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Abstract 

Background: Multi‑omics research has the potential to holistically capture intra‑
tumor variability, thereby improving therapeutic decisions by incorporating the key 
principles of precision medicine. The purpose of this study is to identify a robust 
method of integrating features from different sources, such as imaging, transcriptom‑
ics, and clinical data, to predict the survival and therapy response of non‑small cell lung 
cancer patients.

Methods: 2996 radiomics, 5268 transcriptomics, and 8 clinical features were extracted 
from the NSCLC Radiogenomics dataset. Radiomics and deep features were calculated 
based on the volume of interest in pre‑treatment, routine CT examinations, and then 
combined with RNA‑seq and clinical data. Several machine learning classifiers were 
used to perform survival analysis and assess the patient’s response to adjuvant chemo‑
therapy. The proposed analysis was evaluated on an unseen testing set in a k‑fold 
cross‑validation scheme. Score‑ and concatenation‑based multi‑omics were used 
as feature integration techniques.

Results: Six radiomics (elongation, cluster shade, entropy, variance, gray‑level non‑uni‑
formity, and maximal correlation coefficient), six deep features (NasNet‑based activa‑
tions), and three transcriptomics (OTUD3, SUCGL2, and RQCD1) were found to be sig‑
nificant for therapy response. The examined score‑based multi‑omic improved the AUC 
up to 0.10 on the unseen testing set (0.74 ± 0.06) and the balance between sensitivity 
and specificity for predicting therapy response for 106 patients, resulting in less biased 
models and improving upon the either highly sensitive or highly specific single‑source 
models. Six radiomics (kurtosis, GLRLM‑ and GLSZM‑based non‑uniformity from images 
with no filtering, biorthogonal, and daubechies wavelets), seven deep features (ResNet‑
based activations), and seven transcriptomics (ELP3, ZZZ3, PGRMC2, TRAK1, ATIC, 
USP7, and PNPLA2) were found to be significant for the survival analysis. Accordingly, 
the survival analysis for 115 patients was also enhanced up to 0.20 by the proposed 
score‑based multi‑omics in terms of the C‑index (0.79 ± 0.03).
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Conclusions: Compared to single‑source models, multi‑omics integration 
has the potential to improve prediction performance, increase model stability, 
and reduce bias for both treatment response and survival analysis.

Keywords: Multi‑omics score, Deep features, Radiomics, Transcriptomics, Integrative 
data analysis, Non‑small cell lung cancer, Survival analysis, Adjuvant chemotherapy 
response

Introduction
Despite major advances in the staging, management, molecular profiling, and treat-
ment of non-small cell lung cancer (NSCLC), the disease remains the major cause of 
cancer deaths worldwide, according to recent reports from GLOBOCAN [1] and the 
WHO [2]. Genomic profiling of different cancer types could potentially facilitate the 
identification of new and discriminative biomarkers, allowing for the selection of a 
treatment plan that is both effective and personalized for the patient [3]. Collecting 
RNA-seq data is challenging due to the variations in the computational process of this 
type of data [4], intra-tumor heterogeneity [5], and local mutation burden [6]. This 
hinders the ability to build reliable transcriptomics models.

A key characteristic of non-small cell lung carcinomas is that intra-tumor variabil-
ity can be as large as or greater than inter-personal tumor variability [6], and con-
sequently, this high local mutational diversity negatively affects the robustness of 
transcriptomic data. In contrast, imaging features are calculated through  the entire 
lesion, generating complex patterns that include features from different tissue types 
within the  tumor’s microenvironment, such as hypoxic, oxygenated, and necrotic 
tissue. Therefore, the total mutational burden could potentially be captured by inte-
grating both transcriptomics (cell-specific data) and radiomics (tumor patterns) into 
a single radiotranscriptomic signature. In particular, this complex signature could 
alleviate the limitations of single-source data by synthesizing a holistic representation 
that merges markers associated with biological pathways (transcriptomics) and tumor 
heterogeneity (imaging features) [7, 8].

Consequently, methods that capture the diverse tumor microenvironment can 
have a positive impact by accurately assessing high-level clinical outcomes, such as 
the therapy response and survival analysis of cancer patients. This might be a key 
advancement for personalizing treatment since it improves the probability of a suc-
cessful outcome, helps identify patients that may require aggressive treatment, 
reduces healthcare costs, aids in preventing the use of ineffective therapies that may 
result in unwanted negative effects, and enhances the likelihood of patient survival 
with a better quality of life.

In the field of oncology, radiotranscriptomics has been used in a few studies to 
evaluate the survival of IDH1 wild-type glioblastoma patients [9], estimate the sur-
vival (progression-free and overall) of lung cancer patients [10] based on a nomogram 
analysis, assess the complementary nature of radiotranscriptomic markers of NSCLC 
[11], and predict the molecular and histological subtypes of NSCLC [8]. Overall, while 
the current literature provides important insights into the NSCLC response to differ-
ent types of therapy, there are still several issues that need to be addressed, such as 
multi-omics integration, to improve the precision and generalizability of ML models.
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In this study, multiple multi-omics analyses were employed to assess survival and 
the adjuvant chemotherapy response of NSCLC patients. The aforementioned analyses 
incorporate selected features from pretrained deep models, radiomics, transcriptomics, 
and clinical data into a robust, unified feature space. This is performed by a traditional 
early-fusion multi-omic integration and through a novel radiotranscriptomic score. 
The use of domain-independent machine learning (ML) algorithms to identify relevant 
biomarkers and multi-omic integration to predict high-level clinical outcomes has the 
potential to enhance prediction performance and stability.

Results
The computational pipelines were executed on a processing infrastructure featuring a 
32-thread AMD Ryzen processor with 64 gigabytes of memory and an Nvidia RTX 3090 
graphics card.

The pixel-based region of interest (ROI) in the CT scan was utilized to obtain a deep 
feature vector on a slice-by-slice basis. This resulted in multiple feature vectors per 
patient. A max-pooling method was used on these vectors to calculate the volume-based 
features for each patient. Additionally, PyRadiomics [12] was used to extract the radi-
omics based on the volume of interest. Zero-variance features were discarded. To sub-
stantially limit the feature space and identify the most significant components for each 
clinical task in each distinct view (radiomics, deep features, and transcriptomics), the 
analysis of variance and logistic regression with L1 penalty were applied sequentially for 
feature selection. A synthetic oversampling technique (SMOTE) was applied individu-
ally to the selected feature vector of each view to mitigate the effect of class imbalance in 
the examined patient cohorts. The proposed fusion technique for multi-omics analysis 
includes the concatenation of all views into a single feature space or the computation of 
a multi-omics score prior to classification. Several machine learning classifiers, includ-
ing k-NN, decision trees, Gaussian processes, and SVMs with multiple kernels such as 
sigmoid, linear, polynomial, and radial-basis functions, were employed interchangeably 
to assess the therapy response. Additionally, methods such as the Cox, tree-based, and 
SVM-based models were employed to perform the survival analysis. To this end, the 
classification tasks were performed with scikit-learn [13] and the survival analysis with 
the scikit-survival [14] library.

All of the experiments were based on the same experimental protocol but with differ-
ent variables and data handling methods. In particular, the therapy response analyses led 
to 100,800 experiments (experimental variables: 1 multi-omics and 3 single-source by 
18 deep models by 7 classifiers by 2 fusion strategies by 100 iterations), and the survival 
analysis with multiple classifiers yielded 142,000 experiments (experimental variables: 1 
multi-omics and 3 single-source by 18 deep models by 10 classifiers by 2 fusion strate-
gies by 100 iterations). In each iteration, the same experimental parameters and patient 
splits were used across all single-source and multi-omics models. Therefore, the overall 
results are directly comparable across the experiments. Additionally, among the itera-
tions, the patients were shuffled randomly prior to applying k-fold cross-validation.
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Adjuvant therapy response

The performance of multi-view analysis in terms of AUC on the unseen testing set 
improved by 0.03–0.10 (Table 1) compared to the best single-source model, as seen in 
Figs. 1 and 2. Additionally, the score analysis based on the multi-view features achieved 
the lowest prediction variability, offering a more stable model compared to the corre-
sponding single-source models. Deep features extracted from the NasNet architecture 
achieved the highest AUC score. Overall, the multi-omic score-based models outper-
formed the feature concatenation-based models both in terms of performance and pre-
diction bias.

After applying a zero-variance threshold, the 66th, 890th, and 906th deep activations 
were among the highest-ranked features. The best radiomics include elongation, gray-
level co-occurrence matrix cluster shade, gray-level size zone matrix gray-level non-uni-
formity, gray-level co-occurrence matrix maximal correlation coefficient, gray-level size 

Table 1 Performance analysis of the SVM‑based multi‑view and single‑source pipelines for adjuvant 
treatment response

The following metrics represent the mean ± standard deviation of 100 iterations for each pipeline. SVM support vector 
machine, AUC  area under curve, SN sensitivity, SPC specificity

AUC SN SPC

Multi‑view 0.72 ± 0.08 0.58 ± 0.2 0.61 ± 0.2

Multi‑view score 0.74 ± 0.06 0.65 ± 0.08 0.62 ± 0.1

Deep features 0.69 ± 0.1 0.29 ± 0.2 0.84 ± 0.15

Deep feature score 0.69 ± 0.09 0.71 ± 0.19 0.57 ± 0.2

Radiomics 0.68 ± 0.1 0.72 ± 0.2 0.51 ± 0.15

Radiomic score 0.71 ± 0.08 0.70 ± 0.15 0.56 ± 0.18

Transcriptomics 0.64 ± 0.11 0.69 ± 0.2 0.38 ± 0.2

Transcriptomics score 0.66 ± 0.1 0.63 ± 0.15 0.55 ± 0.13

Fig. 1 Performance comparison of therapy response models with 95% confidence intervals. MV multi‑view, 
MVS multi‑view score, TSC transcriptomics, TSCS transcriptomic score, RAD radiomics, RADS radiomic score, DL 
deep learning, DLS deep learning score
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zone matrix entropy, and gray-level dependence matrix variance extracted from wavelet-
decomposed images. The highest-ranked transcriptomic signature comprised OTUD3, 
SUCGL2, and RQCD1. In total, six deep features, six radiomics, and three transcriptom-
ics were ranked highly for assessing the therapy response.

Survival analysis

The analyses with multi-source data performed better (improved C-index by 0.03–0.23) 
than the best models with a single data type and with overall lower variability (Table 2). The 
score-based analyses of both the multi-omics and single-source based models yielded bet-
ter results with reduced prediction variability. In particular, the multi-omics scores outper-
formed the concatenation-based methods with the exception of some simpler models such 
as Cox, CoxPH, and survival tree, as shown in Table 2 and Fig. 3. The predicted survival 
functions based on the multi-omics for patients from the unseen testing set are depicted 
in Fig. 4a. High-risk patients like R01-037, R01-039, and R01-138 are presented with a low 

Fig. 2 The receiver operating characteristic curves for the sigmoid SVM models are based on multi‑view, 
single‑source, and score‑based analyses. SVM support vector machine, AUC  area under curve

Table 2 Performance analysis of the proposed multi‑view and single‑source pipelines for survival 
analysis

The following metrics represent the mean ± standard deviation of 100 iterations for each pipeline. CoxPH Cox proportional 
hazards, SVM support vector machine

Cox CoxPH Extra trees Survival tree Random forest SVM-based

Multi‑view 0.63 ± 0.11 0.68 ± 0.15 0.64 ± 0.06 0.64 ± 0.09 0.61 ± 0.12 0.76 ± 0.08

Multi‑view score 0.64 ± 0.11 0.67 ± 0.05 0.69 ± 0.11 0.67 ± 0.12 0.66 ± 0.08 0.79 ± 0.03

Deep features 0.61 ± 0.08 0.62 ± 0.10 0.66 ± 0.12 0.64 ± 0.04 0.60 ± 0.04 0.73 ± 0.07

Deep feature score 0.66 ± 0.03 0.66 ± 0.04 0.62 ± 0.07 0.58 ± 0.14 0.57 ± 0.06 0.76 ± 0.06

Radiomics 0.61 ± 0.04 0.63 ± 0.04 0.63 ± 0.08 0.60 ± 0.09 0.57 ± 0.14 0.56 ± 0.05

Radiomic score 0.65 ± 0.03 0.63 ± 0.08 0.66 ± 0.05 0.61 ± 0.11 0.58 ± 0.08 0.68 ± 0.03

Transcriptomics 0.71 ± 0.09 0.70 ± 0.06 0.67 ± 0.05 0.68 ± 0.08 0.64 ± 0.04 0.71 ± 0.15

Transcriptomics score 0.69 ± 0.08 0.72 ± 0.06 0.67 ± 0.05 0.68 ± 0.01 0.64 ± 0.05 0.72 ± 0.09
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survival probability. This is in contrast to low-risk patients such as R01-035, R01-055 and 
R01-077 which are shown to have a higher survival probability.

ResNet was the pretrained model that gave the highest-performing deep descriptors for 
this endpoint, including the 53rd, 64th, and 432nd activations. The radiomic signature for 
this endpoint incorporates gray-level run-length or size-zone non-uniformity and kurto-
sis from the original, biorthogonal, and daubechies wavelet images. Additionally, some 
of the transcriptomic features that were identified include ATIC, USP7, PNPLA2, ZZZ3, 
PGRMC2, TRAK1, and ELP3. Finally, seven deep features, six radiomics, and seven tran-
scriptomics were used in the survival analysis.

Fig. 3 Performance comparison of survival analysis models with 95% confidence intervals. MV multi‑view, 
MVS multi‑view score, TSC transcriptomics,  TSCS transcriptomic score, RAD radiomics, RADS radiomic score, 
DL deep learning, DLS deep learning score

Fig. 4 The predicted survival function of the multi‑view analysis (a) and best single‑source model (b). The 
per‑patient probability of survival for high‑risk patients (R01‑037, R01‑039 and R01‑138) appear with a lower 
score in this figure compared to the low‑risk patients (R01‑035, R01‑055 and R01‑077). The deep feature 
score‑based model (b) assigns high‑risk patients with higher survival probability (R01‑039, R01‑106) and vice 
versa (R01‑077)
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Discussion
Since its inception, AI has been developed to mimic the adaptation and self-organ-
ization of living organisms or biological structures for finding novel solutions and 
making decisions based on a data-driven framework. It is only a natural next step for 
AI to combine multiple sources of data for medical applications, which mirrors the 
decision-making process of an oncologist.

The vast majority of the current research [15–18] is based on image analysis tasks 
such as radiomics and only a handful of studies leverage the multi-modal nature of 
medicine. Radiotranscriptomics integration was also performed with nomograms 
[11] or feature concatenation techniques [8] as opposed to the proposed multi-omics 
score. The current study addresses these remarks by proposing an integrative multi-
modal score to improve model robustness, examining the impact of a variety of non-
linear classifiers for OS and therapy response, and incorporating the best practices in 
ML analysis to achieve fairness in model evaluation.

In particular, the proposed model integrates imaging data processed by qualitative 
(deep features) and quantitative (radiomics) methods, key clinical parameters (eth-
nicity, tumor location, histology grade, etc.), and transcriptomic features (cell-level 
information). The synergy of this diverse feature space captured the high intra-tumor 
variability and predicted important clinical endpoints such as patient survival and 
therapy response in a personalized manner. As discussed in the introduction, single-
source models could potentially carry biases related to the feature extraction method. 
By incorporating diverse data sources, including radiomics (which captures tumor 
heterogeneity), transcriptomics (which provides cellular-level information), and 
selected clinical data (such as weight, age, and smoking status to assess overall health 
status), it is probable to mitigate certain adverse effects associated with the feature 
extraction method. This is shown by the performance delta between the multi-view 
and the corresponding single-source models for both clinical endpoints.

Adjuvant therapy response

For this task, the examined single-source models tend to be either highly sensitive 
with low specificity or highly specific with low sensitivity, depending on the data 
source, which can be interpreted as biased analyses. The combination of selected fea-
tures from different sources led to a more robust model with an improved AUC and, 
most significantly, a better balance between sensitivity and specificity. Furthermore, 

Fig. 5 The differences between multi‑view and single‑source models in terms of AUC. MV multi‑view, TSC 
transcriptomics, RAD radiomics, DL deep learning, AUC  area under curve
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Fig. 5 demonstrates that the differences in performance between multi-view analysis 
and any single-source model favor the former.

The highest-ranked features that were identified in this study have also been strongly 
associated with therapy response in other published studies with different experimen-
tal protocols and on different NSCLC patient cohorts. In particular, the feature cluster 
shade quantifies the asymmetry, pixel intensity variability in the region of interest, and 
cavitation [19], all of which have been previously correlated with pathological therapy 
response [20]. Zone entropy reveals the heterogeneity of the texture and has been found 
to be strongly correlated with histology subtypes [21]. A link between therapy response 
and the high value of dependence variance was identified in a recent study [22]. A cor-
relation was found between elongation and local control of the tumor [23], which essen-
tially means that the growth and spread of the tumor had been halted as a result of the 
treatment. The identified transcriptomics have also been featured in the current liter-
ature. In particular, OTUD3 has been linked to chemotherapy response [24], RQCD1 
has been linked to tumor growth by uncontrolled activation [25], and SUCGL2 has been 
linked to tumor growth in cells with low glucose uptake [26].

Survival analysis

In terms of the concordance index, the SVM-based survival model performed best, with 
a C-index of 0.79 ± 0.03, as shown in Fig. 6. The improvements in C-index performance 
range from 0.03 to 0.20 in favor of the multi-omics SVM models compared to their 
single-source counterparts, as depicted in Fig. 6. Notably, the multi-omics models per-
formed substantially better when paired with a classifier that can exploit complex rela-
tionships among features, such as the SVMs. This can be attributed to the high diversity 
of the multi-omics signature. Simpler classifiers performed better in a few single-source 
models, such as transcriptomics, but did not yield high performance overall.

Several radiomic features, including non-uniformity, have been strongly linked with 
survival probability in previous studies [27–31]. Kurtosis has been associated with overall 

Fig. 6 The differences between multi‑view and single‑source survival models in terms of concordance index. 
MV multi‑view, TSC transcriptomics, RAD radiomics, DL deep learning
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and disease-free survival [32, 33]. The transcriptomics that have been previously reported 
for having an active biological role in NSCLC tumors and were identified as good predic-
tors in this study include ZZZ3 which regulates biosynthetic activity via ribosome protein 
genes [34], PGRMC2 which has been linked to therapy resistance in adenocarcinomas and 
a lower patient survival rate [35], TRAK1 which has been associated with mitochondrial 
trafficking in cancer invasion cases [36] and has been identified as an emerging biomarker 
[37], and, finally, ELP3 which has been correlated with reduced cell growth in ALK-positive 
tumor cells [38].

Limitations

The small number of patients with clinical data that corresponded to the examined high-
level clinical outcomes that were available for this study limited the predictive power of the 
statistical methods used. Some secondary clinical variables were filled in with the median 
value (e.g., weight) or were randomly generated by combining multiple feature columns, 
such as the days survived for the alive patients. Additionally, some patients were rejected 
due to the lack of completeness in the data sources (imaging, transcriptomics, and other 
semantic data). This is a major limitation of this study and could be mitigated by utilizing a 
different approach, such as late fusion integration at the classifier level or other meta-esti-
mator methods, at least for the therapy response analysis. Currently, transcriptomics is not 
routinely used data and is underutilized in clinical practice. In particular, it is more likely 
that centers in emerging economies or underdeveloped regions will have limited or no 
access to this type of data due to high costs and a lack of the required expertise in the field. 
The different data acquisition protocols in both imaging and transcriptomics could poten-
tially harm the generalizability of the trained models since the proposed models were only 
trained with mostly homogeneous data from a single clinical site. Furthermore, transcrip-
tomics is subjected to high intra-tumor variability. Therefore, a robust computational pro-
tocol is required. The semantic and clinical features might be subjected to inter-observer 
variability or other types of biases related to social epidemiology factors.

Future extensions

To further validate this methodology, the modeling of multi-omics could be applied to 
other types of therapies, such as immunotherapy, and could model other types of tumors 
in different anatomical regions with varying genetic traits. In terms of multi-centric stud-
ies, CT examinations provide the most resilient imaging data, but incorporating data from 
scanners from different vendors should improve the generalization ability of the AI models. 
The same can be said for transcriptomics, although these types of data are highly dependent 
on the high-throughput computation protocol used, which might make data harmoniza-
tion much more challenging. Lastly, incorporating a wider range of other semantic features 
could lead to a human-centric AI model, which has the potential to improve the interpret-
ability and trustworthiness of this method.

Conclusions
The proposed multi-omics analysis can potentially improve the prediction variability 
and accuracy of the two examined high-level clinical outcomes compared to the cor-
responding single-source models. Radiotranscriptomics, in conjunction with key clinical 
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features, has the potential to capture a holistic representation of the tumor’s underlying 
biological mechanisms, as shown by the improved performance of OS and response to 
adjuvant therapy. A combination of these data sources has been shown to have a comple-
mentarity and synergetic effect, reducing the potential bias of single-source models and 
providing a highly discriminative signature across different clinically significant tasks.

Materials and methods
Patient cohort

NSCLC Radiogenomics [39] is a publicly available and unique dataset comprising imag-
ing, genomics, transcriptomics, and clinical data that was created in order to promote 
the uncovering of the fundamental connection between transcriptomic/genomic and 
medical imaging and the development or assessment of predictive image biomarkers. 
As part of their care, patients underwent preoperative CT examinations at Stanford Uni-
versity Medical Center and Palo Alto Veterans Affairs Healthcare System. Varying scan-
ners were used with an X-ray tube current of 124–699 mA (mean 220 mA) at 80–140 
kVp (mean 120 kVp). Tumor samples were obtained from untreated patients during sur-
gery. Within 30 min of excision, the removed tissue was frozen in a 3- to 5-mm-thick 
slice along the longest axis. Afterwards, it was recovered for RNA extraction. Molecular 
information such as gene expression microarrays, RNA sequencing, and mutational data 
on various oncogenes is also available for a subset of patients.

In particular, the examined dataset includes 211 CT (PCT) examinations accompanied 
by 142 pixel-based (PROI) tumor annotations, RNA-seq data for 130 patients (PTRANS), 
clinical data (PCL) regarding the histology and molecular subtypes, treatment (PT), dis-
ease recurrence (PDR), survival status, and days (PD). For the patients with the survival 
status “alive”, the number of days was filled in randomly between ± 365 days of the maxi-
mum survival days in this dataset.

The multi-view analysis cohort comprised patients with a complete set of the above-
mentioned imaging, transcriptomics, and clinical data for the survival analysis cohort P

OS = PCT ∩ PROI ∩ PTRANS ∩ PCL ∩ PD and treatment response PTR = PCT ∩ PROI ∩ PTRANS ∩ P

CL ∩ PT. The ∩ symbol denotes the intersection of sets, in this case the subset of patients 
among sets that have available data from multiple sources.

The overall survival (OS) rate was calculated by taking the median of all the patients 
who were still alive after treatment and dividing them into two groups: those with a high 
survival rate (LOS-H = POS ∩ [Pi > MEDIAN(PD)] = 92) and those with a low survival rate 
(LOS-L = POS ∩ [Pi <  = MEDIAN(PD)] = 23). Since there are no follow-up imaging data 
available for the studied dataset, the treatment response was assessed by the survival 
rate in conjunction with disease recurrence (LTR-POS = PTR ∩ [(PDR =  = False) AND LOS-

H] = 68, LTR-NEG = PTR ∩ [(PDR =  = True) AND POs] = 38. In Fig. 7, a detailed CONSORT 
diagram depicts the patient selection process and criteria.

Multi-view analysis

This study investigates the impact of merging multiple views, such as deep features, radi-
omics, transcriptomics, and key clinical data. Each view is a separate analysis for each fea-
ture type, presented as vectors in Eq. 1. Two types of feature integration were employed 
in this study: (a) a coefficient-based multi-omics score and (b) a signature of concatenated 
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features of different views, as shown in Algorithm 1. The Lasso regression-based coefficient 
vector, shown in Eq. 2, of the selected features was used to generate a score from each view 
(Eq. 3). In particular, the multi-omics score is a mathematical algorithm that involves the 
selected features from multiple views and their coefficients, which are calculated using the 
Lasso method. This approach represents a higher level of integration when compared to the 
concatenated signature, which only involves the raw feature values from multiple views.

In an alternative pipeline, early integration was implemented by concatenating (Eq. 4) the 
selected features from each view into a single feature vector prior to the survival analysis 
and therapy response classification, as presented in Fig. 8. Different regression-based scores 
[40] were calculated by using the corresponding coefficients of the selected transcriptom-
ics, radiomics, deep feature vectors, and multi-omics (Eq. 5). In particular, the multi-omics 
signature is a vector that comprises the multi-omics score and each of the single-source 
scores (radiomics, deep features, clinical, and transcriptomics), as shown in Eq. 5. This is an 
extension of the methodology presented in our previous work [8], where only two sources 
of data were used for different endpoints. The source code can be publicly accessed online 
(https:// github. com/ trivi zakis/ multi- omics- nsclc/).

(1)features = [f1, f2, . . . , fn]

(2)coefficients = [c1, c2, . . . , cn]

Fig. 7 The CONSORT diagram of the study. NSCLC non‑small cell lung cancer, CT computed tomography

https://github.com/trivizakis/multi-omics-nsclc/
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Algorithm 1 A simplified snippet of pseudo‑code for the multi‑view pipeline and single‑source models
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In the above equations, the square bracket represents a vector of multiple quanti-
ties, the multiplication of two quantities is denoted by × , the addition of two values is 
denoted by + , concatenation of sequences is denoted by the  symbol, and summation is 
denoted by Σ.

Imaging features

Two types of imaging features were extracted from the volume of interest of the CT 
examination: (a) deep features and (b) traditional radiomics. An “off-the-shelf” transfer 
learning (TL) technique was selected due to the low number of patients in the exam-
ined cohorts, limiting de novo network adaptation. A set of 18 pretrained deep models 
with ImageNet weights, featuring diverse architectures and internal representations, was 
employed. These include architectures such as Inception [41], Xception [42], DenseNet 
[43], ResNet [44], MobileNet [45], NasNet [46], and VGG [47], as well as their derivatives 
accessed from the online repository of Keras [48]. Only the convolutional layers of the 
pretrained models were transferred to the new deep model, allowing the extraction of 
feature maps from the low-level learned kernels. Deep feature extraction was employed 
on a slice-by-slice basis, and maximum pooling was performed on a patient-by-patient 
basis, yielding a latent space representation of the volume of interest. In particular, each 
slice was cropped around the normalized region of interest and then padded with zeros, 

(3)Scorei =

n
∑

i=1

intercepti + featuresi × coefficientsi

(4)

(5)Scoremulti−omics =

[(

n
∑

i=1

Scorei

)

, Score1, Score2, .., Scoren

]

Fig. 8 The proposed multi‑view analysis for assessing high‑level clinical outcomes. This pipeline includes 
feature extraction from multiple sources, followed by feature selection to identify the most relevant features 
to the specific clinical endpoint. SMOTE was applied to balance the examined distributions on the training 
set. Feature integration provides unified, compact representations of patient data for machine learning 
classification, assessing high‑level clinical outcomes. SMOTE synthetic minority oversampling technique
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resulting in a pixel array of 150 by 150 pixels. Prior to the analysis, deep features with 
zero-variance were discarded, substantially shrinking the extracted feature vector.

The radiomics consisted of 2996 features retrieved with a fixed bin size from the vol-
ume of interest of the CT scan. In addition to the 18 first-order features of skewness, 
energy, entropy, kurtosis, and other statistical features, 14 shape features, such as elon-
gation, flatness, sphericity, 3D and 2D diameter, mesh, surface, and voxel volume, were 
computed. Seventy-five texture-matrix-based features were extracted, including auto-
correlation, cluster prominence, contrast, gray-level covariance (GLCM), dependence 
(GLDM), run length (GLRLM), size zone (GLSZM), and neighborhood gray-tone dif-
ference (NGTDM). Version 2.2.0 of the PyRadiomics library [12] was used for extracting 
those features. Prior to extraction, isotropic resampling was applied to the examinations 
to ensure uniform spacing among all the imaging data. Six filtering techniques, such as 
exponential, gradient, Laplacian of Gaussian, square, square root, and wavelet filtering 
(twenty-two), enhanced the radiomics extraction by augmenting the extracted feature 
vector. The mother wavelets include daubechies, symlets, coiflets, biorthogonal, and 
reverse biorthogonal with two levels of decomposition [49]. Before the analysis, both 
deep features and radiomics were standardized on a feature basis.

Transcriptomics

The RNA-seq data were retrieved from the NCBI GEO database [50] by comparing the 
patients’ pseudonyms with the NSCLC Radiogenomics imaging database. The pre-pro-
cessing of the raw RNA-seq data resulted in the removal of genes that were missing val-
ues, resulting in a transcriptomic signature of 5268 genes for 130 patients.

Clinical data

To avoid further reducing the already size-limited patient cohort, only complete features 
such as age, gender, weight, ethnicity, tumor location, number of pack years, smoking 
status, and histological grade were considered for the analyses. Additionally, for the sur-
vival analysis only, the categorical variable for the therapy type was included in the clini-
cal feature view.

SMOTE

Imbalanced distributions are a prevalent issue in data analysis and especially in medi-
cine, since “normal” cases greatly surpass “odd” ones. It is quite common in machine 
learning tasks that these imbalances can have an adverse effect on the minority class, 
leading to less sensitive classifiers. The synthetic minority oversampling technique 
(SMOTE) [51] utilizes k-nearest neighbors to create samples by generating synthetic 
instances between two real ones near the boundaries of the hyperplane. This oversam-
pling method was used in both the training and testing sets, but it was performed inde-
pendently for each set to prevent data leakages.

Feature selection

A combination of univariate and multivariate methods was utilized to select the most 
relevant features for each of the examined clinical outcomes. Initially, a zero-variance 
threshold was applied to the deep features and radiomics. Separately, for transcriptomics 
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and imaging features, the analysis of variance (ANOVA) was utilized to determine 
the most significant features on a feature basis, aiming to reduce the predictors and 
avoid overfitting. Furthermore, a linear regression with an L1 penalty, also known as 
least absolute shrinkage and selection operator (Lasso) regression, was employed to 
decrease the length of each view by minimizing the coefficients, resulting in a compact 
representation.

Data stratification

Four-fold cross-validation on a patient basis was employed to split the patient cohort 
into four pairs for training and testing, with class balances preserved across sets. The 
training set was solely utilized to perform feature selection, create synthetic instances 
of samples from the minority class, and fit the models. The testing set was only used 
for evaluating the model and remained unseen across the pipeline. This strategy was 
employed to improve the reliability of the followed experimental protocol, fairly assess 
the performance, and therefore avoid overfitting. Additionally, each pipeline was per-
formed 100 times on different dataset splits, and consequently, the following results 
are presented in the form of a mean ± standard deviation (minimum–maximum) to 
better assess the performance of the proposed methodology. For the survival analysis, 
the cohort consisted of 80% of patients with high and 20% of patients with low survival 
probabilities. For the therapy response, the class distribution was 64% responders and 
36% non-responders.

Assessing clinical endpoints

Several machine learning classifiers were used for assessing the therapy response, 
including: (a) k-NN, (b) decision tree, (c) RBF-GPC, and SVMs with kernels such as (d) 
radial-basis function, (e) linear, (f ) polynomial, and (g) sigmoid. For survival analysis, ten 
methods were employed based on (a) Cox, (b) Cox proportional hazards (CoxPH), (c) 
survival tree, (d) random forest, (e) extra trees, and also several SVM implementations of 
the scikit-survival [14], such as (f ) linear kernel, (g) minimal Lipschitz smoothness strat-
egy, (h) hinge loss, (i) fast survival, and (j) fast kernel SVM.
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