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Abstract

Background: Computed tomography (CT) is an imaging modality commonly used
for studies of internal body structures and very useful for detailed studies of body com-
position. The aim of this study was to develop and evaluate a fully automatic image
registration framework for inter-subject CT slice registration. The aim was also to use
the results, in a set of proof-of-concept studies, for voxel-wise statistical body composi-
tion analysis (Imiomics) of correlations between imaging and non-imaging data.

Methods: The current study utilized three single-slice CT images of the liver, abdo-
men, and thigh from two large cohort studies, SCAPIS and IGT. The image registration
method developed and evaluated used both CT images together with image-derived
tissue and organ segmentation masks. To evaluate the performance of the registra-
tion method, a set of baseline 3-single-slice CT images (from 2780 subjects includ-
ing 8285 slices) from the SCAPIS and IGT cohorts were registered. Vector magnitude
and intensity magnitude error indicating inverse consistency were used for evalua-
tion. Image registration results were further used for voxel-wise analysis of associa-
tions between the CT images (as represented by tissue volume from Hounsfield unit
and Jacobian determinant) and various explicit measurements of various tissues, fat
depots, and organs collected in both cohort studies.

Results: Our findings demonstrated that the key organs and anatomical structures
were registered appropriately. The evaluation parameters of inverse consistency, such
as vector magnitude and intensity magnitude error, were on average less than 3 mm
and 50 Hounsfield units. The registration followed by Imiomics analysis enabled

the examination of associations between various explicit measurements (liver, spleen,
abdominal muscle, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT),
thigh SAT, intermuscular adipose tissue (IMAT), and thigh muscle) and the voxel-wise
image information.

Conclusion: The developed and evaluated framework allows accurate image regis-
trations of the collected three single-slice CT images and enables detailed voxel-wise
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studies of associations between body composition and associated diseases and risk
factors.

Keywords: Image registration, Computed tomography, Body composition, Imiomics
analysis

Introduction

Metabolic diseases, such as type 2 diabetes (T2D) and cardiovascular diseases (CVD),
are some of the leading causes of mortality globally; existing protocols of prevention
and diagnosis may be obsolete [1].

Body composition is known to be an important risk factor associated with both
T2D and CVD. Different methods are used to study body composition, including
imaging techniques such as computed tomography (CT). CT images provide detailed
analysis, which can aid in understanding the relationship between body composition
and these diseases [2, 3].

The Swedish Cardiopulmonary Bioimage Study (SCAPIS) and Impaired Glucose
Tolerance Microbiota (IGT) studies were established to thoroughly investigate the
existing protocols of prevention and diagnosis related to metabolic diseases such as
T2D and CVD, with the aim of improving them. These nationwide studies incorpo-
rate advanced imaging technologies, biomarkers, and epidemiological analyses to
study more than 30,000 individuals. SCAPIS and IGT include CT imaging based on
3-single-slice (liver, abdomen, and thigh) protocols.

The SCAPIS study [1] intends to use imaging techniques to investigate fat deposits
in conjunction with clinical data as well as data obtained through “omics” technolo-
gies to improve our understanding of the role of obesity and diabetes, associated with
CVD and chronic obstructive pulmonary disease (COPD).

Similarly, the objective of the IGT study [4] is to investigate the impact of the gut
microbiota on glucose dysregulation and the development of CVD.

CT scans are commonly used in medical image analysis as they can provide high-
resolution anatomical information of the whole body. Diagnosis, treatment planning
and evaluation of disease progression can be done through CT images [5-7]. To bet-
ter understand large-scale image data, it is important to transform them into a com-
mon geometry before analyzing them. Image registration plays a significant role in
image analysis, especially in the realm of medical imaging. It can be used to improve
the accuracy and reliability of image analysis methods by deforming images into a
common reference space [8].

Image registration techniques are typically tailored for the imaged body region and
imaging modality they intended to be used for. As described in [9, 10], the authors
used to identify a spatial transformation that aligns a collection of images into a
common reference space that helps to fuse images acquired by different modalities.
They investigated the anatomical and structural changes in longitudinal studies and
extended their study to conduct a statistical voxel-wise body composition analysis
[11-13].

To utilize the full potential of the CT images in the SCAPIS and IGT studies, there is
a need for efficient image registration methods prior to applying an Imiomics analysis
(association between imaging and non-imaging data) [13] to the 3-slice CT images.
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The use of deep learning (DL) based registration methods has increased in recent
years due to their faster runtime and ability to avoid issues specific to the optimization
process of classical methods [14]. However, these methods often require large datasets
to produce reliable results, and newer methods without this requirement have only been
tested on limited datasets [15, 16]. There are still several domain specific challenges,
which need to be addressed before DL-based image registration methods can be widely
used in clinical settings instead of classical methods [17].

Previously, image registration methods have used combinations of rigid and deform-
able steps [13, 18—20] or biomechanical models [21, 22]. However, only a limited amount
of research on 3-slice CT image registration has been conducted, and also most of the
research has focused on registering serial CT images from a maximum of 30 subjects
[19]. Inter-subject 3D CT image registration has previously been studied in the context
of atlas generation from 1466 lung screening CT images. This approach used masks of
lung and body to guide and evaluate the registrations [23]. As per our knowledge, inter-
subject image registration of 3-slice CT into common space, for subsequent voxel-wise
statistics, is unexplored.

The aim of this study was to develop and evaluate a fully automated inter-subject regis-
tration technique for a 3-slice CT imaging protocol, allowing detailed voxel-wise studies
of associations between imaging and non-imaging data. An image registration method
that leverages the CT images in parallel with segmentation masks was developed and
evaluated using more than 8000 images from two cohorts. Results were evaluated using
common registration evaluation metrics and proof-of-concept studies where prior infor-

mation on what voxel-wise results to expect were available.

Results

The results of the image registration followed by Imiomics analysis are presented in this
section, and the visual representation of registered images is illustrated in Additional
file 1: Fig S1. Table 1 presents an overview of the performance metrics for the quality of
the transformations for the 3-slice CT images.

The evaluation revealed that thigh registration yielded the best performance, while
liver registration transformations were the quickest to complete. The abdomen registra-
tion process, on the other hand, comparatively, took a longer time and gave higher vec-
tor magnitude error (VME) and intensity magnitude error (IME) scores.

Voxel-wise statistics results of image registration are illustrated in Fig. 1. The Jaco-
bian mean image of the liver slice, displayed in the figure, clearly highlights the pres-
ence of the liver, spleen, lungs, vertebra, and SAT. However, the visualizations of the ribs
are obscure, and the anterior left side appears darker and blurrier. The standard devia-
tion (STD) of high intensity Hounsfield unit (HU) is primarily concentrated in the lungs,
air and vertebra. In contrast, the liver, spleen, and subcutaneous fat exhibited a low-
intensity STD.

The visualization of the average VME indicates that the registration exhibits the least
inverse consistency at the upper right edge of both the male and female liver and at the
bottom edge of the female liver, mainly due to the presence of the kidneys in the female
temple. High VME values are observed at the boundary between the spleen and lungs,
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Table 1 Comparison of performance metrics for 3-slice CT registration methods

Cohort Slice Sex Subjects VME (mm) IME (HU) Number of folds Registration
time (s)?
SCAPIS Liver M 500 2414128 3728+73 0.16+0.5 5
F 453 247+161 33.24£528 0.18+£045 45
Abdomen M 502 2.84+1.53 48.67 +5.85 1.03+£5.29 6.5
F 455 275+£1.79 45414549 097+74 7
Thigh M 502 1974+£086  2908+436 064+452 5
F 455 133+073 28.81+£4.23 0494204 55
IGT Liver M 784 2.044+0.92 31.11+£7.04 0.14+£146 45
F 990 2.15+1.03 32824552 059+1.12 4
Abdomen M 812 2994123 4974687  091+£6.09 75
F 1011 273+1.06 43.244+6.94 0.71+£443 6.5
Thigh M 812 1.29+0.87 30914589 0.82+6.51 55
F 1009 1.11£056 26.04+£491 0.53+£8389 6

Data are presented as mean £ STD for vector magnitude error (VME), intensity magnitude error (IME), and Hounsfield unit
(HU)

2 Only mean was measured

Template Mean HU STD HU STD Jac Mean VME(mm)
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Fig. 1 Resulting CT scans collage of males (n=502) and females (n =455) from the SCAPIS cohort study. The
template images are the preprocessed images, while the mean, standard deviation (STD) intensity and mean
vector magnitude error (VME) of all registered images are shown as Mean HU, STD HU and VME, respectively.
The mean and STD of the logarithm Jacobian in every point are illustrated in the mean Jac and STD Jac,
respectively

while lower VME values are found in the middle of the liver, the upper part of the verte-
bra, and the SAT.

Further analysis of the average Jacobian, calculated for all points in Fig. 1, where
a lower value signifies local contraction and a higher value indicates local expan-
sion, demonstrates an overall higher average. This suggests that the template images
are generally smaller than the other images in the data. Notably, the mean Jacobian
for males is lower at the bottom of the liver and higher at the bottom of the spleen,
indicating that the template image has larger lungs on one side than the target (mov-
ing) images. The female collage has a higher Jacobian mean in the lungs, indicating
that the template images generally have a lower lung than the target images. Also,
the female mean Jacobian has lower values at the bottom of the liver, indicating the
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presence of kidneys. The lungs have a high Jacobian STD, indicating that the size of
the lungs varies between subjects in the dataset. The male mean Jacobian of liver and
spleen has a lower value as compared to the female mean Jacobian, which also shows
that the male template has larger liver and spleen volumes. Notably, adipose tissue
consistently exhibits a higher Jacobian STD rate than liver, spleen and bone marrow,
indicating greater variability in its size among subjects.

The mean of the registered male and female abdomen images depicted in the figure
appears sharp in the skeletal muscles, vertebrae, and SAT but blurry in the intra-abdom-
inal region. This region also exhibits a high STD and a white border at the top and bot-
tom. The most anterior skeletal muscles display the least consistent registration, while
the most posterior SAT exhibit the most consistent registration. The mean Jacobian
reveals that the lateral SAT, skeletal muscles are generally larger in the template images
(lower value). The SAT, intra-abdominal region, anterior skeletal muscle and intestinal
gases have high Jacobian standard deviations, indicating that their size varies greatly
between subjects. In contrast, skeletal muscles and vertebrae display lower deviations,
suggesting that their sizes remain relatively consistent across subjects.

For the thigh slice, the mean images of male and female collages are sharp, with clear
distinctions between lean tissue, adipose tissue, and bone. Notably, the only high STDs
are found at the boundaries between tissue types. The average VME is low around the
bone but higher in lateral SAT and at the boundary between adipose tissue and lean
tissue. The mean Jacobian of the male thigh is lower in the lateral SAT, indicating more
adipose tissue in the template images, and higher in the lean tissue, indicating less lean
tissue in the template images. For the female mean, Jacobian is lower in lean tissue than
adipose tissue, which shows that there is more lean tissue than adipose tissue in female
temples. The Jacobian STD in the female thigh is higher in the lateral SAT than the lean
tissue, indicating more variation between images in the lateral SAT. However, in the
male thigh, Jacobian STD is lower in lateral SAT and lean tissue, indicating less variation
between images, and higher at the border of lean tissues, indicating higher variation.

Deformed CT images were further employed to conduct a voxel-wise analysis of asso-
ciations between the CT images (as represented by tissue volume from HU and Jacobian
determinant) and various explicit measurements collected in both cohort studies, as
depicted in Fig. 2. The utilization of Imiomics analysis enabled the examination of asso-
ciations between various segmentation measurements (liver, spleen, abdominal muscle,
VAT, SAT, thigh SAT, IMAT, and thigh muscle) and other associated information. As
illustrated in Fig. 2 and Additional file 1: Fig S3, the results indicate a positive correlation
between 3-slice CT images of the liver, abdomen, and thigh organs and non-imaging
parameters, such as liver area for the liver slices, skeletal muscle area for the abdominal
slices, and thigh muscle area for the thigh slices, which were measured explicitly with
the assistance of previously trained UNET++ [24] based deep learning models. The
voxel-wise statistical analysis was carried out by employing linear regression models to
determine the relationship between imaging and non-imaging data, as demonstrated by
the HU/cm? and Jac/cm? scales. The findings from the analysis indicated that the images
exhibited a close relationship with the expected outcomes (with a slope close to 1). These
results were visually displayed through color-coded representations, where regions were
highlighted in different colors.
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Fig. 2 Resulting Imiomics collage for 3-slice CT images of (liver, abdomen, and thigh). From left to right,
selected processed CT template images, deformed Hounsfield unit's images, and Jacobian determinant
images are represented for all male (n=502) and female (n =455) subjects, from the SCAPIS cohort. The
collage Imiomics (deformed HU and Jac determinant) images were associated with non-imaging data. The
3-slice (liver, abdomen, and thigh) collage shows voxel-wise regression results (beta values) between liver
area for liver slice, skeletal muscle area for abdominal slice, and thigh muscle area for thigh slice

Additional file 1: Figs. S2, S4 show the resultant Imiomics collages for 3-slice CT voxel-
wise associations with liver fat HU, spleen, VAT, SAT, IMAT, and thigh SAT.

Similarly, Additional file 1: Fig S5 presents the correlation matrices, which demon-
strate the association of each variable with others and provide additional evidence of the
Imiomics analysis by accurately highlighting the region of the correlation map.

Discussion

In this study, we developed an image registration framework that successfully regis-
tered CT images from a 3-slice CT body composition analysis protocol from two large
cohorts. The images were registered for males and females separately. The registration
results were evaluated and further utilized to conduct voxel-wise regression analysis
between imaging and non-imaging data proof-of-concept studies, where prior knowl-
edge of what results to expect was available.

Our developed image registration framework allows inter-subject-based detailed and
precise voxel-wise analysis of body composition in large study populations, as well as a
cohort saliency analysis from deep regression studies [25, 26]. The registration method
utilizes a one-step approach with a tissue-specific regularization weight map. The tech-
nique utilizes multi-channel input, including CT images and generated masks of struc-
tures, in order to register, i.e., identify point-to-point-correspondence between subjects
and avoid local minima. The performance of the registration was found to be good, see
Table 1, with an average VME being similar to, or lower than, that from similar methods
[12, 13].

In this study, the binary masks were found useful for image registration. However, we
found that the best results were achieved when we assigned higher weights to the CT
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images compared to the individual masks. This is likely because the masks contribute
with some high-level features, whereas the CT image contains more detailed informa-
tion (spanning also the full images/or both spatially and intensity wise), which is useful
to register the images into a common space.

For the liver slices, the visualization of the mean and STD of the registered male and
female subjects demonstrated successful registration for most of the reference space
(illustrated in Fig. 1). This is indicated by the relative sharpness of tissues and organs in
the mean HU image. However, some areas of the image may not be perfectly registered.
This is likely due to large inter-subject structural variability. Overall, the average VME
is low, indicating consistent and high-quality registrations. The Jacobian mean image of
female shows that the template images are generally smaller than the other images in the
dataset, suggesting that the temple is not a precise mean image. This could potentially be
improved by using different template images or synthesizing new template images using
for example the method proposed by Pilia et al. [27]. The Jacobian STD also shows that
the different tissues vary to different extents, with lungs, adipose tissue and bone/verte-
bra varying the most and liver and spleen varying the least.

For the abdominal slices, the visualization of the mean and STD of the registered male
and female images shows a relatively sharp mean image and a low-intensity STD HU
image in most areas (illustrated in Fig. 1). This indicates successful registration in most
tissues, including skeletal muscles, vertebrae and abdominal SAT. However, the intra-
abdominal region in the mean HU image is blurry, indicating less successful registration
in this area. The high HU intensity STD in the anterior intra-abdominal region is due to
differences in the amount and location of intestinal gases, and the large difference in HU
between gas and tissue in CT. The relatively high average VME in most anterior skeletal
muscles may be due to the vague or absent anterior skeletal muscles in some subjects,
which affects the automatic generation of ISAT masks and the performance of the regis-
tration framework. However, the overall VME is low, indicating good quality in the pro-
duced transforms. The Jacobian values are mostly around one, with a mean value close
to one, indicating that the template image is relatively close to representing an average
shape of the dataset. The Jacobian STD of both males and females shows that the size of
air between internal organs and adipose tissue varies the most between subjects, while
lean tissue varies to some degree.

Similarly, for the thigh slices, the sharp mean HU images and the low-intensity STD
(illustrated in Fig. 1) for both males and females indicate successful registration. The rel-
atively high average VME at the lateral SAT, the border between lean tissue and adipose
tissue may indicate uncommon tissue shapes in those regions. However, the registration
is generally consistent, especially around the bone, which is in roughly the same place in
different subjects and therefore does not require large deformations. The average of the
Jacobian of the male thigh registrations shows that the template images have more SAT
and less lean tissue in the dataset. Female thigh registration shows that template images
have on average less SAT and lean tissue. The Jacobian STD of the thigh registration
shows that the size of SAT varies more in females than in males, and lean tissue varies
less in both.

From the voxel-wise Imiomics analysis of SCAPIS (Fig. 2), liver area is seen to corre-
late positively to liver size and attenuation for both male and female. The correlation was
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confirmed in Additional file 1: Fig S5. In the abdominalen slice the muscle area measure-
ments are seen to correlate negatively to the intra-abdominal Hounsfield units (HUs). This
is likely because abdominal muscle area correlates positively to VAT area (see Additional
file 1: Fig S5). A larger VAT area will after the registration be compressed into the intra-
abdominal region of the template image. Partial volume and the very challenging registra-
tion problem may result in that, on average, HUs are lower for persons with larger muscle
area.

In a previous study including 3D chest CT scans (n=1466) inter-subject image registra-
tion methodology has been presented and evaluated [23]. The authors presented a stand-
ardized thoracic atlas to support lung cancer screening efforts, addressing the challenge of
anatomical variability. They developed a multi-stage registration pipeline optimized for the
entire thoracic space and included handling scans with missing information due to varia-
tions in FOV. The study aimed to create a resource for standardizing chest CT analysis for
lung cancer screening and identifying phenotypic variations. In comparison with our work,
both studies utilize image registration techniques; however, our work analyzes a specific
three-slice CT imaging protocol and explores voxel-wise analysis for detailed body compo-
sition studies. The method presented in this work also contains a multi-channel approach
that simultaneously uses the original CT images and tissue segmentation masks to improve
the registration.

There are certain limitations to our study. One such limitation is that the requirement
of segmentation masks for image registration may limit the applicability of the proposed
method in certain contexts. In addition, another limitation is finding the best regulariza-
tion settings (weights), and the fact that template images need to be selected. In this study,
we selected template images separately for both sex and study since we assumed this would
simplify the registration problem. To optimize the registration parameters, we utilized vari-
ous metrics, including mean, standard deviation, and inverse consistency images, to evalu-
ate the registrations. Proof-of-concept studies were also used to guide the optimization. It
is important to acknowledge that the use of multiple reference spaces for the various body
sections may result in fragmentation of the voxel-wise statistical analysis, potentially hin-
dering the ability to draw comprehensive conclusions across studies and sexes. Another
limitation of this study is, that the body composition’s association with diseases and more
risk factors remain untested. This we aim to address in future work.

Conclusion

In this study, we have presented and evaluated an inter-subject image registration frame-
work and proof-of-concept voxel-wise correlations using two cohort studies, SCAPIS
and IGT. The proposed technique utilizes both low-level and high-level image features to
achieve accurate registration, resulting in average VME and IME:s of less than 3 mm and 50
HUs, respectively. The proposed approach allows effective visualization of associations at
the voxel level, with potential applications in studies of body composition and its relations
to disease or disease risk factors. In the future, image registration can also be used to com-
bine saliency information from deep regression analysis.
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Materials and methods

Subjects and CT imaging

This study incorporates CT imaging data from two large-scale cohorts: SCAPIS and
IGT. SCAPIS [1] is a study focusing on CVD and COPD in which 30,154 men and
women participants aged between 50 and 64 years were voluntarily participating. The
imaging data were collected from six university hospitals in Sweden over the years 2013
and 2018, and a random sample of the population recruited in Gothenburg was used
in this study. Similarly, IGT [4] is a mirror cohort to SCAPIS, with its primary focus on
individuals at risk of developing T2D and investigating the impact of the gut microbiota
on glucose dysregulation and the development of CVD. The IGT study included 1,965
subjects with varying forms of glucose dysregulation and employed the same CT pro-
tocols as SCAPIS. Both studies were approved by the Swedish Ethical Review Authority
(Dnr 2021-05856-01), and all participants provided written informed consent.

CT images were acquired using a Somatom Definition Flash with a Stellar detector
(Siemens Healthcare, Forchheim, Germany) according to a specified procedure, with a
500 mm field of view (FOV), image dimensions of 512 x 512 x 1, and 5 mm slice thick-
ness. The image slice locations of the liver, abdomen and thigh slices were determined
as follows: the liver slice was reconstructed from the lung scan. The lung scan was
performed during maximum inhalation, where the images could be rescanned once if
needed. Reconstructed slices were selected with the goal of containing as much as pos-
sible of the liver, including right and left liver lobes, the spleen (a 2 cm? region of interest
(ROI) should be possible to place in the spleen), and some lung tissue. Instructions were
also given to try to avoid the kidneys and the heart in the selected slice. If not possible
to follow all instructions, the liver and spleen instructions were prioritized. The scan-
ning was performed with kV and mAs settings of 120 kV, 25 mAs for the lung scan (liver
slice), 120 kV and 40 mAs for the abdominal slice and 120 kV and 20 mAs for the thigh.
Reconstruction was performed using kernel 131f medium smooth for the liver slice and
B31s medium smooth for the abdominal and thigh slices. The abdominal single-slice
scan was placed above the crista edge and in the center of vertebra L4. Preferably, no
liver or kidneys should be seen in the slice. The priority was to avoid crests in the image.
Regarding the thigh slice, it was taken in position midway between the outer edge of the
acetabulum and the joint surface of the knee joint.

A total of 8285 slices (52.8% females) from the baseline visits from both studies with
analyzable image quality and content as well as complete data on non-imaging and
explicit measurements from the CT images were successfully included in this study.
These included 2867 SCAPIS slices (47.5% females) and 5418 IGT slices (55.6% females).
An overview of the datasets and their characteristics is presented in Table 2.

The explicit measurements were quantified with the assistance of previously trained
DL-based segmentation UNET ++ models [24]. The models exhibited Dice scores dur-
ing cross-validations (liver =0.994, spleen=0.993, skeletal muscle =0.988, visceral and
subcutaneous adipose tissue (VAT and SAT)=(0.973 and 0.990), thigh muscle=0.996,
thigh SAT =0.992, intermuscular adipose tissue (IMAT =0.927).
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Table 2 Characteristics of SCAPIS and IGT cohorts

Characteristics/Cohort SCAPIS IGT

Sex Male Female Male Female
Subjects/Slices 502/1504 455/1363 812/2408 1011/3010
Age (years) 5833+4.33 5854+4.23 5834+449 57.86+4.54
BMI (kg/mz) 2792+4.16 27.16+£537 28.18+3.95 27371465

Age and BMI (mean £ STD)

Image preprocessing
The initial preprocessing steps for image registrations involved setting a common physi-
cal origin for all images.

According to the CT acquisition protocol, the images should have a FOV of 500 mm
[1]. However, there were a few images with other FOVs. These were resampled to the
common physical dimensions. Images containing at least 50 voxels with intensities
above 2000 HU were flagged for review to check for the presence of metallic implants.
Intensity values above 1024 HU were truncated to 1024 HU, to remove outliers and irrel-
evant variation in extreme values between subjects.

Binary masks

In parallel with CT images, binary masks were used for different preprocessing steps
and to support the image registration process. The binary masks were created either by
classical methods or using deep learning-based segmentations (UNET++ model [24,
28]). The classical methods used thresholding and basic image analysis approaches as
described below.

A body mask for all slices of liver, abdomen and thigh was created by thresholding HU
intensities above —190, labeling, selecting, and closing the largest object, using binary fill
operations (for the thighs, the two largest objects). The body masks were employed to
eliminate the CT table and other non-body objects to generate the processed CT images.

The vertebra masks, for the liver and abdominal slices, were created by use of thresh-
olding (above 200 HU [29]) followed by morphological opening operations.

Similarly, for thigh registration, the cortical bone and lean tissue masks were generated
by thresholding the intensity values (above 200 HU [29] for bone and between —29 HU
and 150 HU [30] for lean tissue masks), labeling the largest object, and then extract-
ing it from the mask in order to exclude the bone marrow. The bone marrow region
inside the cortical bone was filled in order to reduce the number of local minima during
registration.

Binary masks for liver, spleen, and abdominal muscles were created using deep learn-
ing as previously described as DL pipeline [24]. A few liver slices where the spleen was
not visible (out of protocol) were excluded.

The abdominal muscle mask was used in combination with the abdominal slice in
order to produce an inside subcutaneous adipose tissue (ISAT) mask with a similar tech-
nique as used [12].
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Registration methods
The image registration procedure is described in Fig. 3.

The registration process of 3-slice CT images was done in a single step using a multi-
channel input that includes the preprocessed CT images and the corresponding masks
for each slice, as shown in Fig. 3. Our registration method relied on both a combination
of low-level and high-level features to establish point-correspondence between complex
and significantly different images. The CT image was set to a higher weight than the cor-
responding masks, which makes the registration rely more on the CT image than on the
masks. Registration parameters and image weights are listed in Table 3, chosen based on
preliminary testing on the sample.

The registration method was optimized using an objective function known as the sum
of squared differences (SSD) and the least restricted transformation model to enable
local displacements and create a displacement field.

A tissue-specific regularization weight map during registration was applied to each
slice based on HU threshold, with lower weights for tissues with high elasticity (e.g., fat)
and higher weights for tissues with low elasticity (e.g., bone).

A fast graph-cut based technique [31] and a hierarchical multi-resolution strategy with
Gaussian image pyramids were used to optimize the objective function and avoid local
minima.

The multi-resolution strategy commenced at the lowest resolution and ended at level
one; the final resolution of the registered images was the original resolution downscaled

by a factor of two in each dimension.

Template image selection
The image registration is performed for the two studies and male and female subjects
separately. Prior to utilizing the methods, a reference space or template image was

Vertebrae/Cortical bones/
Lean tissue masks

Liver/Spleen

24
]
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Abdominal muscle mas}\ ISAT mask
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Fig. 3 Proposed methodology for 3-slice CT (computed tomography) image registration to enable
voxel-wise analysis. Registration was done slice-wise, small boxes in colored red, light blue and yellow
represent each slice registration process which is performed independently. The process involved the
generation of body masks for each slice from raw CT images. Processed CT images are the CT images after
removal of CT tables and non-body objects, generated from raw CT images and body masks. Deep learning
segmentation models were used to generate liver, spleen, and abdominal muscle segmentation masks. For
creating ISAT (inside subcutaneous adipose tissue) masks the processed CT images and a predicted deep
learning abdominal muscle mask were used. Lean tissue, vertebrae, and cortical bone masks were generated
from processed CT images. All preprocessed images and masks were used simultaneously to perform
registration tasks
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Table 3 Image registration parameters

Parameter Settings

Step size/block size 0.5/[16]
Update rule Additive
Pyramid levels 8
Pyramid stop level 1

Regularization weight map [0.05,0.05,0.05,0.1] (air,
adipose tissue, soft tissue,
bone)

Weights Liver Abdomen Thigh

CTimage 0.5 04 0.5

Masks
Liver 0.1 - -
Spleen 0.1 - -
Body 0.15 0.1 0.1
Vertebra 0.15 0.2 -
Skeletal muscle - 0.2 -
ISAT - 0.1 -
Bone - - 0.2
Lean tissue - - 0.2

selected. We used a methodology based on image segmentation results (z-scores) to
select images corresponding to a representative “mean image” The template image was
selected by minimizing the sum of absolute z-scores for a set of parameters. Images were
then visually quality controlled to ensure they had no major artifact or other unusual
features.

For the liver slice, spleen, liver, abdominal visceral and subcutaneous adipose tissue
areas were used. For the abdominal slice, abdominal VAT, SAT, and skeletal muscle areas
were used. Similarly, for thigh slices, thigh SAT and thigh muscle were used to compute
the sum of absolute z-score. We selected the template image with the lowest summed
z-score value for both studies and sexes individually.

Voxel-wise body composition analysis

The image registrations were utilized to conduct a set of voxel-wise body composition
proof-of-concept studies. Voxel-wise linear regressions were performed between image
information (intensities in terms of HUs and size differences by use of Jacobian determi-
nants) and a set of explicit proof-of-concept measurements (e.g., explicit measurements
area (in terms of cm?) and intensity measurements (HU) from the CT images).

Performing this linear regression for each pixel or voxel in a slice of the 2D image can
provide insights into the relationship between the areas of interest and the correspond-
ing voxel intensities in the CT image, allowing to understand how changes in the explicit
measurement (e.g., liver area/abdominal VAT area) affect the voxel intensities.

To calculate the correlation map between image voxel intensities and non-imaging
parameters (explicit measurements). The statistical linear regression method was used
to model the relationship between image voxel intensity y;;x and explicit measurement
x;; as follows:
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Yijk = Boj + Brjxij + €ijk

where Bo; = intercept, f1,; = slope, €ijk ™ N(O,oz), and o2 = error variance.

In this equation, y;; s is the predicted (correlation map) voxel intensity for voxel (i,j)
with intensity x;; in channel k (grayscale 1D), o, is the intercept (or bias term) for the
linear regression model specific to the column or area j, By, is the slope (or coefficient)
corresponding to x;; and €; j x represents the error term or residual.

The error term €; is assumed to follow a normal distribution N (0, %) with mean 0

and variance %

Method evaluation

The image registration method was evaluated using three parameters: the transformed
images, the quality of the transforms, and the computation time. The transformed
images were evaluated for similarity with the template image through visual inspec-
tion and by calculating statistical measures such as the voxel-wise mean, and standard
deviation (STD). The quality of the transforms was analyzed using inverse consistency
(IC) and their diffeomorphic properties. To analyze the IC, reverse direction registra-
tions were conducted, followed by an assessment of the average vector magnitude error
(VME) and intensity magnitude error (IME) across the segmented body region. Subse-
quently, the Jacobians of the resultant transformations were computed.

The IC errors were defined in terms of average VME and IME for each segmented
body region Q in a pair of images (x and y). The intensity value of image x at each voxel
location i was represented by I, (i). The IC errors for composite transforms Ty o Ty, and
Ty, o Ty, were averaged into a single value for each pair of registered images:

1
IMEy = = D N L) = Le( Ty 0 Tay(0) |l
i€

1 )
VMEy = 1o 2{; I % — Tyx 0 Ty (D)) |

The diffeomorphic property was evaluated by counting the number of points where
the Jacobian of the resulting transforms was less than zero (number of folds). The natural
logarithm of the Jacobian was computed to efficiently interpret local tissue volume dif-
ferences between subjects. The computation time was measured for all preprocessing
steps, excluding the time for generating explicit masks with the help of a deep learning
models.

To assess the efficacy of the voxel-wise body composition analysis method, we per-
formed both a visual analysis of the output results as well as an analysis of voxel-wise
proof-of-concept regression studies.

In addition to evaluating the methods, a linear correlation analysis using the Pearson
correlation coefficient was conducted to evaluate the association between non-imaging
data (explicit measurement), which demonstrates the relationship of each variable with
others.
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The experiments were carried out on a Linux-based operating system with the follow-
ing specifications: Intel (R) Xeon (R) W-2133 CPU at 3.60 GHz, 32 gigabytes (GB) of
RAM, and Nvidia GeForce RTX 2080 Ti Graphic Card with 11 GB RAM.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512938-024-01235-x.

Additional file 1: Figure S1 Visual representations of liver, abdomen, and thigh slices of templates (reference
images), targeted images (moving or deforming images), and registered images (transformed images). Figure

S2. Resulting Imiomics collage for 3-slice CT images of (liver, abdomen, and thigh). From left to right, selected
processed CT template images, deformed Hounsfield unit, and Jacobian determinant images are represented for all
male (n=502) and female (n = 455) subjects, from the SCAPIS cohort. The collage Imiomics (deformed HU and Jac
determinant) images were associated with non-imaging data. The Hounsfield unit (HU) and Jacobian (Jac) collage
show voxel-wise regression results (beta values) between a 3-slice image (liver, abdomen, and thigh) and the cor-
responding liver fat measurements in HU units. The subsequent HU and Jac images display correlations between
liver CT slice and spleen area in cm?, abdomen CT slice and VAT area in cm?, thigh CT slice and thigh IMAT area in
cm?. Similarly, in the last set of HU and Jac images, correlations between liver CT slice and abdominal SAT area in
cm?, abdomen CT slice and abdominal SAT area in cm?, thigh CT slice and thigh SAT area in cm? are represented.
Small colored boxes of green, red and white in each image indicating non imaging correlation measurements.

abd is short for the abdomen. Figure S3 Resulting Imiomics collage for 3-slice CT images of (liver, abdomen, and
thigh). From left to right, selected processed CT template images, deformed Hounsfield unit’s images, and Jacobian
determinant images are represented for all male (n=812) and female (n=1011) subjects, from the IGT cohort. The
collage Imiomics (deformed HU and Jac determinant) images were associated with non-imaging data. The 3-slice
(liver, abdomen, and thigh) collage shows voxel-wise regression results (beta values) between liver area for liver slice,
skeletal muscle area for abdominal slice, and thigh muscle area for thigh slice. Figure S4. Resulting Imiomics collage
for 3-slice CT images of (liver, abdomen, and thigh). From left to right, selected processed CT template images,
deformed Hounsfield unit, and Jacobian determinant images are represented for all male (n = 812) and female (n =
1011) subjects, from the IGT cohort. The collage Imiomics (deformed HU and Jac determinant) images were associ-
ated with non-imaging data. The Hounsfield unit (HU) and Jacobian (Jac) collage show voxel-wise regression results
(beta values) between a 3-slice image (liver, abdomen, and thigh) and the corresponding liver fat measurements

in HU units. The subsequent HU and Jac images display correlations between liver CT slice and spleen area in cm?,
abdomen CT slice and VAT area in cm?, thigh CT slice and thigh IMAT area in cm?. Similarly, in the last set of HU and
Jac images, correlations between liver CT slice and abdominal SAT area in cm?, abdomen CT slice and abdominal SAT
area in cm?, thigh CT slice and thigh SAT area in cm? are represented. Small colored boxes of green, red and white in
each image indicating non imaging correlation measurements. abd is short for the abdomen. Figure S5 Correlation
(Pearson correlation coefficient) matrix of non-imaging variables (explicit measurements in cm? and HU attenuation)
for male and female participants (n = 8285) in SCAPIS and IGT studies. Measurements are in terms of area (cm?), and
liver fat in terms of Hounsfield unit. abd is short for the abdomen.

Acknowledgements
We thank all the team members who contributed to this study.

Author contributions

N.A. and JK. formulated the experiment ideas and executed them. N.A. conducted the all experiments and analyses. H.D,
and H.J. contributed to the development of the image registration technique. N.A, JK, and RS. discussed and contribute
in the methodology improvements. N.A. and J.K. wrote the manuscript with significant input from ST, EL. RK.G, G.B, and
H.A. supervised the study. G.B is responsible for IGT study. All the authors discussed the results and reviewed the manu-
script. Correspondence and requests for materials should be addressed to N.A or JK.

Funding
Open access funding provided by Uppsala University. This study was funded by the Swedish Research Council (2019-
04756), Heart and Lung Foundation, EXODIAB, VINNOVA and an AIDA-SCAPIS innovation project grant.

Data availability

The SCAPIS dataset will be accessible to researchers, with the requirement that the principal investigator is currently
affiliated with an institution in Sweden. Access will be granted through the data sharing platform following the comple-
tion of ethical approval and the submission and approval of a project application. IGT data may be provided for research
collaborations upon reasonable request to the co-principal investigator, G.B.

Declarations

Ethics approval and consent to participate

This research received approval from the Swedish Ethical Review Authority (Reference: Dnr 2021-05856-01), with all
participants voluntarily providing written, informed consent. The study adhered to pertinent guidelines and regulations,
in accordance with the principles outlined in the Declaration of Helsinki.


https://doi.org/10.1186/s12938-024-01235-x

Ahmad et al. BioMedical Engineering OnLine (2024) 23:42

Consent for publication
Not applicable.

Competing interests

Hanna Jonsson is inventor of a patent pending technology related to the image registration methodology used. Antaros
Medical holds the rights to the patent application. JK, H.A. are cofounders, part time employees, and shareholders of
Antaros Medical. The remaining authors report no competing interests.

Received: 28 September 2023 Accepted: 2 April 2024
Published online: 13 April 2024

References

1.

20.

21.

22.

Bergstrom G, Berglund G, Blomberg A, Brandberg J, Engstrom G, Engvall J, Eriksson M, Faire U, Flinck A, Hansson MG,
Hedblad B, Hjelmgren O, Janson C, Jernberg T, Johnsson A, Johansson L, Lind L, Léfdahl C-G, Melander O, Ostgren
CJ, Persson A, Persson M, Sandstrém A, Schmidt C, Séderberg S, Sundstrém J, Toren K, Waldenstrém A, Wedel H,
Vikgren J, Fagerberg B, Rosengren A. The Swedish CArdioPulmonary Biolmage Study: objectives and design. J Intern
Med. 2015;278:645-59. https://doi.org/10.1111/joim.12384.

Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardio-
metabolic disease: imaging methods for analyzing body composition. Ann NY Acad Sci. 2015;1353:41-59. https://
doi.org/10.1111/nyas.12842.

Xu K, Khan MS, LiTZ, Gao R, Terry JG, Huo Y, Lasko TA, Carr JJ, Maldonado F, Landman BA, Sandler KL. Al body compo-
sition in lung cancer screening: added value beyond lung cancer detection. Radiology. 2023;308: €222937. https://
doi.org/10.1148/radiol.222937.

Molnar D, Bjérnson E, Larsson M, Adiels M, Gummesson A, Backhed F, Hjelmgren O, Bergstrom G. Pre-diabetes is
associated with attenuation rather than volume of epicardial adipose tissue on computed tomography. Sci Rep.
2023;13:1623. https://doi.org/10.1038/541598-023-28679-w.

Al-Sharify ZT, Al-Sharify TA, Al-Sharify NT, Yahya naser H. A critical review on medical imaging techniques (CT and
PET scans) in the medical field. IOP Conf Ser Mater Sci Eng. 2020;870:012043. https://doi.org/10.1088/1757-899X/
870/1/012043.

Hricak H, Brenner DJ, Adelstein SJ, Frush DP, Hall EJ, Howell RW, McCollough CH, Mettler FA, Pearce MS, Sulei-

man OH, Thrall JH, Wagner LK. Managing radiation use in medical imaging: a multifaceted challenge. Radiology.
2011;258:889-905. https://doi.org/10.1148/radiol.10101157.

Raman SP, Mahesh M, Blasko RV, Fishman EK. CT scan parameters and radiation dose: practical advice for radiolo-
gists. J Am Coll Radiol. 2013;10:840-6. https://doi.org/10.1016/jjacr.2013.05.032.

Modersitzki J, Heldmann S, Papenberg N. Nonlinear registration via displacement fields. In: Brain mapping. Amster-
dam: Elsevier; 2015. p. 307-14.

Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2:1-36. https://doi.org/10.
1016/51361-8415(01)80026-8.

Hajnal JV, Hill DLG, editors. Medical image registration. USA: CRC Press; 2001.

. Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Trans Med Imaging.

2013;32:1153-90. https://doi.org/10.1109/TMI.2013.2265603.

Jonsson H, Ekstrom S, Strand R, Pedersen MA, Molin D, Ahlstrom H, Kullberg J. An image registration method

for voxel-wise analysis of whole-body oncological PET-CT. Sci Rep. 2022;12:18768. https://doi.org/10.1038/
$41598-022-23361-z.

Strand R, Malmberg F, Johansson L, Lind L, Sundbom M, Ahlstrom H, Kullberg J. A concept for holistic whole body
MRI data analysis. Imiomics PLoS ONE. 2017;12: e0169966. https://doi.org/10.1371/journal.pone.0169966.

Boveiri HR, Khayami R, Javidan R, Mehdizadeh A. Medical image registration using deep neural networks: a compre-
hensive review. Comput Electr Eng. 2020;87: 106767. https://doi.org/10.1016/j.compeleceng.2020.106767.

Haskins G, Kruger U, Yan P. Deep learning in medical image registration: a survey. Mach Vis Appl. 2020;31:8. https://
doi.org/10.1007/500138-020-01060-x.

FuY, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep learning in medical image registration: a review. Phys Med Biol.
2020;65:20TRO1. https://doi.org/10.1088/1361-6560/ab843e.

Chen X, Diaz-Pinto A, Ravikumar N, Frangi A. Deep learning in medical image registration. Prog Biomed Eng. 2020.
https://doi.org/10.1088/2516-1091/abd37c.

Li X, Yankeelov TE, Peterson TE, Gore JC, Dawant BM. Automatic nonrigid registration of whole body CT mice
images: automatic registration of whole body CT images. Med Phys. 2008;35:1507-20. https://doi.org/10.1118/1.
2889758.

Akbarzadeh A, Gutierrez D, Baskin A, Ay MR, Ahmadian A, Alam NR, Lovblad K, Zaidi H. Evaluation of whole-body MR
to CT deformable image registration. J Appl Clin Med Phys. 2013;14:238-53. https://doi.org/10.1120/jacmp.v14i4.
4163.

Baiker M, Staring M, Lowik CWGM, Reiber JHC, Lelieveldt BPF. Automated registration of whole-body follow-up
MicroCT data of mice. In: Fichtinger G, Martel A, Peters T, editors. Medical image computing and computer-assisted
intervention—MICCAI 2011. Berlin: Springer; 2011. p. 516-23.

Li M, Miller K, Joldes GR, Doyle B, Garlapati RR, Kikinis R, Wittek A. Patient-specific biomechanical model as whole-
body CT image registration tool. Med Image Anal. 2015;22:22-34. https://doi.org/10.1016/j.media.2014.12.008.

Li M, Miller K, Joldes GR, Kikinis R, Wittek A. Biomechanical model for computing deformations for whole-body
image registration: a meshless approach. Int J Numer Method Biomed Eng. 2016. https://doi.org/10.1002/cnm.2771.

Page 150f 16


https://doi.org/10.1111/joim.12384
https://doi.org/10.1111/nyas.12842
https://doi.org/10.1111/nyas.12842
https://doi.org/10.1148/radiol.222937
https://doi.org/10.1148/radiol.222937
https://doi.org/10.1038/s41598-023-28679-w
https://doi.org/10.1088/1757-899X/870/1/012043
https://doi.org/10.1088/1757-899X/870/1/012043
https://doi.org/10.1148/radiol.10101157
https://doi.org/10.1016/j.jacr.2013.05.032
https://doi.org/10.1016/S1361-8415(01)80026-8
https://doi.org/10.1016/S1361-8415(01)80026-8
https://doi.org/10.1109/TMI.2013.2265603
https://doi.org/10.1038/s41598-022-23361-z
https://doi.org/10.1038/s41598-022-23361-z
https://doi.org/10.1371/journal.pone.0169966
https://doi.org/10.1016/j.compeleceng.2020.106767
https://doi.org/10.1007/s00138-020-01060-x
https://doi.org/10.1007/s00138-020-01060-x
https://doi.org/10.1088/1361-6560/ab843e
https://doi.org/10.1088/2516-1091/abd37c
https://doi.org/10.1118/1.2889758
https://doi.org/10.1118/1.2889758
https://doi.org/10.1120/jacmp.v14i4.4163
https://doi.org/10.1120/jacmp.v14i4.4163
https://doi.org/10.1016/j.media.2014.12.008
https://doi.org/10.1002/cnm.2771

Ahmad et al. BioMedical Engineering OnLine (2024) 23:42 Page 16 of 16

23. XuK, Gao R, Khan M, Bao S, Tang Y, Deppen S, Huo Y, Sandler K, Massion P, Heinrich MP, Landman BA. Development
and characterization of a chest CT atlas. In: Landman BA, Isgum . editors. Medical Imaging 2021: Image Processing.
p. 48. SPIE, Online Only, United States, 2021.

24, Ahmad N, Strand R, Sparresater B, Tarai S, Lundstrém E, Bergstrém G, Ahlstrom H, Kullberg J. Automatic segmenta-
tion of large-scale CT image datasets for detailed body composition analysis. BMC Bioinformatics. 2023;24:346.
https://doi.org/10.1186/512859-023-05462-2.

25. LangnerT, Martinez Mora A, Strand R, Ahlstrom H, Kullberg J. MIMIR: deep regression for automated analysis of UK
Biobank MRI Scans. Radiol Artif Intell. 2022;4: €210178. https://doi.org/10.1148/ryai.210178.

26. LangnerT. Uncertainty-aware body composition analysis with deep regression ensembles on UK Biobank MRI.
Comput Med Imag Graph. 2021;93: 101994. https://doi.org/10.1016/j.compmedimag.2021.101994.

27. Pilia M, Kullberg J, Ahlstréom H, Malmberg F, Ekstrom S, Strand R. Average volume reference space for large scale reg-
istration of whole-body magnetic resonance images. PLoS ONE. 2019;14: e0222700. https://doi.org/10.1371/journal.
pone.0222700.

28. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image
segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS, Bradley
A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep learn-
ing in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International
Publishing; 2018. p. 3-11.

29. Broder J. Imaging of nontraumatic abdominal conditions. In: Diagnostic imaging for the emergency physician.
Amsterdam: Elsevier; 2011. p. 445-577.

30. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle
measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998,85:115-22.
https://doi.org/10.1152/jappl.1998.85.1.115.

31. Ekstrom S, Malmberg F, Ahlstrom H, Kullberg J, Strand R. Fast graph-cut based optimization for practical dense
deformable registration of volume images. Comput Med Imaging Graph. 2020;84: 101745. https://doi.org/10.1016/j.
compmedimag.2020.101745.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1186/s12859-023-05462-2
https://doi.org/10.1148/ryai.210178
https://doi.org/10.1016/j.compmedimag.2021.101994
https://doi.org/10.1371/journal.pone.0222700
https://doi.org/10.1371/journal.pone.0222700
https://doi.org/10.1152/jappl.1998.85.1.115
https://doi.org/10.1016/j.compmedimag.2020.101745
https://doi.org/10.1016/j.compmedimag.2020.101745

	Voxel-wise body composition analysis using image registration of a three-slice CT imaging protocol: methodology and proof-of-concept studies
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Results
	Discussion
	Conclusion
	Materials and methods
	Subjects and CT imaging
	Image preprocessing
	Binary masks
	Registration methods
	Template image selection
	Voxel-wise body composition analysis
	Method evaluation

	Acknowledgements
	References


