence on threshold. It is not the purpose of this paper to

review all the existing methods for Tend point detection. Instead, we will briefly sum-

marize one of the methods mentioned earlier, because of its popularity over the years

and in order to contrast the novelty of the method proposed in this paper.

I. Tend point detection based on threshold method on the first derivative (THD)

This method is based on the principle that the derivative of an isoelectrical segment

(after reducing the noise and eliminating the line base drifts) is approximately null,

while the derivative of the ECG waves, is not. It defines the T-wave end as the point

where the derivative crosses a certain threshold proportional to the T-wave derivative

maximum absolute value [7].

Figure 2 shows the implementation of this method for a positive T-wave morphology.

The upper half signal corresponds to the T-wave of the ECG signal, and the lower half sig-

nal is its derivative (dECG). For this morphology, first, the point of minimum derivative is

computed (A = min (dECG)), second, this value is divided by a constant K (proportionality

factor), obtaining a threshold value equal to Thi (= A/K). The T-wave end point is defined

as the first forward sample where the value of the first derivative of the T-wave downslope

became smaller than a threshold value Thi transferred to the original signal.

When K is high (for example, 10), the detected point will be nearer to the isoeletric seg-

ment, otherwise it will be nearer to the point of minimum (maximum) slope after the T-

wave peak for a positive (negative) T-wave. This method has been applied to several stu-

dies, and demonstrated as robust. It is cheaper in terms of numerical computation and

very useful to determine the T-wave end for signals with small T-P segments (for example,

during intense exercise) because it predicts the Tend point from the computation of the

maximum (or minimum) slope of the last segment of T-wave and doesn’t need any refer-

ence point in the TP segment. However, it has the problem of the empiric selection of the

threshold that must be adapted to the level of an eventually non-stationary noise.

Up to our knowledge there are only three studies about the influence of noise on the

accuracy of the T-wave end detection. In [14] the R-Tend interval (from the R-peak to

the T-wave end) is analysed using two computer-generated ECG signals with a single

Tpeak

ECG

A

dECG

Tend

Thi

Figure 2 Threshold method on the first derivative applied to a positive T-wave. A threshold for the i-
beat (Thi) is calculated by dividing the minimum derivative value by an empirical factor (K). The first sample
below Thi is defined as the T-wave end.
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morphology of the T-wave. In [15], the effect of noise is analysed based on the statisti-

cal indexes computed, again, from eight different estimations of “QT interval” time ser-

ies, using simulated signals with only 6 different morphologies. In both papers the

results express the measure of a differential interval that depends on the onset and off-

set positions simultaneously and not only on T-wave end, as in this work. In [16] the

Tend location error is studied by adding random noise to fifty morphologies of syn-

thetic ECG recordings, but not using real signals.

The aim of this paper is to propose a new approach for the location of T-wave end,

and show its high performance (in terms of accuracy) in presence of noise using sev-

eral morphologies of real signals from QT Database (QTDB) [17]. The proposed

method is compared to the previous method, which was chose due to its wide use.

Methods
It is convenient to clarify that this paper considers only T-wave end detection.

Obviously, the R-wave point needs to be estimated first in order to delimit an interval

that contains the T-wave. Because the R point detection has been broadly described,

no further discussion on this subject is pursued in this paper. Any R-wave detector

with demonstrated robustness can be used. In [18] there is an extensive review of

recent approaches for R-wave detection.

Let us first consider monophasic T-waves (positive or negative) as shown in Figure 3.

Any other morphologies, once identified, can be treated as a particular case of this one,

as will be described in the following section.

Tend

Tpeak
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T-wave

xr,yrxi,yi

xm,ym xr, ym

Trapezium’s 
Area

A

xi

Tend

Tpeak

A

xm,ym xr, ym
Negative
T-wave

xr,yi

xr,yi

Figure 3 Determination of the T-wave end (for a monophasic wave) by the computation of the
areas of several trapezes formed by three fixed points and one mobile (xi, yi). The Tend corresponds
to the point where the area A is maximum.
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I. Method and Algorithm of the Trapezium’s Areas

The trapezium’s area (TRA) approach presupposes that T peaks are located, through

the search of maxima and local minima in a window whose beginning is the previous

peak of the R wave. During this search, the morphology can be also identified using

some existing approaches, for example, the method proposed on [7]. Since our objec-

tive is to characterize the accuracy of the new T-end detector in presence of noise, we

will consider an ideal detector which provides several values for the T-wave peaks

positions, similar to those annotated by the cardiologists.

The TRA method is based on the calculation of successive areas of a rectangular tra-

pezium with three fixed vertexes and one mobile vertex: (xi, yi), which is shifted

through the signal, from (xm, ym) to (xr, yi), while the total area is computed. T-wave

end is defined as the point where the area A of the trapezium is maximum (Figure 3).

The formula of the area of the trapeze is:

A = 0.5
(
ym − yi

)
(2xr − xi − xm) (1)

where:

• (xm, ym) is the abscissa and the ordinate, respectively, of a point with the highest

absolute derivative inside the T-wave and after the last peak (maximum or mini-

mum). The derivative value on this point is a minimum negative for positive

T-waves and is a maximum positive for the negative T-waves.

• (xr, yr) is the abscissa and the ordinate, respectively, of a reference point located

on the T-P isoelectric segment. The exact location is not very important as long as

the point is beyond the T-wave end.

• (xi, yi) is the abscissa and ordinate, respectively, of a mobile point among the two

points mentioned before.

As shown in Figure 3, the area A will be a:

• minimum or zero when (xi, yi) is on the vertexes (xr, yr) or (xm, ym), respectively.

• maximum when (xi, yi) is on the end of the T-wave

The TRA algorithm is based on the method described previously. The steps of this

algorithm are the following:

Pre-processing

1) High-pass filtering of the ECG signal (Butterworth, zero-phase, 4th order, cut-off fre-

quency equal to 0.5 Hz) to reduce baseline wander.

2) Low-pass filtering of ECG obtained in (1) (Butterworth, zero phase, 4th order, cut-

off frequency equal to 30 Hz) to reduce noise.

Processing (assuming T-wave peak positions)

3) Determination of the point identified as “xm“ located in the segment after the T

peak, which has a minimum (maximum) value in the first derivative, and be after the

maximum (minimum) for a T-wave positive (negative). For that, the algorithm searches

in a 200 ms window, starting from the T-wave peak (maximum or minimum). This

segment is appropriate to embrace the xm point in the final segment of the wave T.
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4) Determination of a point identifies as “xr“ located inside the isoelectric segment

and searched in a window between 200 ms and 400 ms, from the peak (maximum or

minimum) of the T-wave, preferably with a value of the first derivative near to zero. If

no point satisfies this condition, the central point is chosen. Actually, the exact posi-

tion of this point is not very important as long as it is beyond the T end point.

5) Calculation of the trapeziums areas of all the points located between “xm“ and “xr“.

Decision rule

6) Identification of the point with maximum area identified as the T-wave end.

As shown in [13], T-wave morphologies can be classified as positive, negative, bipha-

sic (positive-negative or negative-positive), ascending-only, and descending-only. So far,

the TRA algorithm has only been explained for monophasic T waves (positive or nega-

tive). For the case of two-phase waves (positive-negative or negative-positive) or the

only upwards or downwards, the point (xm,ym) should be chosen in such a way that

the wave section between this point and the (xr,yr) point has a monophasic behaviour,

either rising or falling, as shown in Figure 4 for a positive-negative morphology.

II. Evaluation of the Trapezium’s Areas Method: database and parameters

The evaluation of the Trapezium’s areas method was performed with the QTDB, which

constitutes a standard to validate and compare the T-wave end detection algorithms.

This database consists of 105 15-min two-lead ECG recordings sampled at 250 Hz. It

includes a variety of T-wave morphologies chosen from several MIT-BIH databases

(Arrhythmia, Supraventricular Arrhythmia, Normal Sinus Rhythm, ST Change Data-

base, Long-Term Database, Sudden Death) and European ST-T Database. In 105

records, 3542 T-wave ends have been annotated by one cardiologist and in 11 of these

records another cardiologist annotated 402 T-wave ends, being a total of 3944 beats.

In each record, at least 30 beats have been manually annotated by cardiologists, label-

ing the end of the T wave (and others fiducial points). We discard some beats of poor

quality for T-wave end location: 703 of the 3542 annotated by cardiologist 1 and 129

of the 402 annotated by cardiologist 2, to give a total of 3112 detected beats.

Trapezium’s Area A
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Tpeak2
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Figure 4 Determination of the T-wave end for biphasic (positive-negative) morphology.
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Traditionally [18], four parameters have been used in the detector’s validation:

Sensitivity, Positive Predictivity, the mean and the standard deviation of the detection

errors, that is, the time difference between the automatic and the cardiologist annota-

tion. In this work, we only computed the last two ones because of our assumption that

the R and T peaks are located by an exemplar method (S = 100%, P = 100%).

Two evaluation criteria are implemented to compute the detection errors:

1. Best beat per record (BB): the best result that minimizes the detection error

among the two T-wave end computed positions is chosen as the real Tend. This pro-

cedure was first adopted in [13] and later in [10]. The justification given in [13] is that

the cardiologist has made his annotation by looking at both leads and his decision is

based on the best lead. In clinical practice, this criterion requires a robust automatic

decision rule.

2. Best lead per record (BL): the best ECG lead which contributes with the biggest

number of T-wave end points, according to the previous criterion, is chosen [19]. If

the contributions of Tend are equal, the first lead is selected. This procedure is more

realistic from the viewpoint of a human operator.

The procedure to compute the global mean (me) and standard deviation (sd) of the

detection errors for each evaluation criterion has the following steps:

(1) for each annotated beat (by both cardiologists) on each record, the detection

errors are computed,

(2) for each record i, the mean (Mi) and standard deviation (Si) of the detection

errors are calculated,

(3) for all records, the mean of all Mi (me) and the mean of all Si (sd) are computed.

I. Performance in noisy conditions: Comparison between methods

Since each original approach (and its corresponding algorithm) uses different types of

filtering, their performance could depend on the characteristics of the filters. To homo-

genize this dependence, the pre-processing used for the algorithm of the trapezes was

the same for the first derivative method.

To be consistent with the clinical practice, for each record of QTDB, the “best ECG

lead” was selected. As the signal-noise ratio (S/N) for each T-wave (in the same lead)

is different, it is not feasible to add noise by controlling the S/N ratio of the global

lead. To guarantee a uniform noise level the control parameter will be the T-wave

peak amplitude (ATWP) beat by beat. Broadband noise was simulated as zero mean

WN added to ECG signal.

The procedure to characterize the performance in the presence of noise by each

method consists of the following steps:

1. High-pass filtering followed by low-pass filtering like the pre-processing described

for the TRA algorithm.

2. Obtain the reference T-wave end using the method X (TRX). The sub index “X“

will be “D” for the threshold on the first derivative method; and T for the trapezium’s

areas method.

3. Compute the reference T-wave peak amplitude (ATWP) using the values of expert’s

annotations.

4. For each beat of filtered ECG signal, add WN of amplitude equal to N% of ATWP,

N = {1%, 5%, 10%, 20%}. For each level of noise, WN was generated 200 times and
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added back to filtered ECG signal; then it was low-pass filtered like in step 2, and the

mean of 200 respective estimates of T-wave ends was computed. This value becomes

the T-wave end for the level of noise N and method X (TNX).

5. Obtain the successive estimates of the T-wave end for each beat i, level of noise N

and method X (TNXi).

6. Compute the modular percentage relative error (ENX) for the algorithm “X“ and

level of noise N according to the following expression:

ENX =
k∑
i=1

∣∣∣∣
(
TNXi − TRXi

TRXi

)∣∣∣∣ × 100 (2)

where,

k is the total number of beats annotated by both cardiologist (3112)

TNXi is the i-th T-wave end obtained by algorithm X when the level of noise is N% of

ATWP. N = {3%, 5%, 10%, 20%},

TRXi is the i-th reference T-wave end for the algorithm X. For the algorithm of

threshold on first derivative (THD), we use the following threshold factors: K = 2

(50%), K = 5 (20%) and K = 10 (10%).

ENX is the overall mean of the modular relative-detection-errors due to added noise.

It gives an idea of the upward or backward displacement (i.e. absolute) of the Tend

position due to the effect of the noise. Therefore, ENX is a measure of the method per-

formance in noisy conditions. Signal processing was done on Matlab 7.7 (The Math-

Works, Inc, Natick, MA).

Results and Discussion
I. Evaluation of the Trapezium’s algorithm

Table 1 shows the results of validation of the proposal algorithm for the two evaluation

criteria. The me value expresses how close the detector is to the annotated markers

(accuracy), and sd value provides information about the stability (repeatability) of the

detection criteria. The numerical results of the threshold algorithm were chosen from

[13] and [19] for the criteria of the best simultaneous beat per record and the best

lead per record, respectively. The results for the THD algorithm is for the case of a

threshold factor equal to 2, which was reported in [7] as the threshold with the best

performance.

The results of Table 1 show that, in terms of error mean value and SD, the proposed

algorithm outperforms the other compared algorithm for both criteria. By examining

the errors of the proposed algorithm, it has been observed that the large errors are

mainly due to the incorrect elimination of the line base drifts when it changes

abruptly. Thus, it is important to develop more accurate and robust methods (ex.

Table 1 Mean (me) and standard deviation (sd) of the differences between the
automatic and the cardiologist annotation for both methods and both evaluation
criteria.

Best beat per record (BB) Best lead per record (BL)

TRA THD [12] TRA THD [18]

me -2.29 13.5 -1.98 18.68

sd 7.15 27.0 16.46 29.79

TRA: Trapezium’s Areas, THD: threshold on the first derivative. The time unit is millisecond.
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adaptative or non linear filtering methods) for eliminating the line base drifts without

deforming the morphology of the T-wave final segment.

The obtained results are very similar to those reported by other T-wave end detec-

tors [10-13,16], because the slight differences (in the mean detection error) are smaller

than or around one sample (4 ms). The standard deviation for our algorithm is around

two (three) samples for the BB (BL) criterion, which is within the expert tolerance lim-

its (30,6 ms for the standard deviation) [20] and presents an excellent repeatability

value in comparison with several algorithms presented in the last ten years [10-13,16].

As we know, the annotation of the T-wave end has not been adopted yet by specialists

causing a high standard deviation among specialists.

II. Comparison between algorithms: Performance in noisy conditions

Figure 5 shows the values of the modular percentage relative error (ENX) for each noise

level and algorithm. In all cases, the error with the TRA algorithm is smaller than the

one obtained with the THD algorithm with a high degree of significance (p ≤ 8.9 × 10-

7 or even smaller). This result shows the better best performance of TRA in the pre-

sence of low, middle and high levels of noise.

Figure 5 does not include the results for K = 10 (10%) because, in this case, the

errors are extremely high and the significance level hypothesis test are low or not of

statistical significant, as shown in Table 2.

For the threshold of 50%, the mean error of the THD algorithm is the smallest, reaf-

firming the results described in [7] and is highest for the threshold K = 10. In [7], it was

only considered the case with K = 2 (50%) because experimentally it showed the best

performance. Nevertheless for K = 2, the T-end point is more far from the true end.

The better performance in the presence of noise of the TRA algorithm can be justified

because the computation of areas corresponds to an integration process and therefore,

attenuates the noise (low-pass filtering effect). In contraposition, the differentiation pro-

cess that is implicit in the threshold algorithm is equivalent to a high-pass filtering and

therefore, amplifies the effects of noise (high pass filtering effect).

Figure 6 shows an example of an ECG beat (from record “sel32” of QTDB) with dif-

ferent noise levels. The description of Figure 4 is explained in the caption of the figure.

0
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3% 5% 10% 20%
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Noise level in % of T-wave peak amplitude (N) 

Modular percentage relative error

TRA

THD (50 %)

THD (20 %)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Methods (X)

Figure 5 Modular percentage relative error versus noise level for both algorithms: TRA and THD.
The value of the several hypothesis tests (T-student) for each algorithm with regard to the algorithm of
the trapezes was upper bounded by a probability p ≤ 8.9 × 10-7.
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The band-pass filtering is the combination of high-pass filtering (step 1) and low-pass

filtering (step 2) of the procedure described before.

The selected noise levels are very high in some cases, mainly for some records of the

QTDB which have high levels of noise where (and in spite of the low-pass filtering)

the added levels increase considerably the present noise. For other practical situations,

the level of noise is smaller, and the most attractive (distinctive) feature of the pro-

posed algorithm is that it doesn’t use any threshold factor, independently of the opera-

tion conditions (noises, interferences and devices).

Conclusions
This work presented the algorithm of the trapezes, a new method to estimate the

T-wave end that presents a low computational cost and mathematical simplicity. The

proposed method showed a good performance in noisy conditions and it does not

depend on any empiric threshold factor. The obtained results suggest the adoption of

the Trapezium’s approach in scenarios where the ECG is strongly contaminated by

noise. The use of this approach could be extended to delineate the onset and offset of

the other waves in ECG.

Table 2 Comparison of modular percentage relative errors (ENX) between the
Trapezium’s algorithm and THD algorithm (threshold factor is equal to 10%).

ENX 3% 5% 10% 20%

TRA 0.0029 0.0031 0.0038 0.0044

THD 10% 0.049 0.050 0.093 0.137

Significance level p ≤ 0.071 p ≤ 0.135 p ≤ 0.047 p ≤ 0.047
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Figure 6 Example of a beat of QTDB (from sel32 recording, first channel) with different levels of
noise: (a) Original beat, (b) Band-pass filtered version of (a), (c) 3 of noise of ATWP, (d) 5% of noise
of ATWP, (e) 10% of noise of ATWP and (f) 20% of noise of ATWP.
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