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Abstract

Background: Computed Tomography (CT) is a technology that obtains the
tomogram of the observed objects. In real-world applications, especially the
biomedical applications, lower radiation dose have been constantly pursued. To
shorten scanning time and reduce radiation dose, one can decrease X-ray exposure
time at each projection view or decrease the number of projections. Until quite
recently, the traditional filtered back projection (FBP) method has been commonly
exploited in CT image reconstruction. Applying the FBP method requires using a
large amount of projection data. Especially when the exposure speed is limited by
the mechanical characteristic of the imaging facilities, using FBP method may
prolong scanning time and cumulate with a high dose of radiation consequently
damaging the biological specimens.

Methods: In this paper, we present a compressed sensing-based (CS-based) iterative
algorithm for CT reconstruction. The algorithm minimizes the l1-norm of the sparse
image as the constraint factor for the iteration procedure. With this method, we can
reconstruct images from substantially reduced projection data and reduce the
impact of artifacts introduced into the CT reconstructed image by insufficient
projection information.

Results: To validate and evaluate the performance of this CS-base iterative algorithm,
we carried out quantitative evaluation studies in imaging of both software Shepp-
Logan phantom and real polystyrene sample. The former is completely absorption
based and the later is imaged in phase contrast. The results show that the CS-based
iterative algorithm can yield images with quality comparable to that obtained with
existing FBP and traditional algebraic reconstruction technique (ART) algorithms.

Discussion: Compared with the common reconstruction from 180 projection
images, this algorithm completes CT reconstruction from only 60 projection images,
cuts the scan time, and maintains the acceptable quality of the reconstructed
images.
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Background
Computed Tomography (CT), which obtains a series of projection data of objects con-

cerned from several view angles, can get the tomograms of the objects through the

technology of image reconstruction. From a purely mathematical standpoint, the solu-

tion to the problem of how to reconstruct a function from its projections dated back

to the paper by Radon in 1917. The current excitement in tomographic imaging origi-

nated with Hounsfield’s invention of the X-ray computed tomographic scanner for

which he received a Nobel Prize in 1972 [1]. The algorithms of image reconstruction

from projections can be divided into two classes: the analytical method and the alge-

braic method [2]. The advantages of the analytical method, such as filtered back pro-

jection (FBP) method, are relatively high computational speed and short computational

time. When the projection data are densely sampled, images can be reconstructed

accurately with analytic methods [3]. Thus, this method is widely used in the commer-

cial CT systems. However, if data containing a reduced number of projections sparsely

sampled over an angular range are considered, the analytic algorithms will yield recon-

structed images with severe aliasing artifacts such as sharp streaks [4]. The iterative

algorithms, on the contrary, can reconstruct images from relatively less projection data.

But, it will take much longer time with iterative algorithms versus analytic algorithms.

In real-world applications, especially the biomedical applications, higher temporal

resolution and lower radiation dose have been constantly pursued. One can reduce

scanning time and radiation dose by decreasing X-ray exposure time at each projection

view. However, the reduction of exposure time would further lower the signal-to-noise

ratio (SNR) of the projection images and consequently lower the reconstructed images’

quality [5]. The other approach to decrease scanning time and radiation dose is to

reduce the number of projections.

Compressed sensing theory, also known as compressive sampling or CS, suggested by

Candès, Romberg, Tao and Donoho in 2006 [6,7], states that one can reconstruct

images accurately from a number of samples that are far smaller than the desired reso-

lution of the images [8]. Inspired by the theory’s success in signal recovery, we have

anticipated that a CS-based algorithm may be used to reconstruct images from sub-

stantially reduced projection data. The algorithm minimizes the l1-norm of the sparse

image as the constraint factor for the iteration procedure. This work focuses on recon-

structing images from significantly reduced projection data, shortening scanning time,

minimizing radiation dose without reducing image quality, and employing this algo-

rithm in phase contrast imaging experiments.

The paper is organized as follows. In section 2, the experimental set-up will be intro-

duced for our polystyrene sample imaging. In section 3, the materials and methods for

data scanning and image reconstruction will be described, in section 4, numerical

results under different conditions are reported and the reconstructed and reference

images at the visualization-based and quantitative-metric-based evaluation levels are

compared. Finally, the implication of the results will be further discussed in section 5.

The experimental set-up for phase contrast imaging

Phase contrast X-ray imaging [9-13] enables the observation of light samples, such as

biological soft tissue, without a contrast agent, because the phase shift cross sections of

light elements are much larger than their absorption cross sections [14]. However, in
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the research of phase contrast imaging, the FBP method has been commonly exploited

in CT reconstruction [15-17]. Applying the FBP method requires a large amount of

projection data, which can prolong scanning time and cumulate with a high dose of

radiation potentially damaging the biological specimens.

Our experiment was performed at the 4W1A beamline of Beijing Synchrotron Radia-

tion Facilities (BSRF). The synchrotron X-ray beam was 20 mm in width by 10 mm in

height. The X-ray beam energy was set at 15keV in this experiment. The distance

between the synchrotron radiation source and the sample was approximately 43 m.

The X-ray CCD was the Photonic Science X-ray FDI-18 mm camera system with 1300

× 1030 pixels, and 10.9 × 10.9 μm2 per pixel. The schematic set-up of this analyzer

based imaging (ABI) system is shown in Figure 1. It composes of a monochromator

crystal, an analyzer crystal, one sample rotation stage, and one image detector. The

monochromator crystal is used to produce highly parallel and monochromatic X-ray

beams. When the highly parallel and monochromatic X-ray beams travel through the

object, their directions change due to refraction and scattering. According to the Brag

diffraction theory, the analyzer crystal only reflects photons coming from a particular

angle. Thus, if the analyzer crystal is rotated about an axis perpendicular to the meri-

dian plane, the diffracted intensity will trace out a ‘rocking curve’ [18]. We obtain the

projection data of our polystyrene phantom when the analyzer crystal was set to the

half intensity points on the high-angle sides of the rocking curve.

Materials and methods
Both software phantom and real sample were used to test our algorithm. The software

phantom was a discrete 256 × 256 Shepp-Logan phantom (see Figure 2(a)). We gener-

ated Sheep-Logan phantom using Matlab command sentence “phantom(256)”. We sup-

pose that it is the desired CT image and each pixel value presents an attenuation

coefficient. To generate the projection data, we simulated the procedure of an X-ray

scan, computed line integrals across the image, and eventually, obtained the projection

data as shown in Figure 3. More popularly, this projection data is named ‘sinogram’

Figure 1 Schematic set-up of an analyzer based X-ray imaging system.
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[19]. The horizontal and vertical axes represent the detector-bin and view-angle coor-

dinates. In our sample, the number of the detector-bin was 256, and the number of

the view-angle had two selections which were 60 and 30. Since minimal levels of noise

were introduced to assess the stability of the algorithm, such studies were supposed to

give an upper bound to the performance of the CT reconstruction algorithms. The real

sample was a polystyrene hexahedron. The length, width, and height of this hexahe-

dron were about 4, 4, and 2 mm respectively. On one 4 mm by 4 mm surface, several

lines of holes were punched by a laser gun. We placed the other 4 mm by 4 mm sur-

face on the sample stage. By scanning the sample over 180° with the angular step of 1°,

we obtained one hundred and eighty projection images of 1300 × 1030 pixels. Several

pieces of projection images in different angles of rotation are shown in Figure 4. Before

reconstruction, we moved the background of the projection images. And since the

sample was not placed at the absolute center of the sample rotation stage, the projec-

tion images should be cut to a suitable size to compose ‘sinogram’.

Figure 2 Shepp-Logan phantom. (a) the original image, (b) the gradient counterpart of (a).

Figure 3 Projection data of Shepp-Logan phantom in the 2D data space with the horizontal and
vertical axes representing the detector-bin and view-angle coordinates, respectively.
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Now, we describe our CS-based iterative algorithm for image reconstruction in paral-

lel-beam CT. A successful application of CS requires that the desired image should

have a sparse representation in a known transform domain [7]. Consider an image f,

which can be viewed as an N × 1 column vector in RN, whose individual elements fj, j

= 1, 2, ... N are N pixel values of the image. Expand vector f in an orthonormal basis

Ψ as follows:

f = �x, (1)

where Ψ is the N by N matrix [ψ1..., ψN] with the N × 1 vectors {ψi}Ni=1 as columns

and x is also an N × 1 column vector. If all but a few of entries in vector x are zero or

almost zero, we will say that f is sparse in the Ψ domain and x is its sparse representa-

tion. For example, the Shepp-Logan phantom in Figure 2(a) and its gradient counter-

part in 2(b), we denote the intensity of pixel of a 2D image as fh, w, where h = 1, 2... H;

w = 1, 2... W; H and W are the height and width of the 2D image respectively and W ×

H = N. If the pixel values are labeled by fh, w, the gradient modulus is as follows.

∣∣∇fh,w
∣∣ =

√(
fh+1,w − fh,w

)2
+

(
fh,w+1 − fh,w

)2
. (2)

We refer to this quantity as the gradient image [20]. The number of non-zero pixels in

this 256 × 256 image (Figure 2(a)) is 27521, while the number of non-zero pixels in its

gradient image (Figure 2(b)) is only 2182, which is much less than the pixel number of

the image. That means clearly, f and x are equivalent representations of the image, with

f in the space domain and x in the Ψ domain. In realistic CT imaging, suppose the

sampled parallel-beam projection-data of image f are modeled by a discrete linear system

g = �f , (3)

where vector g has length M with individual measurements referred to as gi, i = 1, 2,

... M and F is the M by N system matrix [21] that yields the discrete set of projection

measurements for parallel-beam scanning from the object. Then substituting Ψx for f ,

g can be written as

g = �f = ��x = �′x, (4)

Figure 4 The Radiographs collected from the Diffraction enhanced X-ray imaging system in
different rotate angles.
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where F’ = Fψ is an M by N matrix. For a sparse image, since M < N in Eq. (4)

there are infinitely many x̃ that satisfy g = �′x̃. Therefore, the image reconstruction is

aimed at finding the vector x in transform domain by solving the linear program [6-8]

x = argmin
x̃

∥∥x̃∥∥l1subject to�′x̃ = g. (5)

Define the l1 -norm of the vector x as ‖x‖l1 =
∑N

i=1
|xi|[8]. In this paper, specifically,

x represents the gradient image vector of the desired image.

The constraints �′x̃ = g can be satisfied under the circumstance that measurements

contain no noise. But it is unattainable, so we consider the constraints that
∣∣�′x̃ − g

∣∣ < ε, (6)

where ε is a small error factor.

To minimize the l1 -norm of the gradient image [20,22,23], a basic gradient descent

method was employed. Usually, the gradient descent method is to reduce the objective

function χ2 =
∥∥g − �f

∥∥2 by iteratively moving the image along the gradient [24]

f next = f current − α ��current , (7)

where a is constant to control the descent speed and �� is related to the gradient of

the l1 -norm of the gradient image which can also be thought of an image. Each pixel

value of it is expressed as the following partial derivative [20]

vh,w =
∂
∥∥∇fh,w

∥∥
l1

∂fh,w
=

2fh,w − fh+1,w − fh,w+1√
ε +

(
fh+1,w − fh,w

)2 + (
fh,w+1 − fh,w

)2

+
fh,w − fh−1,w√

ε +
(
fh,w − fh−1,w

)2
+

(
fh−1,w+1 − fh−1,w

)2

+
fh,w − fh,w−1√

ε +
(
fh+1,w−1 − fh,w−1

)2 + (
fh,w − fh,w−1

)2

. (8)

To avoid the condition that the denominator vanishes, a small positive number ε is

added in each radical sign.

In the discrete setting, the parallel-beam projection-data vector �g can be written as

weighted sums over the pixels traversed by the X-ray as

gi =
N∑
j=1

φi,j · fj, where i = 1, 2, · · · ,M. (9)

The weight component �i, j of the system matrix F is computed by the intersection

length of the ith ray through the jth pixel. Using a sketch we can understand it clearly.

In Figure 5, the image is composed of four pixels f0, f1, f2, and f3; g1 is a measurement;

and the X-ray l1 passed pixels f0, f1, and f3; the lengths passed these three pixels are �1,

0, �1, 1 and �1, 3 respectively. The computation of the weight � is complex. The

immediate computation of each � will prolong the reconstruction time. Especially with

iteration times’ increasing, the computation of weights will repeat again and again. A

solution is to save the weights in a file in advance and read the weights from this file

during the iteration. Since the X-rays are parallel-beam, we can take advantage of the
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symmetrical characteristic of X-rays. In Figure 6, the X-rays are denoted by a, b, c, and

d. Actually, the measurements obtained by the integral along the X-rays a1, b1, c1 and

d1 are detected by the same detector in different rotate angles which are a, (90- a),
(90+ a) and (180- a) degrees respectively. The a1, a2,..., am is a set of parallel beams.

These eight X-rays (a1, am, b1, bm, c1, cm , d1 and dm) in Figure 6 have such symmetri-

cal characteristics that line y = -x is the symmetrical axis of a1 and b1; the x-axis is the

symmetrical axis of b1 and c1, also a1 and d1; and the parallel beams a1 and am , b1
and bm , c1 and cm , d1 and dm , are symmetrical to the origin. So, if we have a weight

value in X-ray a1 (the wide segment in line a1), we can gain the other seven weight

values (the wide segment in the other seven lines) using the symmetrical

characteristics.

In the following, we give the steps of the reconstruction algorithm in the form of a

pseudo-code and abbreviated notation.

(1) initialization of the image f:

f (0) = 0;

(2) iterative process:

f (k)j = f (k−1)
j + λ

gi −
N∑
n=1

φi,n · f (k−1)
n

N∑
i=1

φ2
i,n

· φi,j;

where the relaxation parameter l [25] is a positive real number to adjust the itera-

tive, and k is from 1 to M. When k = M , a complete iteration period was finished.

The next iteration will enforce the estimated image to the constraint
∣∣�′x̃ − g

∣∣ < ε by

the gradient descent iteration.

Figure 5 Sensing matrix model. f0, f1, f2, and f3 : four pixels. �10, �11, and �13 : three weight coefficients.
l1 is one X-ray, and g1 is one projection value.
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(3) initialization of the gradient descent image:

f̂ (0) = f (M);

(4) gradient descent iteration:

f̂ (l) = f̂ (l−1) − α · ��,, and

�� =
∣∣∣f̂ (0) − f (0)

∣∣∣ · vy,x∣∣vy,x
∣∣ .

In this iteration, the end time we selected is 5.

(5) Initialize the next iterative step:

f (0) = f̂ (end),

then we repeat step (2) - (5) until the difference between the current f(M) and the

previous f(M) is smaller than the threshold we set or the iteration number is more than

1000.

About the control parameters, we selected l = 1.0, ε = 0.0001, and a = 0.5 respec-

tively. The threshold value to stop iteration was set as 0.001. These presetting para-

meters and coefficients only appear to alter the convergence rate.

Figure 6 Computation of sensing matrix weights model. Eight arrow lines represent X-rays. The rays at
different angles are labeled by different letters a, b, c, and d. The subscripts represent the detector array’s
position. a, (90- a), (90+ a) and (180- a): angles from X-axis to X-rays.
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Results
To demonstrate this CS-based iterative algorithm for image reconstruction from

under-sampled projection data, we performed two sets of studies: the first set of stu-

dies were designed in such a way as to acquire some theoretical understanding of how

the CS-based iterative algorithm performs on image reconstruction from reduced pro-

jection data with the parallel-beam configuration under ideal conditions, and the sec-

ond set of numerical examples aimed to see how the CS-based iterative algorithm

could be applied to phase contrast CT image reconstruction.

Recall Eq. 3, in the situation that the measurement data g contain no noise and the

full scan views data are used, one might expect to reconstruct images accurately. How-

ever, in the present studies, the projection data were under-sampled in view angle. We

performed the FBP, traditional algebraic reconstruction technique (ART) and CS-based

iterative reconstruction algorithms under the condition that the numbers of views were

60 and 30. The image-quality evaluation for each specimen was performed at two dif-

ferent levels, including 1) visualization-based evaluation, and 2) quantitative-metric-

based evaluation. Some of the evaluation concerns make a comparison between the

reconstructed and original images.

Visual inspection of reconstructions in Figure 7 suggests that under the conditions of

few-view (60- and 30-view number) projection data, the CS-based iterative algorithm

can effectively suppress streak artifacts and noise observed in images obtained with the

FBP and traditional ART algorithms, thus yielding images with a higher visual similar-

ity to the Shepp-Logan phantom image (see Figure 2(a)) than those obtained with

other algorithms.

In addition to visualization-based evaluation, the following three metrics were

employed to quantitatively assess the similarity between reconstructed images and the

original phantom image: 1) the root mean squared error (RMSE), 2) the universal qual-

ity index (UQI) [26], and the correlation coefficient (CC), which are defined as

RMSE =

√√√√√
N∑
i=1

(
fri − f0i

)2

N
,

(10)

UQI =
2Cov

{
fr , f0

}
D(fr) +D(f0)

2f̄r · f̄0
f̄ 2r + f̄ 20

, (11)

CC =
2Cov

{
fr , f0

}
√
D(fr) · √

D(f0)
, (12)

where vector fr and f0 denote the reconstructed and original images of N pixels, and

f̄0 =
1
N

N∑
i=1

f0i, f̄r =
1
N

N∑
i=1

fri,

D(f0) =
1

N − 1

N∑
i=1

(
f0i − f̄0

)2
, D(fr) =

1
N − 1

N∑
i=1

(
fri − f̄r

)2
,

Cov
{
fr, f0

}
=

1
N − 1

N∑
i=1

(
fri − f̄r

) (
f0i − f̄0

)
.

Li and Luo BioMedical Engineering OnLine 2011, 10:73
http://www.biomedical-engineering-online.com/content/10/1/73

Page 9 of 14



The RMSE is widely used for measuring reconstruction accuracy, whereas the UQI

and CC can be used for evaluating the pixel-to-pixel similarity between reconstructed

and original images. When assessing the image’s quality, we demand the RMSE index

to be as small as possible, while expecting the UQI and CC to have the contrary

results.

In Figure 7, the images in the left column are the reconstructed images using CS-

based iterative algorithm, the middle column using ART, and the right column using

FBP. The images in row 1 are reconstructed from 60-view data, and in row 2 the

images are reconstructed from 30-view data.

From the digital Shepp-Logan phantom and reconstructed images, we computed

their RMSEs, UQIs, and CCs and summarized them in Table 1, 2, and 3 respectively.

Results of these three metrics suggest that the CS-based iterative algorithm yields

images more similar to the original image than the FBP and traditional ART

algorithms.

In addition to the simulated experiments with Shepp-Logan phantom, phase contrast

X-ray imaging of a real polystyrene phantom was also performed. We collected 180

radiographs at 180 views. From this full data set, we applied the conventional FBP

algorithm to yield the reference CT image in the 44th slice (see Figure 8). Then we

extracted the 60- and 30-view subsets of data evenly distributed over π-view to simu-

late data collected at a reduced number of projection views. The reconstructed images

are shown in Figure 9, and the three quantitative metrics RMSEs, UQIs, and CCs are

Figure 7 Shepp-Logan phantom images reconstructed from 60 and 30 view numbers using CS-
based iterative algorithm (column 1), ART (column 2), and FBP (column 3).

Table 1 Quantitative assessment RMSE of Shepp-Logan phantom images

RMSE CS-based
Iteration

ART FBP

60-view number 16.82 22.61 37.92

30-view number 17.26 25.07 40.76
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computed and summarized in Table 4, 5, and 6 respectively. The results suggest that

the CS-based iterative algorithm can yield the most similar images to the reference

image. Different from the results of the reconstructed Shepp-Logan images, images

reconstructed from the traditional ART algorithm seem to have the least similarity to

the reference image. The reason might be because the reference image is reconstructed

from the FBP algorithm as well.

Discussion and Conclusions
In this article, a CS-base iterative algorithm reconstructing images from substantially

reduced projection data was presented. Both the digital Shepp-Logan phantom and the

real polystyrene sample experiment results show that the CS-based iterative algorithm

can yield images with quality comparable to that obtained with existing FBP and tradi-

tional ART algorithms. However, when the number of gradient descent iterations is

increased, the smoothing artifact in the reconstructed images will be more obvious. To

improve this situation, reducing the number of gradient descent iterations or the step

Table 2 Quantitative assessment UQI of Shepp-Logan phantom images

UQI CS-based
Iteration

ART FBP

60-view number 0.942 0.894 0.570

30-view number 0.938 0.822 0.490

Table 3 Quantitative assessment CC of Shepp-Logan phantom images

CC CS-based
Iteration

ART FBP

60-view number 0.947 0.900 0.719

30-view number 0.945 0.891 0.646

Figure 8 The reference Polystyrene image reconstructed from 180-view projection data using FBP
algorithm.
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size is an alternative, but if the gradient descent is too small, the algorithm will reduce

to the traditional ART algorithm.

Because the system matrix for sampling is saved in a matrix file, we must create a

correlating matrix file for different images in different dimensions at first. The size of

such a file, however, relates to the projection data’s number and images’ dimensions.

For this reason, if either of these two elements is rather big, the matrix file will be

quite large. Therefore, either compressing the matrix file further or diminishing the

Figure 9 Polystyrene phantom images reconstructed from 60 and 30 view numbers using CS-
based iterative algorithm (column 1), ART (column 2), and FBP (column 3).

Table 4 Quantitative assessment RMSE of Polystyrene phantom images

RMSE CS-based
Iteration

ART FBP

60-view number 7.47 17.90 12.16

30-view number 9.52 19.44 17.37

Table 5 Quantitative assessment UQI of Polystyrene phantom images

UQI CS-based
Iteration

ART FBP

60-view number 0.897 0.648 0.797

30-view number 0.817 0.584 0.613

Table 6 Quantitative assessment CC of Polystyrene phantom images

CC CS-based
Iteration

ART FBP

60-view number 0.900 0.668 0.803

30-view number 0.831 0.601 0.635
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region of interest (ROI) in the reconstructed images may be one direction of our

further work.

In conclusion, the paper aims to reduce the impact of artifacts introduced into the

CT reconstructed image by insufficient projection information. The feasibility of this

method which enforces the gradient descent for constraints in traditional iterative algo-

rithms has been demonstrated by both the simulated phantom and the real polystyrene

sample experiments. The results show that the CS-based iterative algorithm can yield

images with quality comparable to that obtained with existing FBP and traditional

ART algorithms. Further research will be performed to improve algorithm efficiency.

Moreover, applying this algorithm to a less “sparse” sample such as the real biological

soft tissues of small animals and studying how effective the method would be is our

future concern.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 60532090 and 30770593)
and Shanghai Light Source SSRF project (No. 10sr0013). The contents of this paper are solely the responsibility of the
authors. The authors would like to thank colleagues of Medical Image Laboratory of Capital Medical University for
assistance with data collection and for valuable discussions of studies.

Authors’ contributions
XL worked on the algorithm design and implementation, and wrote the paper; SL contributed to discussion and
suggestions throughout this topic, including the manuscript writing. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 9 May 2011 Accepted: 18 August 2011 Published: 18 August 2011

References
1. Kak AC, Slaney M: Principles of computerized tomographic imaging IEEE Press; 1988.
2. Herman GT: Image reconstruction from projections - implementation and applications Springer Verlag Press; 1975.
3. Zou Y, Pan XC, Sidky EY: Theory and algorithms for image reconstruction on chords and within regions of interest.

J Opt Soc Am 2005, A22:2372-2384.
4. Barrett JF, Keat N: Artifacts in CT: recognition and avoidance. Radiographics 2004, 24:1679-1691.
5. Hsieh J: Computed Tomography - principles, designs, Artifacts, and Recent Advances Bellingham, WA: SPIE Press; 2003.
6. Candès EJ, Romberg J, Tao T: Robust uncertainty principles: exact signal reconstruction from highly incomplete

frequency information. IEEE Trans on Information Theory 2006, 52:489-509.
7. Donoho DL: Compressed sensing. IEEE Trans on Information Theory 2006, 52:1289-1306.
8. Candès EJ: Compressive sampling. Proceedings of International Congress of Mathematicians Madrid, Spain; 2006, 1-20.
9. Davis TJ, Gao D, Gureyev TE: Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 1995,

373:595-598.
10. Momose A, Fukuda J: Phase-contrast radiographs of nonstained rat cerebellar specimen. Med phys 1995, 22:375-379.
11. Momose A, Takeda T, Itai Y: Phase-contrast X-ray computed-tomography for observing biological specimens and

organic materials. Review of Scientific Instruments 1995, 66:1434-1436.
12. Snigirev A, Snigireva I: On the possibilities of x-ray phase contrast microimaging by coherent high-energy

synchrotron radiation. Review of Scientific Instruments 1995, 66:5486-5492.
13. Wilkins SW, Gao D, Pogany A: Phase-contrast imaging using polychromatic hard x-rays. Nature 1996, 384:335-338.
14. Yoneyama A, Momose A, Koyama I: Large-area phase-contrast X-ray imaging using a two-crystal X-ray

interferometer. J Synchrotron Rad 2002, 9:277-281.
15. Momose A, Fukuda J: Demonstration of phase-contrast X-ray computed-tomography using an X-ray interferometer.

Nuclear Instruments and Methods in Physics Research 1995, A352:622-628.
16. Dilmanian FA, Zhong Z, Ren B: Computed tomography of X-ray index of refraction using the diffraction enhanced

imaging method. Phys Med Biol 2000, 45:933-946.
17. Nesterets YI, Gureyev TE, Wilkins SW: General reconstruction formulas for analyzer-based computed tomography.

Appl Phys Lett 2006, 89:264103-264105.
18. Zachariasen WH: Theory of X-Ray Diffraction in Crystals New York: John Wiley and Sons Press; 1945.
19. Bellon PL, Lanzavecchia S: A direct Fourier method (DFM) for X-ray tomographic reconstructions and the accurate

simulation of sinograms. Int J Biomed Comput 1995, 38:55-69.
20. Sidky EY, Kao CM, Pan XC: Accurate image reconstruction from few-view limited-angle data in divergent-beam CT.

Journal of X-Ray Science and Technology 2006, 14:119-139.
21. Candès EJ, Wakin MB: An introduction to compressive sampling. IEEE Signal Processing Magazine 2008, 25:21-30.
22. Sidky EY, Pan XC: Image reconstruction in circular cone-beam computed tomography by constrained, total-

variation minimization. Phys Med Biol 2008, 53:4777-4807.

Li and Luo BioMedical Engineering OnLine 2011, 10:73
http://www.biomedical-engineering-online.com/content/10/1/73

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/15537976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7609717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10795982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10795982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7705915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7705915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18701771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18701771?dopt=Abstract


23. Yang L, Lu Y, Wang G: Compressed sensing inspired image reconstruction from overlapped projections.
International Journal of Biomedical Imaging 2010, 2010:1-8.

24. Stefan K, Josien PW, Marius S: Adaptive stochastic gradient descent optimization for image registration. International
Journal of Computer Vision 2009, 81:227-239.

25. Herman GT, Meger LB: Algebraic reconstruction techniques can be made computationally efficient. IEEE Transactions
on Medical Imaging 1993, 12:600-609.

26. Bian JG, Siewerdsen JH, Han X, Sidky EY, Prince JL, Pelizzari CA, Pan XC: Evaluation of sparse-view reconstruction from
flat-panel-detector cone-beam CT. Phys Med Biol 2010, 55:6575-6599.

doi:10.1186/1475-925X-10-73
Cite this article as: Li and Luo: A compressed sensing-based iterative algorithm for CT reconstruction and its
possible application to phase contrast imaging. BioMedical Engineering OnLine 2011 10:73.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Li and Luo BioMedical Engineering OnLine 2011, 10:73
http://www.biomedical-engineering-online.com/content/10/1/73

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/18218454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20962368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20962368?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Discussion

	Background
	The experimental set-up for phase contrast imaging

	Materials and methods
	Results
	Discussion and Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

