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Abstract

Background: Real-time forecasting of epidemics, especially those based on a
likelihood-based approach, is understudied. This study aimed to develop a simple
method that can be used for the real-time epidemic forecasting.

Methods: A discrete time stochastic model, accounting for demographic
stochasticity and conditional measurement, was developed and applied as a case
study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By
imposing a branching process approximation and by assuming the linear growth of
cases within each reporting interval, the epidemic curve is predicted using only two
parameters. The uncertainty bounds of the forecasts are computed using chains of
conditional offspring distributions.

Results: The quality of the forecasts made before the epidemic peak appears largely
to depend on obtaining valid parameter estimates. The forecasts of both weekly
incidence and final epidemic size greatly improved at and after the epidemic peak
with all the observed data points falling within the uncertainty bounds.

Conclusions: Real-time forecasting using the discrete time stochastic model with its
simple computation of the uncertainty bounds was successful. Because of the
simplistic model structure, the proposed model has the potential to additionally
account for various types of heterogeneity, time-dependent transmission dynamics
and epidemiological details. The impact of such complexities on forecasting should
be explored when the data become available as part of the disease surveillance.

Background
Mathematical models in population biology and epidemiology have greatly progressed

during the past few decades, supporting the argument for the relevance of theoretical

models to the study of empirical observations [1,2]. The transmission dynamics of

infectious diseases have been well studied using modeling methods, facilitating our

understanding of the mechanisms of disease spread [3-5], allowing the optimization of

infectious disease control, and influencing public health policymaking [4,6]. Of the var-

ious diseases that have been studied, the transmission dynamics of influenza have

attracted much scientific interest, and from the beginning of the 2009 pandemic, math-

ematical modeling has progressed our understanding of the epidemiological dynamics

of influenza (H1N1-2009) [7]. Among the various applications of mathematical models

to infectious disease epidemiology, future prediction is an area that has been
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understudied and methods for real-time and long-term prediction in large populations

have yet to be sought [8-10]. A vast amount of past quantitative modeling effort has

been devoted to the inverse problem methodology which focuses on statistical estima-

tions of model parameters and in which the process of model building imposes strong

assumptions about the underlying transmission dynamics [11,12].

Prediction has two components: forecasting and projection [13]. A forecast is a quan-

titative attempt to predict what will happen in the future, while a projection is an

attempt to describe what would happen under certain assumptions and hypotheses.

Given the many studies that have examined ‘what if’ scenarios of an influenza pan-

demic using a number of plausible parameter settings [14,15], in a sense, one could

regard the projection of influenza as having been widely studied. However, except for

the monitoring and detection of outbreaks based on time series surveillance data [16],

quantitative methods for forecasting have yet to be fully established. Although the real-

time estimation of model parameters has been proposed with, for example, the aim of

assessing the effectiveness of certain control measures in real-time [17], as mentioned

above, such studies tended to focus on parameter estimation and quantitative forecast-

ing has been understudied. During the course of an epidemic, it may be important to

forecast the future course of the epidemic in real-time.

To date, three different approaches have been proposed for the real-time forecast-

ing of influenza. The first employs a parsimonious, but flexible, power-law logistic

equation to directly fit the parametric model (the analytical solution) to epidemic

curves [18,19]. Despite the omission of the so-called “dependent happening”, defined

as an epidemiological phenomenon in which the risk of infection in one individual

depends on the risk in other individuals in the same population unit, and the use of

a simplistic minimization of the sum of squared errors, an SIR (susceptible-infected-

recovered) epidemic model is known to be approximated by a family of logistic

equations [20,21], and the flexible power-law logistic equation has been shown to

yield reasonable fits to empirical data of H1N1-2009 [19]. A second approach

employs a deterministic compartmental model to describe epidemic curves of pan-

demics that occurred during the 20th century [22]. This model has been shown to

yield very good fits to the data, although the fitting procedure using the determinis-

tic model requires the estimation of a total of nine parameters and computing the

uncertainty bounds of forecasts is complex. One can, of course, reduce the complex-

ity by reducing the number of unknown parameters before implementing the fore-

casting. The third, a hybrid stochastic epidemic model that employs a Bayesian

method, was applied to H1N1-2009 in Singapore [23]. Although the Bayesian

method yields reasonable uncertainty bounds of forecasts through the posterior dis-

tribution, a likelihood-based approach to improve our analytical understanding has

yet to be considered. Accordingly, a simple likelihood-based model for forecasting

that permits us to compute the prediction interval (the interval in which future

observations will fall with a certain probability), is called for.

The aims of the present study are; (i) to develop a simple and practical approach to

the real-time forecasting of an epidemic, and (ii) to apply the proposed method to a

case study of pandemic influenza (H1N1-2009) in Japan. Here the empirical data for

H1N1-2009 in Japan and technical problems of forecasting epidemics are described

and a discrete time stochastic model that is analogous to an SIR epidemic model is
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derived. By imposing a branching process approximation to adhere to discrete time

data, a simple method for computing the 95% prediction interval is proposed.

Methods
Description of the data

To clearly explain the motivation in carrying out this study, the empirical data of the

pandemic (H1N1-2009) in Japan is first presented. Figure 1 shows the estimated

weekly number of influenza cases based on national sentinel surveillance in Japan from

week 27 in 2009 (the week ending 5 July) to week 18 in 2010 (the week ending 9

May). The estimates follow an extrapolation of the notified number of cases from a

total of 4,800 randomly sampled sentinel hospitals to the total number of medical facil-

ities in Japan. The notified cases represent patients who sought medical attendance and

who met the following criteria, (a) acute course of illness (sudden onset), (b) fever

higher than 38°C, (c) cough, sputum or breathlessness (symptoms of upper respiratory

infection), and (d) general fatigue, or patients who were strongly suspected of having

the disease and who undertook laboratory diagnosis (e.g. rapid diagnostic testing).

Although the estimates of sentinel surveillance data have various epidemiological biases

and errors, these issues have been ignored in the present study. For instance, by exam-

ining the information for test negative individuals, an unbiased estimate of true inci-

dence of influenza (an estimate that excludes influenza-like illnesses due to other

causes) could potentially be made [24]. However, no comprehensive data set is avail-

able and so the issue of misclassification is disregarded for now. During the period of

interest, influenza A (H1N1-2009) substantially dominated all other isolated influenza

Figure 1 Weekly incidence of influenza cases in Japan from 2009-10. The vertical axis represents the
estimated weekly number of cases based on a nationwide sentinel surveillance, covering the period from
week 27 (the week ending on 5 July 2009) to week 18 (the week ending on 9 May 2010). The estimates,
based on the notified number of cases from a total of 4800 randomly sampled sentinel hospitals, are
extrapolated to the total number of medical facilities in Japan. The case represents all influenza-like illness
cases that received medical attendance. During the period of interest, influenza A (H1N1-2009) dominated
all influenza viruses that were isolated. The four arrows indicate the weeks (weeks 42, 45, 48 and 51 in
2009) that were used for the model predictions in the present study.
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viruses. The dynamics of confirmed cases during the very early epidemic phases have

been reported elsewhere [25,26].

The aim of the present study is to forecast the future weekly incidence during the

course of the epidemic. The four arrows in Figure 1 indicate the weeks of prediction

(weeks 42, 45, 48 and 51 in 2009) that were selected to compare the validity of fore-

casting. These weeks were chosen for comparison because they are close to the peak

and it is known that the forecasting of epidemics is of limited accuracy before the peak

incidence is observed [18,22,23] and is likely to be greatly improved near the peak. The

highest incidence was observed in week 48, so forecasts in weeks 42 and 45 represent

those before the peak, in week 48 those at the peak and in week 51 those after the

peak. To simplify the calculations that follow, the calendar weeks (week 27, 2009 to

week 18, 2010) in which the data were collected have been set to match the actual

weeks of the study (week 0 to 44).

Four major technical challenges for the real-time prediction should be noted. First,

the observed epidemic curve represents only a single sample path (or a single stochas-

tic realization) among all possible trajectories of the epidemic [27]. This implies that

the model should account for stochastic variations in the data [28,29]. Second, because

the virus is transmitted from host to host (human to human infection), an observation

at time t depends on the previous series of observations up to time t-1 [30], reflecting

the abovementioned dependent happening and statistically requiring conditional

assessments. Third, any empirical data are reported and published at discrete time

intervals, while, for the purpose of forecasting, ideal statistical data are continuous.

The data in Figure 1 are based on weekly reporting which does not offer any informa-

tion regarding the dynamics within each reporting interval. Fourth, the observed data

usually involve reporting delays. Moreover, accounting for heterogeneity (spatial het-

erogeneity and social patterns of contact) and time-dependent epidemiological

dynamics (seasonality of transmission, contact behaviors and public health interven-

tions) is ideally required to give detailed insights into the epidemiological dynamics.

Because the data in Figure 1 describe a single temporal distribution of the epidemic

curve for an entire population of Japan, it does not have the information necessary to

explicitly address these heterogeneities.

Chain binomial model

Because the problems of delay and heterogeneity cannot be explicitly addressed with-

out additional epidemiological information, data in Figure 1 are regarded as the weekly

number of new infections (without any delay) generated by a homogeneously mixing

population. It is also assumed that no intervention took place. These theoretical simpli-

fications do not permit the interpretation of the model parameters explicitly in practi-

cal terms, and so the details of actual dynamics have, for now, been ignored. Rather,

the focus is on the predictive performance of the simple model. The estimated para-

meters do retain practical interpretations for a hypothetical population in which the

data generating process used for Figure 1 exactly follows the theoretical assumptions

that are made.

To address the other three technical issues, in the present study a parsimonious dis-

crete time stochastic model, which only accounts for intrinsic transmission dynamics

using a small number of parameters, has been employed. To clearly describe the
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model-building process, the derivation of the model from the classical chain binomial

model is shown. Let Sk and Ck represent the number of susceptible individuals and the

weekly incidence (the number of new infections) in week k, respectively. Given Sk and

Ck, the chain binomial model predicts Sk+1 and Ck+1 iteratively using binomial distribu-

tions [31]. The deterministic expression can be written as

E( ) ( ),

( ) E( ).

C S
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k k k
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 
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where lk+1 is the probability that susceptible individuals Sk escape infection in week

k+1 and E( ) represents the expected value; it should be noted that (1-lk+1) can also be

regarded as the discrete version of the force of infection in week k+1. Stochastically,

the time series of incidence can be written as a chain of binomial random variables:
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Equation (2) can more precisely be written as
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The Reed-Frost model is a special case of the chain binomial model that assumes

u qC k , where q is the probability of escaping infection from a single infected indivi-

dual during week k+1 [32]. Although, in the present study, all the possible interpreta-

tions will not be discussed in detail, the case of u = q (i.e. u is independent of the

number of infected individuals) is known to lead to the Greenwood model [31]. If S0 is

the number of susceptible individuals at the beginning of the epidemic (week 0), then
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and the probability of observing Ck in week k can be conditioned on previous time

series (up to week k-1) as:
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Detailed properties of the Reed-Frost model are reviewed elsewhere [33]. Assuming

that lk+1 = exp(-bCk) and that the reporting interval is close to the infectious period of

the disease of interest, the Reed-Frost model has been shown to be comparable to an

SIR epidemic model with certain assumptions [31,34], and an extension of this type of

Markov model has been applied to the real-time forecasting of influenza [23]. Despite

its usefulness, the Reed-Frost model is not readily analyzed for large S0 (due to bino-

mial arguments), and is mainly applicable to small populations. Although the issue of a

large S0 has been addressed for computing the final size (i.e. the total number, or the

proportion, of infections throughout the course of an epidemic) by means of the so-

called Sellke construction [35,36], an approximate strategy is required for
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implementing real-time forecasting in a large population (see Barbour and Utev [37]

for a detailed derivation of the approximation).

An approximate branching process

As mentioned above, the chain binomial model can be related to the SIR epidemic

model with some adjustment of the generation time [34] (the time interval between

infection of a primary case and infection of a secondary case caused by the primary

case [38]), although the crudely reported weekly data sometimes include a few genera-

tions of cases within each reporting interval. For instance, a contact tracing of H1N1-

2009 in the Netherlands estimated the mean generation time as Tg = 2.7 days [39],

implying that weekly data can include more than two generations of influenza cases.

Therefore, a different approach by imposing a linear argument to the dynamics within

each reporting interval has been used.

Figure 2 illustrates the proposed approximation strategy. Because no information

regarding the dynamics within each week is available, exponential growth in each week

k with a growth rate rk is assumed. The area under the epidemic curve in week k (the

cumulative incidence in week k) corresponds to the reported weekly incidence Ck. Sup-

posing that the initial value of incidence in week k is ik, then

E( ) exp( )

exp( ) ,

C i r s ds

i

r
r t

k k k

t
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k
k
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(6)

Figure 2 Approximation of an epidemic curve. The solid line represents the epidemic curve with
assumed exponential growth within each reporting interval. The vertical dashed lines separate each
reporting interval (week-wise). Growth rate in week k is assumed to be rk, and the area under the curve of
week k (the cumulative incidence in each week) corresponds to the reported weekly incidence Ck.
Susceptible individuals in week k, Sk, represent the number of susceptible individuals at the end of week k.
The horizontal dotted line indicates the initial value of incidence, ik and represents the number of new
cases at the beginning of week k.
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and
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where Δt is the length of the reporting interval (7 days in this case). The determinis-

tic iterative equation of Ck+1 given Ck can be written as ([21,40]):
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Susceptible individuals in week k, Sk, represents the number of susceptible indivi-

duals at the end of week k. Because the growth of cases in each reporting interval is

linearized,

R
S

S
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k
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where Rk and Ri are the instantaneous (effective) reproduction number in week k and

the initial reproduction number (the average number of secondary cases generated by a

single primary case in a susceptible population with size S0), respectively. We use the

notation Ri, instead of more commonly used R0, the basic reproduction number,

because public health interventions took place during the 2009 pandemic, and the esti-

mate of Ri is greatly influenced by those interventions and other extrinsic factors

[41,42]. Moreover, assuming that the generation time is a constant Tg days (as is the

case for the Reed-Frost model), then an estimator of the instantaneous reproduction

number Rk is ([43]):

R r Tk k g exp( ). (10)

Equations (9) and (10) show that
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A more realistic distribution of the generation time could be adopted given a precise

estimate of the variance, but in the present study only a constant generation time has

been considered for simplicity. Replacing rk and rk+1 by S0 and Ri, gives
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Ak is the ratio of cumulative incidence in adjacent reporting intervals. The chain

binomial model is analogous to a classical discrete time branching process model if it

is assumed that the chain binomial model has a binomially distributed offspring distri-

bution. Assuming a Poisson distribution for the observed counts of cases within each

reporting interval for large S0, gives an alternative model:
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From equation (4), Ak can be written as
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Assuming that Tg is known (2.7 days), then the epidemic curve is governed by only

two parameters, S0 and Ri. Thus, an SIR model with a constant generation time has

been simplified to a branching process model that explicitly accounts for the practical

interpretation of the observed weekly cumulative incidence Ck.

Statistical estimation and computation of the uncertainty bounds

The statistical estimation of S0 and Ri, given observed incidence data up to week K, is

straightforward. Given the time series of weekly incidence C0, ..., CK, the conditional

likelihood function to estimate S0 and Ri is

L S R
C C

Ci
k

C
k

kh

K k

( , )
E( ) exp( E( ))

!
.0

1
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
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where E(Ck) = Ak-1(S0, Ri, Ck-1, ..,C0)Ck-1. That is, the likelihood in week k is conditioned

on the previous week k-1; a process that is commonly adopted to address stochastic

dependence structures in any relevant nonlinear models [44]. The maximum likelihood

estimates are obtained by minimizing the negative logarithm of equation (15). The 95%

confidence intervals (CIs) of the parameters are derived from profile likelihoods. Using the

maximum likelihood estimates based on the data from week 0 to K, and assuming that we

have an unbiased maximum likelihood estimate of Ri, the final size, (the proportion of

infections by the end of an epidemic), z, is computed by iteratively solving the following

final size equation that is derived from a continuous SIR model [45]:

1   z zRiexp( ). (16)
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The total number of cases throughout the course of an epidemic, Q, is then given by

ˆ ˆ ˆ .Q zS 0 (17)

The 95% CI of the final size z is approximately computed using the Wald method

and employing the approximate standard error of z [28]:
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which is valid only in the case of a constant generation time.

The computation of prediction intervals can employ chains of the conditional off-

spring distributions (equation (13)). First, to address parameter uncertainty, S0 and Ri

are randomly sampled 1,000 times from uniform distributions ranging from the lower

to upper 95% CIs [46]. Second, from the 1,000 combinations of the two parameters,

minimum and maximum values of the results from the following calculations are cho-

sen as the lower and upper prediction intervals, respectively. For each combination of

the parameters, the upper and lower 1-2ε limits of CK+1 in week K+1 are the largest

CU and the smallest CL such that

   




Pr( ) Pr( ; ,..., , , ),C C r C C S RU K K i

r CU

1 0 0 (19)

and

   

Pr( ) Pr( ; ,..., , , ).C C r C C S RL K K i

r

CL

1 0 0

0

(20)

For week K+1 only, the sums can be found by a computationally efficient method

that uses the incomplete gamma function. In week K+2, the lower and upper predic-

tion intervals are computed as

    



 






Pr( ) Pr( , ; ,..., , , )

Pr(

C C r C s C C S R

C

U K K K i

r C

K

U

2 1 0 0

2  








 r s S R C s C C S Ri K K i

sr CU

; , , )Pr( ; ,..., , , ),0 1 0 0

0

(21)

and

    



 




Pr( ) Pr( , ; ,..., , , )

Pr(

C C r C s C C S R

C

L K K K i

r

C

K

L

2 1 0 0

0

2  





 r s S R C s C C S Ri K K i

sr

CL

; , , )Pr( ; ,..., , , ),0 1 0 0

00

(22)
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because all possible chains for both weeks K+1 and K+2 have to be considered. The

sums have to be calculated directly. Similarly, for a later week K+m, the sums of all

possible chains in weeks K+1, K+2, ..., K+m-1 have to be computed. Although finding

CU and CL for later chains requires a computer programming code, the chain Poisson

model still remains computationally very simple. Alternatively, a negative binomially

distributed offspring distribution [47] in which a dispersion parameter has to be jointly

estimated could be used.

Using the simple model described above, real-time forecasting of influenza (H1N1-

2009) was visually evaluated at weeks K = 15, 18, 21 and 24. By comparing the para-

meter estimates against those derived from an entire epidemic curve (using estimates

based on the data from weeks 0 to 44) the accuracy of the real-time estimation of the

parameters was assessed. The mean generation time Tg was fixed at 2.7 days. In addi-

tion to a visual assessment of the forecasts, the mean absolute error (MAE) was com-

puted continuously for the weeks of prediction from weeks 5 to 35, and used to

measure the closeness of forecasts (E(Ck)) to the observed data (xk), i.e.,

MAE E( ) . 

1

1
n

C xi i

i

n

(23)

where n is the number of weeks of observation involving conditional expectation or

prediction (n = 44 in the case study). MAE was chosen to measure the validity of fore-

casting, because (i) the scale does not directly influence the assessment of the predic-

tions as a whole nor does it affect the comparative examination by week of prediction

and (ii) the comparison is made against a single observed time series data set [48].

Results
Parameter estimates

Table 1 summarizes parameter estimates obtained using the weekly incidence data. At

different weeks of prediction, maximum likelihood estimates of Ri ranged from 1.14 to

1.18 which was broadly consistent with the estimate based on the entire epidemic

curve (Ri =1.13). The CIs overlapped with the CI in week 44, although the 95% CI

based on week 15 was broad, ranging from 0.88 to 1.40. It should be noted that

Table 1 Estimates of parameters for the proposed model using weekly incidence data of
influenza (H1N1-2009) in Japan

Week of
prediction*

Initial reproduction
number

Initially susceptible
individuals (×105)

Total number of cases
(×105)†

MAE‡

15 1.14 (0.88, 1.40) 113083 (0, 256710827) 26778 (25826, 27749) 663

18 1.18 (1.10, 1.28) 391 (218, 741) 573 (66, 1637) 1.9

21 1.15 (1.07, 1.21) 754 (0, 2225) 183 (105, 261) 0.6

24 1.15 (1.09, 1.20) 716 (540, 1104) 175 (100, 251) 0.6

44 1.13 (1.09, 1.18) 834 (664, 1149) 188 (101, 274) 0.5

The values in parenthesis are the 95% CIs. The 95% CIs for the initial reproduction number and initial number of
susceptible individuals were derived from profile likelihood, while those for the total number of cases were computed
using an approximate standard error of the final epidemic size. *Week by which the data were available. Using the data
from week 0 to the specified week, two parameters (Ri and S0) were estimated and forecasts for later weeks were made.
Week 44 corresponds to the end of the observation period, and the parameter estimates are based on the conditional
fitting procedure using the data of the entire epidemic curve from weeks 0 to 44. †Estimated total number of cases
from week 0 to 44, including conditionally expected values from week 0 to the week of prediction (t) and forecasting
from t+1 to 44. ‡MAE, mean absolute error; an average of absolute differences between observed and predicted values,
representing a measurement of forecast error throughout the course of the epidemic.
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because the epidemic was affected by seasonality, public health interventions and het-

erogeneous mixing, the estimated Ri is not useful as a practical measure to be consid-

ered for disease control. Ri may not, for example, be useful when considering the

required coverage of vaccination for disease containment whereas the basic reproduc-

tion number, R0 could be used. Rather, the estimated Ri represents the transmission

potential for an epidemic curve generated by a hypothetical homogeneously mixing

population. Therefore, if the model fully captures the underlying epidemiological

dynamics, the results would indicate that the transmission potential could be accu-

rately estimated using the proposed method.

The estimate of S0 differed greatly depending upon the weeks of prediction. At week

15, S0 was overestimated to the extent that it exceeded the actual population of Japan

(approximately 1200×105). Although an advantage of the proposed stochastic model is

its potential to estimate S0 from incidence data, the estimates of S0 before the epidemic

peak appeared to be inaccurate. Based on the entire epidemic curve, S0 was estimated

to be 834×105, indicating that 69.5% of the Japanese population was initially suscepti-

ble. Given that the estimate agrees well with the result of serological surveillance [49],

S0 for the entire epidemic curve may be validly quantified even without the population

data. Despite slight underestimations, the estimates of S0 at and after the epidemic

peak are close to the estimate based on week 44 with overlapping CIs.

Prediction

The observed and predicted weekly incidence are plotted and displayed in Figure 3. At

week 15 the forecast failed to predict the epidemic with very broad 95% prediction

intervals because of the overestimation of S0 mentioned above (Figure 3A). Using the

maximum likelihood estimates of parameters, the peak weekly incidence was predicted

to range from 2298×105 to 2834×105. As seen in previous studies [18,22,23], the model

prediction is sensitive to variations in the growth rate of incidence before the epidemic

peak appears. In other words, the validity of forecasts before the epidemic peaks largely

depends on obtaining good parameter estimates, and addressing this limitation is diffi-

cult if forecasts are based only on crudely reported weekly incidence data. At week 18,

shortly before the peak, the prediction captured the shape of epidemic curve qualita-

tively, but the expected values of the forecast underestimated the weekly incidence

(Figure 3B). Using maximum likelihood estimates, the estimated peak weekly incidence

ranged from 12×105 to 19×105. At the peak and after the peak, the prediction dramati-

cally improved. All the observed incidences at weeks 21 and 24 were within the 95%

prediction intervals (Figure 3C and 3D).

Despite accurate estimates of Ri, because of the large variation in the estimates of S0,

the predicted final size varied greatly with the week of prediction (Table 1). The

observed total number of cases was 203×105 and at week 44 the model slightly under-

estimated the final size perhaps because of the approximate linear modeling approach

to the epidemic curve, however, the observed value was within the 95% CI. Although

the prediction at week 18 underestimated the final size, the predicted final size at

weeks 21 and 24 was included within the 95% CIs. In addition to the data given in

Table 1, Figure 4 shows continuously evaluated MAE values for the weeks of predic-

tion from weeks 5 to 35. The error fluctuated and was extremely large before the peak

of the epidemic curve. At and after the peak the error was greatly reduced, reflecting
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the accuracies of forecasts mentioned above. In the present case study, an abrupt

decline in MAE was seen in week 18, three weeks before observing the peak incidence

(Figure 4).

Even in week 15, assuming that S0 is known (set as 834×105 persons based on week

44), the epidemic curve described by Ri alone qualitatively captured the observed epi-

demic curve (figure not shown). Ri was estimated to be 1.16 (95% CI: 1.08, 1.23) and

the MAE was reduced to 1.26, indicating that early forecasting is sensitive to variations

in S0 which is influenced by variations in the growth rate. When a constraint for the

upper boundary of S0 using the entire population size for Japan (say, 1200×105) was

imposed for the prediction at week 15, Ri and MAE were, estimated at 1.15 and 2.96,

respectively (the original MAE at week 15 was 663 as shown in Table 1). Clearly, the

validity of the prediction was greatly improved by using a constraint on the population

size. Nevertheless, it should be noted that the use of a constrained S0 imposes the arbi-

trary assumption that the entire population was initially susceptible and was fully

involved in the transmission dynamics.

Figure 3 Assessment of influenza forecasts. The observed weekly incidence of influenza cases (circles)
are compared against the predicted number of cases (lines). Filled circles represent the observed data that
were used for prediction, and unfilled circles represent the observed data that was predicted using the
proposed method. The unbroken line represents the expected prediction made using maximum likelihood
estimates of the model parameters, and the dashed lines show the lower and upper 95% prediction
intervals from the proposed uncertainty analysis. Panels A, B, C and D show the impact the different weeks
(at weeks 15, 18, 21 and 24, respectively) on predictions of the future course of the epidemic. During the
period of observation the unbroken line represents the conditionally expected values, while during the
period of forecasting the line represents the conditionally predicted values. Week 0 on the horizontal axis
corresponds to week 27 (week ending on 5 July 2009).
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Discussion
The present study has proposed a method for real-time forecasting based on crudely

reported weekly incidence data, accounting for demographic stochasticity and condi-

tional measurement and employing a simple discrete time stochastic model. The pro-

posed model was constructed using a branching process approximation of a chain

binomial model. In particular, realizing that the weekly incidence data of influenza Ck

is less interpretable than the incidence data of other diseases with longer generation

times (e.g. measles), the iterative model was parameterized by assuming exponential

growth of cases within each reporting interval. Consequently, the parsimonious model

resulted in a novel, yet fully tractable form. Although the proposed stochastic model is

analogous to models with a series of chains, it can incorporate a more realistic distri-

bution of the generation time and, given more detailed epidemiological information,

has a broad range of extensions. Moreover, the chains of Poisson offspring distribu-

tions enable the computation of the 95% prediction intervals. It is known that a non-

linear model does not allow simple computation of the prediction interval [50] and,

although a more formal approach to computing the prediction interval should ideally

account for future observations more explicitly (and to be strict, the prediction interval

of the present study may better be referred to as the forecast region), the proposed

approach is not very computationally demanding.

The biggest advantage of the proposed model is its potential to describe and predict

the epidemic curve with interpretable parameters S0 and Ri under a homogeneous mix-

ing assumption. In addition, the parameterization produces estimates that can be

exploited to compute the final epidemic size. Nevertheless, as was observed in other

attempts at real-time forecasting [18,22,23], the forecast appears to be very vulnerable

Figure 4 Mean absolute error by week of prediction. The vertical axis shows an average of absolute
differences between observed and predicted values that represent the forecast error throughout the
course of the epidemic. It should be noted that the vertical axis is in logarithmic scale. The dashed vertical
line indicates the week at which the largest incidence (the peak) was observed (week 21). The horizontal
axis represents the week of prediction.
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to the timing of forecasting, especially during the early growth phase of an epidemic.

Indeed, Figure 4 has captured the difficulty of early forecasting in terms of the MAE.

Although, even at week 15, the qualitative behavior of forecasts is greatly improved by

fixing S0 or by imposing constraints for S0 (and leaving only Ri as a free parameter),

the advantage of the proposed model is in its ability to estimate S0 explicitly. Indeed,

in practical settings it may be best to assume that S0 is an unobserved variable. It

should be noted that the results also imply that serological surveillance before and dur-

ing an epidemic may be a great help in improving the forecasts [21].

Despite the omission of heterogeneity, when more precise data in time and structure

becomes available, it can readily be incorporated into the proposed model. For exam-

ple, the model can potentially be extended for age-dependent and spatially structured

data like that used to compute the final epidemic size in a multi-host population [51].

Such an extension could potentially begin to address the difficulty of real-time fore-

casting in the presence of a multimodal epidemic curve. That is, given that a few peaks

in a single temporal distribution resulted from multiple epidemic curves in different

spatial units [49], the spatial extension could capture different epidemic waves in dif-

ferent geographic areas [52]. Another important future task is to allow the model to

fully adhere to the data generating process. If the reporting delay and any time-depen-

dent epidemiological information (e.g. data that are likely to inform a time-dependent

covariate of the risk of infection) are known, the proposed model could potentially

incorporate those aspects in the model-building strategy. The impact of such complex-

ities on forecasting should be explored when the required information becomes avail-

able as part of the surveillance.

As was shown through the likelihood-based approach, the present study has demon-

strated that real-time forecasting can rest on a simple discrete time stochastic model

and has shown that the uncertainty bounds can reasonably be computed using the

conditional offspring distributions. Despite the simplicity, the present study successfully

offers a sound modeling strategy and a methodological avenue to implement real-time

forecasting of an epidemic in the midst of its course.

Conclusions
Because real-time forecasting of epidemics has been understudied, in the present study

a discrete time stochastic model, accounting for demographic stochasticity and condi-

tional measurement was developed. The model permitted us to derive the uncertainty

bounds using chains of conditional offspring distributions. The proposed method was

applied to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. The

validity of forecasts made before the epidemic peak appeared, largely to depend on

obtaining good parameter estimates, and the forecasts of both weekly incidence and

final epidemic size greatly improved at and after the peak with all the observed data

points falling within the uncertainty bounds. Because the structure of the proposed

model is simple, it has the potential to additionally account for heterogeneity, time-

dependent transmission dynamics and epidemiological details when that information

becomes available as part of the data generating process.
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