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Abstract

Background: Cancer treatments are complex and involve different actions, which
include many times a surgical procedure. Medical imaging provides important
information for surgical planning, and it usually demands a proper segmentation, i.e.,
the identification of meaningful objects, such as organs and lesions. This study
proposes a methodology to segment the liver, its vessels and nodules from
computer tomography images for surgical planning.

Methods: The proposed methodology consists of four steps executed sequentially:
segmentation of liver, segmentation of vessels and nodules, identification of hepatic and
portal veins, and segmentation of Couinaud anatomical segments. Firstly, the liver is
segmented by a method based on a deformable model implemented through level sets,
of which parameters are adjusted by using a supervised optimization procedure. Secondly,
a mixture model is used to segment nodules and vessels through a region growing
process. Then, the identification of hepatic and portal veins is performed using liver
anatomical knowledge and a vein tracking algorithm. Finally, the Couinaud anatomical
segments are identified according to the anatomical liver model proposed by Couinaud.

Results: Experiments were conducted using data and metrics brought from the liver
segmentation competition held in the Sliver07 conference. A subset of five exams
was used for estimation of segmentation parameter values, while 15 exams were
used for evaluation. The method attained a good performance in 17 of the 20
exams, being ranked as the 6th best semi-automatic method when comparing to the
methods described on the Sliver07 website (2008). It attained visual consistent results
for nodules and veins segmentation, and we compiled the results, showing the best,
worst, and mean results for all dataset.

Conclusions: The method for liver segmentation performed well, according to the
results of the numerical evaluation implemented, and the segmentation of liver
internal structures were consistent with the anatomy of the liver, as confirmed by a
specialist. The analysis provided evidences that the method to segment the liver may
be applied to segment other organs, especially to those whose distribution of voxel
intensities is nearly Gaussian shaped.
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Background
In medical image analysis, image-guided surgery and organ visualization, segmentation

is a crucial step. The segmentation process is particularly arduous in abdominal com-

puter tomography (CT) images because different organs lie within overlapping intensity

ranges and are often near to each other anatomically. Therefore, usually it is not possi-

ble to define accurately the boundaries of organs, their vessels and lesions using simple

threshold based segmentation. On the other hand more complex algorithms involve

comparatively many parameters of which adjustment is not a simple issue.

Numerous techniques have been proposed in the literature for extraction of organ

contours in abdominal CT scans. They can be roughly divided in two main groups:

model driven and data driven approaches [1].

Model driven techniques (e.g. [2,3]) use pre-defined models to segment the meaning-

ful objects in the images being analyzed. In this kind of technique a model describing

the organ to be segmented is defined in terms of object characteristics such as posi-

tion, texture and spatial relation to other objects, and the algorithm searches the

images for instances that fit the given model.

Data driven techniques (e.g. [4,5]) try to emulate the human capacity of identifying

objects using some similarity information present on image data, automatically detect-

ing and classifying objects and features in images. Many of them use traditional techni-

ques such as region growing and thresholds, combined with some prior knowledge

about the object being analyzed.

Level set methods [6] are model driven methods that rely on partial differential equa-

tions to model deforming isosurfaces. These methods have been used successfully in

medical image processing but usually require human intervention to set an initial solu-

tion and indicate explicitly when the model should stop expanding. Moreover, semi

automatic level set based methods involve a time consuming trial and error procedure

for optimum parameter tuning.

The parameters in the implementation of traditional level sets are related to the

curves mean curvature, propagation rate and advection of the curve to certain charac-

teristics of the image. The manual definition of these values on level set methods is a

complex task, because their relation with the final result is unclear and there is no

guarantee that the optimal set of values will be found. Therefore, there is a demand

for methods to define such parameters automatically.

Some works approaching liver segmentation using level set based methods are found

on the literature. In [7] a level set method without edges was proposed to segment the

liver, using the Chan-Vese methodology ([8]). In [9] an active model based on level

sets was proposed to segment the liver, using a multi-resolution concept to reduce

processing time. In both works, in spite of achieving good results, the parameters were

not automatically defined, and the segmentation did not included liver vessels and

lesions.

In this work we propose a complete methodology to segment the liver ([10-12]) and

its internal structures, such as vessels ([11]) and nodules, using level sets, stochastic

optimization, and Gaussian mixture model. It also proposes a methodology to separate

the liver into segments according to the Couinaud [13] anatomical model.

The subsequent text is organized in the following way. First, the liver anatomy is

briefly described. The theoretical fundamentals of level sets and the optimization
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algorithm used are then presented. Next, we present the proposed liver segmentation

method in details and the parameter estimation procedure. Then, the segmentation of

vessels and nodules, the identification of portal and hepatic veins and the segmentation

of Couinaud regions are described. Last, we report the results of the corresponding

experimental performance evaluation, and present the main conclusions.

Liver Anatomy

The liver is a vital and complex gland, with a wide range of functions, including detox-

ification, protein synthesis, and production of biochemicals necessary for digestion. It

has two distinct descriptions, according to its morphological and functional aspects.

Morphologically the liver presents 4 lobes: left, right, caudate and quadrate. Function-

ally the liver present a different anatomy, and one of the proposed ones is the Coui-

naud model, which is used within this work.

The functional anatomy model of Couinaud proposes the division of the liver into

eight different regions according to the portal and hepatic veins positions:

Segment I - caudate/Spiegel lobe

Segment II - left posterolateral

Segment III - left anterolateral

Segment IVa - left superomedial

Segment IVb - left inferomedial

Segment V - right anteroinferior

Segment VI - right posteroinferior

Segment VII - right posterosuperior

Segment VIII - right anterosuperior

As illustrated in figure 1, each segment has its limits defined by the hepatic veins and

the portal vein, except segment I, which is drained by the cava vein.

Level Sets

The level set methods theory was originally developed by Sethian and Osher [6,14] for

analyzing and computing moving fronts in a variety of different settings. These meth-

ods were firstly introduced in medical imaging by Malladi et al. [15].

Figure 1 Liver Functional Anatomy: segments of Couinaud. Hepatic veins and portal vein define the
segments, except segment I, which is drained by cava vein.
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The level set methodology relies on a numerical technique that uses level set func-

tion to model and compute continuous deformable models [16] using an implicit

representation. It has been applied to different areas, such as computer graphics, com-

puter vision and image processing. In image processing it was successfully applied to

segment structures with boundaries not clearly defined, that usually cannot be segmen-

ted using simple data driven methods, based on thresholds and line extraction. The

level set approach takes into account other properties such as mean curvature to

model the target object, in such a way that it is possible to avoid undesirable leaks

toward neighbouring structures, preserving the boundaries of the segmented object

even when they are not clearly defined through the entire object.

The main idea of level sets is to embed a deformable model in a d+1 dimensional

space, in order to segment iteratively an object in a d dimensional space. The main

advantage of level sets is that it allows changes of surface topology implicitly. As it

embeds the evolving surface, also called interface, in a higher dimensional function, the

interface can split into several connected components or merge from different con-

nected components naturally. It occurs because the embedding level set function,

which is used to deform the surface, remains continuous.

Considering ψ(x,t) the level set function, x the position vector and t the time step of

the level set evolution, the evolving surface is represented as the zero level set of ψ(x,t)

= 0. This time step controls the evolution of the interface in time. The interface ψ(x,t

+1) = 0 is computed taking into account the interface of the previous time step ψ(x,t)

= 0, using partial differential equations. The segmentation procedure ends when the

RMS difference between ψ(x,t) = 0 and ψ(x,t-1) = 0 is less than a pre-defined mini-

mum RMS value.

The level set function is usually a smooth well behaved function, for numerical stabi-

lity reasons during partial differential equations computation. This work uses the

signed distance function that computes the distance of each voxel to its closest voxel

in the interface. This distance is negative inside the interface, and positive outside, in

such a way that the position of a given point in relation to the interface can be easily

determined by looking at the sign of the level set function in that point.

Using an initial surface S0, which is consequently ψ(x,0) = 0, the level set function

evolves under the control of the differential equation 1, that defines the displacement

of the interface in a time step.

dψ/dt = −αA (x) �ψ − βP (x) |�ψ | + γZ (x) |�ψ | (1)

Note that the gradient Δψ (or its module) of ψ(x,t) appears in all terms of the equa-

tion. As ψ(x,t) was defined as the signed distance function, the gradient of ψ(x,t) points

from inside to outside considering the interface ψ(x,t) = 0, and |Δψ| = 1, by definition.

It defines, together with other parameters, the direction and magnitude of interface

evolution.

The functions A, P and Z are usually calculated from the input image. A is a vector

field responsible for the advection term. It attracts the evolving surface to determinate

features, usually related to boundaries of objects, and pre-defined barriers. It is

weighted by the constant advection weight a, and multiplied by the gradient of ψ(x,t).

P is a propagation image, also called speed image, which controls how the level sets

propagates through the coordinate space. This image normally has high values in
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regions where the interface can expand quickly, and values close to zero in regions

where it should move slowly or stop (normally close to important features). It is

weighted by the constant propagation weight b and multiplied by the module of the

gradient of ψ(x,t).

К is the mean curvature of the interface, and is defined as the divergence of the nor-

mal to the interface. It is usually calculated using first and second derivatives of the

interface, based on finite differences. In this way, К > 0 for convex regions, and К < 0

for concave regions. Z is a spatial modifier for the mean curvature К, and modifies the

value of К in a determinate spatial position. In this work P was defined in such a way

that the curvature has less importance close to important features. It is weighted by

the constant mean curvature weight g and multiplied by the module of the gradient of

ψ(x,t).

The basic level set model has these three terms but a segmentation algorithm based

on level sets may add new different terms, or omit one or more terms, depending on

the problem complexity.

Supervised adaptation of segmentation parameters

Many of the parameters mentioned until now must be properly adjusted for the level

set method to produce accurate results. The determination of appropriate parameter

values usually cannot be done using heuristics mainly due to the complexity of the tar-

get application. It is generally also not possible to determine the optimum values using

non-linear optimization methods for parameter adjustment, due to multiple local

minima.

A number of automatic methods have been proposed to optimize parameters in such

cases. They can be grouped into two categories: supervised and unsupervised [17].

Unsupervised quality assessment methods, e.g., [18] and [19], rely on statistics com-

puted from the image being segmented and the segmentation itself. Supervised meth-

ods try to avoid subjectivity through the use of reference segments, which represent an

ideal segmentation. Quality is assessed by measuring the deviation of the segmentation

outcome from the references.

Stochastic approaches for optimization are options to consider when calculus-based

optimization methods cannot be applied, such as in our methodology. Although sto-

chastic methods are computationally intensive and do not guarantee that the optimum

will be reached, they are able to work with virtually any objective function.

In the present work we used a genetic algorithm (GA), which is a stochastic techni-

que inspired by the evolution theory and widely applied in many optimization pro-

blems [20].

GA methods aim at automatically adjusting segmentation parameters, taking into

consideration a set of reference segments, delineated by an interpreter. The basic idea

is to search the parameter space for a set of values that optimizes a given fitness func-

tion, which expresses numerically the discrepancy among the automatically generated

objects and the references. For details refer to [21,22].

It is worth emphasizing that the model described hitherto is not bound to any parti-

cular parameter optimization technique. There may be optimization approaches other

than GA (e.g. simulated annealing) that could be more efficient for this particular pro-

blem. An evaluation of possible optimization techniques that could be used to get the
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best parameters goes beyond the scope of this paper, but is an interesting issue to be

pursued in the continuation of this research. Nevertheless, the results reported attest

that our method may achieve good results using a GA for parameter estimation and

some approaches for different image segmentation methods were already published (e.

g. [23]) with encouraging results.

Methods
The methodology consists of four steps executed sequentially. Firstly the liver is seg-

mented using level sets with optimal parameters computed by a GA. The level set seg-

mentation uses an initial user-defined liver segment in one slice, and then segments

the liver through all other slices, using a Gaussian fit to define the speed image where

the level sets propagates. The initial solution at each slice is defined as the region pre-

viously segmented on an adjacent slice.

Secondly, the vessels and nodules are segmented using a Gaussian mixture model. In

this work only the nodules that appear darker than liver parenchyma, the adipose

ones, are contemplated. Thus, the model consists in discriminating Gaussians in a mix-

ture model considering that the vessels appear brighter than the liver parenchyma and

the nodules appear darker. Then a region growing method using the information of

each Gaussian implements the segmentation.

Thirdly, the vessels are classified into portal vein or hepatic vein using a simple vein

tracking method, and finally, a geometrical approach is applied to split the liver into

different regions of Couinaud, using the anatomy of these two defined veins.

These steps are described in further details in the following sections.

Liver Segmentation

The proposed method relies on two hypotheses: the liver parenchyma is roughly

homogeneous, and liver veins are mainly inside the liver, as well as liver nodules. The

impact of these heuristics on cases where peripheral nodules and veins are present is

discussed in details in the section on experimental results.

Firstly an initial solution is defined manually in just one slice. This initial solution is

expected to contain great part of the liver, but does not need to be accurate, as it will

be later deformed too. Then an iterative process takes place, both upwards and down-

wards through the whole exam, in which the liver is segmented at each slice sequen-

tially. In this process the initial solution of a new slice to be processed is the

previously segmented result of the adjacent slice, which is then deformed towards the

liver boundaries using the approach based on level sets, with some of the parameters

being adjusted at each slice.

In this work, the advection term was not used, because it is closely related to bound-

ary features and the boundaries of the liver cannot be robustly distinguished from its

anatomical neighbouring structures.

We assume that the liver parenchyma is roughly homogeneous and it is possible to

define two thresholds TL and TH that define a gray level range where most of parench-

yma voxels lie on.

To define the propagation term one must define the speed image and the propagation

weight b. We define the speed image as a function parameterized by two thresholds
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TL and TH (TL<TH) and by the input image g(x). This function is expressed in equation

2, and depicted in Figure 2:

P (x) = g (x) − TL if g (x) < (TH + TL) /2

TH − g (x) otherwise
(2)

The propagation P(x) in the preceding equation is positive when the pixel intensity

lies inside the range [TL,TH] and negative when it is outside the range. It implies that

the surface expands in regions where pixel values are inside the range, and shrinks

otherwise. It can be further observed in equation 2 that the surface evolving speed

decreases or even becomes zero, in regions where pixel values are close to TL and TH.

In this sense, considering that TL and TH are values close to the ones observed on the

liver boundaries, the surface evolution stops when it achieves the liver boundaries.

Clearly, the choice of proper values for TL and TH is crucial for good accuracy. We

propose a simple algorithm to set up TL and TH, relying on the assumption that the

voxel intensities inside the liver follow a Gaussian shaped distribution.

The intensity histogram of the region inside the given initial solution at the respec-

tive iteration step is computed. Then a Gaussian function is fitted to the histogram,

using the well known Levenberg-Marquadt non-linear minimization estimator [24,25],

and the two thresholds TL and TH are defined as the values for which the Gaussian

returns two pre-defined values, respectively GL and GH, as depicted in Figure 3. In this

model, the grey level range [TL,TH] is meant to represent the liver parenchyma. The

values of GL and GH are parameters that must be properly defined during the adapta-

tion of parameters but once estimated, they are fixed, while TL and TH vary within

each exam. Moreover, it is important to emphasize that the definition of rigid TH and

TL values would lead one to face problems with the differences of intensities found in

different exams. This formulation using Gaussian fit computed values, provides robust-

ness to the method against this problem.

Figure 2 P(x) definition. The speed image is defined by a function based on two automatically defined
thresholds TL and TH (TL<TH) and the input image g(x)

Oliveira et al. BioMedical Engineering OnLine 2011, 10:30
http://www.biomedical-engineering-online.com/content/10/1/30

Page 7 of 23



The mean curvature term is defined by the spatial modifier Z, the mean curvature К

and the weight g. The spatial modifier Z was defined like P, in such a way that the

importance of the mean curvature К decreases close to the boundaries. This avoids

that boundary details are missed by smoothing too much the surface on boundaries of

the segmented object.

Once the values for GL, GH, b and g are selected, the level set process can start at a

given slice, deforming the initial solution towards the liver boundaries until the conver-

gence criterion is achieved (minimum RMS).

The level set segmentation procedure confine the voxels inside the liver parenchyma,

since their intensities meet the estimated Gaussian distribution, but nodules and veins,

which normally appear respectively as darker and brighter regions are not captured.

This problem is partially eliminated by the use of a ‘fill-holes’ morphologic algorithm

[26], that merges to the result of the preceding step veins and nodules that are totally

inside the liver. However the problem persists when a nodule or vein is at the periph-

ery, when they usually do not appear in the final result.

This algorithm is applied sequentially for each slice in the exam, and ends when it

achieves the first and last slices, or when an initial segment is vanished by the level set

algorithm in a given slice, indicating a limit of the liver.

Parameter Estimation

Processing Scheme

In the devised GA each individual consists of a set of segmentation parameter values;

each parameter is represented by a gene. The fitness of each solution (individual) is

calculated by comparing the segmentation produced by the solution with the reference

segmentation, using five different measures of performance [27] that will be further

presented.

As described in the previous section, the segmentation method has a set of five para-

meters to be optimized:

1. Minimum RMS: the convergence criterion of level set function, defined in terms of

the root mean squared (RMS) change in the level set function.

2. GL: Gaussian low factor

3. GH: Gaussian high factor

4. b: level set propagation weight

Figure 3 Gaussian thresholds estimation. The two thresholds TL and TH are defined as the values for
which the Gaussian returns two pre-defined values, respectively GL and GH
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5. g: level set mean curvature weight

Initially a set of solutions (initial population) is generated by computing each para-

meter value (genes) randomly, within given ranges. As the evolutionary process goes

on, the best solutions (fittest individuals) are selected and new solutions (generations)

are created from them (reproduction).

The fittest individuals have a larger probability of being selected for reproduction.

Furthermore, the best individuals from one generation are kept in the next generation.

The evolutionary process stops after a fixed number of generations, and the gene

values of the fittest individual are taken as the final (adapted) segmentation parameter

values.

Fitness Evaluation

The fitness function must indicate the similarity between the segmentation result and

the reference segmentation, as shown in figure 4. In mathematical terms, given a set of

reference segments M and a parameter vector W a fitness function F(M,W) that appro-

priately expresses the goodness of a segmentation outcome must be defined.

Once the fitness function F is chosen, the task of the GA is to search for the para-

meter vector Wopt, for which the value of F is minimum:

Wopt = argw (min [F (M,W)]) (3)

Figure 4 Fitness evaluation. The process evaluates a given set of parameters comparing reference data
and the result generated by segmentation using the given parameters
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The fitness function devised in this work is defined as the mean of five scores

derived from five disparity metrics proposed by SLiver07 conference [27] that express

the level of agreement between the result and the reference surfaces. These metrics try

to numerically compare two different segmentations, represented by two different sur-

faces. In this way, they are measures of spatial differences between the two surfaces.

The scores computed over these metrics take into account the uncertainty of a human

specialist, in such a way that the score gives the level of agreement between a segmen-

tation outcome and the one produced by a human specialist.

They are, according to [27], and as presented at http://mbi.dkfz-heidelberg.de/grand-

challenge2007/sites/eval.htm:

1. “Volumetric overlap (VOE): Is the number of voxels in the intersection of segmen-

tation and reference, divided by the number of voxels in the union of segmentation

and reference.”

2. “Relative absolute volume difference, in percent (RVD): 1 minus the total volume

of the segmentation divided by the total volume of the reference”

3. “Average symmetric absolute surface distance, in millimetres (ASD): the border

voxels of segmentation and reference are determined and for each voxel in these sets,

the closest voxel in the other set is determined (using Euclidean distance). All these

distances are stored, for border voxels from both reference and segmentation. The

average of all these distances gives the averages symmetric absolute surface distance.”

4. “Symmetric RMS surface distance, in millimetres (RMSSD): is similar to the pre-

vious measure, but stores the squared distances between the two sets of border voxels.

After averaging the squared values, the root is extracted and gives the symmetric RMS

surface distance.”

5. “Maximum symmetric absolute surface distance, in millimetres (MSD): is similar

to the previous two, but only the maximum of all voxel distances is taken instead of

the average.”

The scores are calculated based on a number of sample segments manually drawn by

specialists for each exam. The reference for each sample is obtained by computing the

mean surface among the segmentation produced by all specialists (for details refer to

[27]). For each metric the mean of the absolute differences between each specialist

result to that reference is computed. These values are taken as the mean human errors.

An algorithm with differences exactly equal to these values receives score of 75 points.

Segmentation exactly equal to the reference receives the score of 100, and the score

decreases linearly as the error increases.

Nodule and Vessel Segmentation

To segment nodules and vessels we propose a region growing method based on a

Gaussian mixture model. Our approach considers three distinct object classes inside

the liver: adipose nodules, liver parenchyma and vessels, which may be differentiated

by their gray levels. In this work only the adipose nodules, which are less dense than

liver parenchyma, are considered.

Mixture Model

The histogram Hi(x) is computed from the voxels inside the segmented liver volume.

The segmentation method uses a mixture model Hi = Gl+Gc+Gr of three Gaussians,
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where Gl corresponds to the nodules, Gc to liver parenchyma and Gr to the vessels (see

figure 5):

Gl(x) = Kl · e
(x− μl)2

2σ 2
l

Gc(x) = Kc · e
(x− μc)2

2σ 2
c

Gr(x) = Kr · e
(x− μr)2

2σ 2
r

where l is an index for left Gaussian, c for centre Gaussian and r for right Gaussian;

and Ki is a constant that multiplies the Gaussian function, with the parameters μi and

si.
The algorithm executes 4 steps sequentially:

1. Estimating Gc

Gc is considered dominant in the mixture model, i.e., Kc >> {Kr,Kl}. Under this

assumption it is possible to identify Gc using the following procedure.

A new histogram Hc(x) is computed by taking the minimum value between sym-

metric points around xmax (value where Hi reaches its maximum), i.e., Hc(x) = min [Hi

(x),Hi(2 xmax -x)]. Gc is the best fit Hc to in the least-squares sense. The non-linear

Figure 5 Gaussian mixture model. The figure shows the mixture model assumed to segment the liver
parenchyma (center gaussian), vessels (right gaussian) and nodules (left gaussian).
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optimizer from Levenberg-Marquadt [24,25] can be used to estimate the parameters

Kc, μc and sc.
2. Estimating Gl

The difference Ha(x) = Hi(x)-Hc(x) is computed. That is equivalent to excluding Gc

from the initial histogram, keeping Gr+Gl. Next Ha(x) is set to zero for x < xmax. The

values Hl(x) = max [Ha (x), Ha (2 xamax -x)], are then computed, where xamax is the

argument for which Ha(x) is maximum. This corresponds to taking the maximum

value between symmetric points around xamax. Again, the parameters of Gl are esti-

mated using the same non-linear optimizer fitting Gl to Hl.

3. Estimating Gr

Gr is estimated from Hb(x) = Hi(x)-Hc(x)-Hl(x) exactly in the same way as Gl was

estimated from Ha(x).

4. Final adjustment

The Levenberg-Marquadt optimizer is applied to find the parameter values that deli-

ver the best fitting of Gl+Gc+Gr to Hi.

Segmentation of Nodules and Vessels using the mixture model

To segment nodules and vessels a region growing strategy is proposed that bases on

the mixture model. The nodules are segmented using the estimated functions Gl and

Gc respectively for the nodules and for the liver parenchyma. Spatial information is

used to separate nodules from parenchyma when the intensity is in the range where Gl

and Gc overlap. The region growing approach uses two different thresholds (TL
lc and

TH
lc) in such a way that voxels with intensity lower than TL

lc are assigned to nodules,

and are used as seeds of a process that aggregates any neighbouring voxel with inten-

sity lower than TH
lc.

TL
lc is set empirically as the intensity value in which the proportion Plc between vox-

els belonging to Gl and voxels belonging to the mixture Gl + Gc is at least 70%. TH
lc is

defined as the intensity value where Gl and Gc intercept (TH
lc >TL

lc). Figure 6 shows

how the thresholds are selected.

The same approach is used to segment vessels. The vessels inside the liver are

brighter than liver parenchyma and have intensity distributed according to Gr. Again

two different thresholds are used to perform a region growing segmentation: TL
rc and

TH
rc. The voxels with intensity values greater than TH

rc are classified as vessels

straightforwardly and used as seeds for the region growing process that aggregates the

neighbouring voxels with intensity value greater than TL
rc.

TH
rc is set empirically as the intensity value in which the proportion Prc of voxels

belonging to Gr and voxels belonging to the mixture Gr + Gc is at least of 70%. TL
rc is

set as the intensity value where Gr and Gc intercept (TH
rc >TL

rc). Figure 6 also illus-

trates the procedure.

Identification of Portal and Hepatic veins

Once the vessels are segmented it is necessary to assign them to the hepatic and portal

veins, which are the basis for the Couinaud segmentation.

It is assumed that three main branches compose the hepatic veins (which occur in

80% of people). Besides, it is assumed that these branches have predominantly vertical

direction, coming from the upper part of the liver to the bottom part.
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The hepatic main branches are identified without considering their bifurcations. A

vessel is classified as one of the main branches of the hepatic vein, when it is longer

than 15% of the liver height. This value was established after testing several different

values.

Let Ivessels be the binary image containing the vessels mask. The following steps are

executed to identify the three main branches of hepatic vein among the segmented

vessels:

1. The first slice k of Ivessels containing vessels is selected.

2. The biggest connected component from the slice k is selected and labelled as can-

didate for hepatic vein main branch.

3. The connected component of the posterior slice with the biggest overlap with the

main branch candidate is selected and merged with it.

4. Step 3 is repeated until no more overlapping is observed.

5. If the main branch candidate height is bigger than 15% of the liver height, then

this candidate is accepted, otherwise it is discarded, and the process restarts.

6. Steps 1 to 5 are repeated until three main branches have been found.

The procedure above segments the main branches but doesn’t classify them into left,

medial or right main branches, as implied by Couinaud anatomical model. To classify

the branches a simple method based on a clock is proposed. The centre of the clock

Figure 6 Thresholds definition. The thresholds TL
lc and TH

rc are set empirically as the intensity value in
which the proportion between voxels belonging to the given Gaussian and voxels belonging to the
mixture is at least 70%. The thresholds TL

rc and TH
lc are defined as the intensity value where the Gaussians

intercept.
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is the central axis of the thorax, and the coronal projections of the veins give their

classification: they appear in this order clock wisely: right, central, and left. Figure 7

illustrates the procedure.

The portal vein is identified as the biggest connected component among the vessels

when the hepatic veins are extracted. The remaining vessels are merged to the hepatic

branches they are connected to, or classified as auxiliary vessels, when they don’t.

Couinaud Liver Segmentation

The division of the liver into Couinaud segments is based on liver anatomy. The geo-

metric approach proposed in this work creates four planes: three approximately verti-

cal, following the orientation of each hepatic vein main branch and one approximately

horizontal, following the orientation of portal vein.

To determine each of these planes a simple algorithm of geometric fit, based on least

squares method, is proposed. The voxels belonging to each branch of hepatic vein and

to the portal vein are selected and a specific plane with the characteristics of the

model (near vertical or horizontal) is computed. The four computed planes determine

the limit of the 8 Couinaud regions.

Results and Discussion
Liver Segmentation

In order to evaluate the performance of the proposed method, a software prototype was

developed in C++/C#. The prototype uses the ITK library [28] which implements the level

Figure 7 hepatic vein main branches identification. The hepatic branches are identified clock wisely:
right, medium, and left branches.
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set framework used in the segmentation method. It is also possible to visualize the results

in different slice directions, as well as the 3D organ models. An additional movie showing

the prototype is available in http://www.lvc.ele.puc-rio.br/projects/Liver3D/3dliver.avi.

It was also developed an environment where the user can specify different GA con-

figurations, enable and disable search of parameters, and define their default values

and search ranges. It is possible to define the training set, and fitness aggregation type

(mean of fitness values, or minimum fitness value).

An evaluation of the optimal GA configuration values for the optimization of the

segmentation parameters goes beyond the scope of this paper, so the GA was config-

ured experimentally, and its convergence was verified visually. The GA configuration

values are the following:

• Number of generations = 30;

• Population Size = 30;

• Initial crossover rate = 0.8;

• Final crossover rate = 0.65;

• Initial mutation rate = 0.1;

• Final mutation rate = 0.8;

• Initial Steady State rate = 0.8;

• Final Steady State rate = 0.2;

• Number of sequenced experiments = 2;

• Rate of seed from the first experiment to the second = 0.1;

In our experiment a set of five exams was used for estimation of segmentation para-

meter values. The method was evaluated upon the other 15 exams available on the

dataset. Both input and reference data were provided by SLiver07 conference [27]. The

parameter values found by the GA in our experiment were:

1. Minimum RMS: 0.0209

2. GL: 0.3859

3. GH: 0.2809

4. b: -5.1929
5. g: 217.414
The results obtained by the presented approach are shown in Table 1, where both

the metric value and its corresponding score are shown in each cell for the different

evaluation metrics. We compiled our results, showing the best, worst, and mean results

for all test set. It is possible to notice that some metrics such as RMSSD and MSD are

more rigorous than other, but the algorithm achieved good results. Recall that, accord-

ing to [27], the maximum score is equal to 100 and corresponds to a perfect match

with the reference. A score equal to 75 corresponds roughly to a segmentation done

manually by a specialist. For scores higher than 60 disparities from the reference seg-

mentation are hardly detectable visually.

The method attained a good performance in 17 of the 20 exams, in which the overall

score was above 65. Only small errors were detected within these exams. Figure 8

shows the result obtained in the best result, with overall score 82.05. Notice that the

liver boundaries are accurately defined.

In 3 exams, though, the results contain some significant errors that can be detected

visually. The exam with the lowest score among all tested exams is depicted in Figure 9,

with an overall score of 29.57. In this exam the liver has a large nodule, which causes a

Oliveira et al. BioMedical Engineering OnLine 2011, 10:30
http://www.biomedical-engineering-online.com/content/10/1/30

Page 15 of 23

http://www.lvc.ele.puc-rio.br/projects/Liver3D/3dliver.avi


Table 1 Liver segmentation results

Evaluation Best Worst Mean

VOE 5.45 12.07 7.35

(Score) (78.70) (52.82) (71.29)

RVD -0.63 8.12 -2.19

(Score) (96.63) (56.80) (82.27)

ASD 0.76 3.57 1.35

(Score) (80.85) (10.70) (66.25)

RMSSD 1.69 8.22 3.05

(Score) (76.46) (0) (58.58)

MSD 17.03 55.09 26.81

(Score) (77.59) (27.21) (64.72)

Total Score 82.05 29.57 68.62

The table shows the results for liver segmentation using five different metrics considering the best, worst and mean
outcomes.

Figure 8 Best result obtained: axial view; coronal view; sagittal view. The liver segmentation result
appears in green.
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leak of the segmented region towards adjacent darker structures. This can be easily

explained by the adopted heuristic that fits a Gaussian to characterize the liver parench-

yma. When a nodule with size comparable to the liver parenchyma is present, this

approach is susceptible to imperfections, as the histogram will not be Gaussian shaped.

Yet, the final contour defines properly most part of the liver. This robust behavior

should be credited to the way TL and TH are computed, which is performed at each

slice, having their values adapted to different regions of the liver.

Figure 9 Leak caused by a big nodule: axial view; coronal view; sagittal view. The liver segmentation
result appears in green.
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The result of another exam with low score (46.18) has a single major error, caused

by a peripheral nodule not classified as liver. This is again due to the adopted heuristic

that models the liver tissue by a single Gaussian. As the nodule in this exam appears

much darker than the liver parenchyma, its voxel intensities lie outside the range [TL,

TH] defined by the Gaussian fit. As the nodule is at the periphery, the morphological

hole filling filter was not able to correct the error, and therefore the nodule region was

not included in the final result. Important metrics such as RMSSD and MSD, which

take into account the maximum differences between the reference and the resulting

surfaces, generated low scores.

In the last exam with poor performance, we see a leak towards the mediastinum,

with overall score of 45.58. This leak towards the mediastinum is commonly observed

in many different approaches, mainly because the mediastinum share some intensity

values with the liver and is anatomically close to the liver in a wide extent. This makes

it hard to define properly the boundary between them in some cases. Some post pro-

cessing can be done to avoid it, as the mediastinum has a known relative position to

the liver. Another possibility would be the inclusion of the advection term to create a

barrier between the liver and the mediastinum. The operator using a proper user inter-

face could manually define this.

Our results can be compared with the results of other approaches tested upon the data

and metrics compliant with the liver segmentation competition held in the Sliver07 con-

ference. If compared with other automatic and semi-automatic methods presented in the

conference’s website, all of them using the same dataset used in this work, our method

had a good performance, being ranked as the 6th best method among 26 (2008).

The estimation of parameters may take a long time (about one week), but it has to be

executed just once, and the values are used for all exams from then on. Once the para-

meters have been estimated, the method is quite fast. The computation time depends on

the exam size: a 210 slices exam, takes 204 seconds to segment the liver, while a 110

slices exam takes 105 seconds, on a AMD Athlon 3.0 GHz with 2GB RAM.

Analysis of sensibility

An experiment for analysis of parameters sensibility was conducted involving the exam

in which we obtained the best result and the optimal values. Each parameter was varied

individually until the performance decreased consistently, in order to assess the range of

values for which they work satisfactorily. Figure 10 shows the results for each parameter.

It is possible to see that Minimum RMS values range from 0.01 to 0.03 without losing

much performance. GL and GH range from 0.3 to 0.5 and from 0.2 to 0.5 respectively

with good performances. The mean curvature weight ranges satisfactorily from near 0 to

1000. It is interesting to observe the behaviour of propagation weight; it seems to have a

constant asymptotic behaviour when getting far from zero value (we tested with values

of the order of tens of thousands). A high propagation weight value would probably

affect the fine-tuning of level sets near to the liver border, but since our propagation

image values are very low there, it seems not to have a great impact on performance.

Nodules and Vessels Segmentation

The evaluation of nodules and vessels segmentation was visual, since no reference data

is available. Figure 11 shows examples of the outcome. The results are visually consis-

tent, with brighter regions classified as vessels, and darker as nodules.
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Figure 10 Analysis of parameters sensibility: RMS, GL, GH, propagation weight, and mean curvature
weight. The charts show the range of values and their performance result for each parameter.

Figure 11 Vessels and nodules segmentation: axial, coronal, sagittal and 3D views. The liver appears
in light green, the vessels in red and the nodules in dark green.
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Identification of Portal and Hepatic veins

The evaluation of the identification of portal and hepatic veins was also visual. This

evaluation is less subjective, since a simple check of the result with the anatomical

model reduces the possibilities of evaluation mistakes. Figure 12 shows an example

where the main branches of the hepatic vein appear in green, yellow and blue. Using

these main branches, the hepatic vein and the portal vein are identified, as shown

respectively in red and blue in figure 13. A specialist considered the results obtained

consistent with liver anatomy.

Couinaud Liver segmentation

The evaluation of the liver division into Couinaud segments was again visual. This eva-

luation is substantially subjective, and even trained doctors may present results slightly

different. A specialist was asked to evaluate the results, and although the results are

consistent with the adopted anatomic model, some inconsistencies with other anatomic

models present in the literature were found. Figure 14 shows the obtained results.

Conclusions
We have presented a methodology to segment the liver and its internal structures. We

also propose a method to separate the liver into segments according to the Couinaud

anatomical model.

Firstly the liver was segmented using a method based on level sets and an evolution-

ary method to estimate its parameters. The use of level sets led to a good accuracy in

the tested exams, and the evolutionary approach based on GAs to estimate

Figure 12 Hepatic vein main branches identification. The right main branch appears in green, the
medium in yellow, and the left in blue. The other vessels appear in red.
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Figure 13 Hepatic and Portal veins segmentation. The hepatic veins appear in red and the portal vein
in blue.

Figure 14 Couinaud segmentation: axial, coronal, sagittal and 3d views. The Couinaud segments
appear in different colors, following the model described in figure 1.
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segmentation parameters, has been shown robust in our experiments. The GA based

method for model adaptation managed to capture the inherent subjectivity present in

the visual segmentation of organs in computer tomography.

The method for nodules and vessels segmentation performed well for most CT exams

of the available dataset. Yet, some limitations became apparent, especially when there

are nodules or veins close to the liver periphery, and also in the presence of nodules

with volume similar to the liver parenchyma. These cases indicate directions for the con-

tinuation of this research aiming at a further refinement of the proposed method. The

identification of portal and hepatic veins also generated results consistent anatomically.

Finally, the geometric approach to fit planes to the hepatic and portal veins managed

to define Couinaud regions. The quality assessment was also visual, and the specialist

consulted to evaluate the results found some inconsistencies with other anatomic mod-

els present in the literature, though the results were consistent with the Couinaud

model. This result brings up a discussion about the convergence of the different exist-

ing theoretical anatomic models for the liver [29-31].

The authors believe that the method to segment the liver may be applied with some

adjustments to segment other organs, especially when the distribution of voxel intensi-

ties is nearly Gaussian shaped. The evolutionary approach can be also used to estimate

segmentation parameters for other organs, if a proper training set can be provided.
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