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Abstract 

Introduction: Undiagnosed and untreated lung pathologies are among the leading 
causes of neonatal deaths in developing countries. Lung Ultrasound (LUS) has been 
widely accepted as a diagnostic tool for neonatal lung pathologies due to its affordabil-
ity, portability, and safety. However, healthcare institutions in developing countries lack 
well-trained clinicians to interpret LUS images, which limits the use of LUS, especially 
in remote areas. An automated point-of-care tool that could screen and capture LUS 
morphologies associated with neonatal lung pathologies could aid in rapid and accu-
rate diagnosis.

Methods: We propose a framework for classifying the six most common neonatal 
lung pathologies using spatially localized line and texture patterns extracted via 2D 
dual-tree complex wavelet transform (DTCWT). We acquired 1550 LUS images from 42 
neonates with varying numbers of lung pathologies. Furthermore, we balanced our 
data set to avoid bias towards a pathology class.

Results: Using DTCWT and clinical features as inputs to a linear discriminant analy-
sis (LDA), our approach achieved a per-image cross-validated classification accuracy 
of 74.39% for the imbalanced data set. Our classification accuracy improved to 92.78% 
after balancing our data set. Moreover, our proposed framework achieved a maximum 
per-subject cross-validated classification accuracy of 64.97% with an imbalanced data 
set while using a balanced data set improves its classification accuracy up to 81.53%.

Conclusion: Our work could aid in automating the diagnosis of lung pathologies 
among neonates using LUS. Rapid and accurate diagnosis of lung pathologies could 
help to decrease neonatal deaths in healthcare institutions that lack well-trained clini-
cians, especially in developing countries.

Keywords: Neonatal lung ultrasound, Image analysis, Wavelet decomposition, Pattern 
classification
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Introduction
Respiratory diseases in newborns are the leading cause of admission to Neonatal Inten-
sive Care Units (NICU) [1]. In recent years, lung ultrasound (LUS) has emerged as a 
promising and exciting application in neonatal point-of-care ultrasound (POC-US). 
Recent articles have demonstrated that ultrasound imaging can be just as effective, if not 
more so, than traditional X-rays as a diagnostic modality [2–4]. For example, LUS is eas-
ily available at bedside, provides real-time imaging and is free of radiation hazards [2, 3]. 
Additionally, it has been shown to be better than X-ray in diagnosing neonatal respira-
tory distress syndrome (RDS) [4]. However, healthcare institutions in developing coun-
tries lack well-trained clinicians to interpret LUS images expertly and diagnose neonatal 
lung pathologies accurately. An automated framework for classifying LUS images of typ-
ical neonatal lung pathologies could aid in rapid and accurate detection.

In a neonatal intensive care unit (NICU), the most common lung pathologies are tran-
sient tachypnea (TTN), pneumothorax (PTX), respiratory distress syndrome (RDS), 
consolidations (CON), and chronic lung disease (CLD). Clinicians characterize LUS 
morphologies to classify neonatal lung pathologies. Typical LUS morphologies are Pleu-
ral lines, A-lines, Separate or Coalescent B-lines, and Consolidations [5]. Pleural lines, 
shown in Fig. 1A, appear as a hyperechoic line that represents the junction of the vis-
ceral and the parietal pleura. A well-defined and sliding pleural line signifies a normally 
appearing lung and rule out PTX; Fig. 1D shows A-lines representing reverberation arti-
facts and appearing as horizontal, equidistant parallel lines. These lines are commonly 
seen in healthy individuals and may be erased (by B lines) or enhanced in the presence 
of PTX; B-lines are vertical line artifacts that extend from the pleural line to the bot-
tom of an LUS image. B-lines could be either separate or coalescent. Separate B-lines 
(Fig. 1E) indicate thickened interlobular septa in the lungs, and its intensity is correlated 
with the amount of fluid inflammation present in the lungs. The presence of multiple 
distinct B-lines could signify interstitial lung disease. Coalescent B-lines (1F) are charac-
teristic of alveolar-interstitial syndrome. Coalescent B-lines are formed due to the fusion 
of separate B-lines; consolidations is described as the presence of hypoechoic areas sur-
rounded by hyperechoic short lines and irregular or absent pleural lines, as shown in 
Fig. 1G. CON are typically observed in LUS images due to a severe lack of aeration of the 
lungs; Finally, a combination of A-lines and B-lines artifacts may indicate “Double Lung 
Point” that is caused by the difference in aeration of the upper and lower lung regions 
(Fig. 1H). Double Lung Point is a characteristic feature of TTN, which results from fluid 
retained in the lungs of newborns, causing them to breathe faster and harder [6]. Fur-
thermore, RDS has LUS morphology that appears as a combination of irregular and 
thickened pleural line, CON and Coalescent B-line. CLD also appears as an irregular and 
thickened pleural line with the addition of varying intensities of separate and coalescent 
B-lines. A description of the LUS morphologies is provided in Table 1 and a matching of 
the morphologies to LUS pathologies is given in Table 2.

Previous works have attempted to automate the detection of lung pathologies using 
LUS morphologies. Summers et  al. developed a diagnostic assistant to detect LUS 
morphologies related to PTX among adults [7]. A prenatal study by Jiao et  al. pre-
dicted the likelihood of neonatal respiratory morbidity (NRM) based on spatial and 
textural LUS image features, gestational age (GA), and gestational diabetes mellitus 
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Table 1 Descriptions of LUS morphologies

Morphology Description

Pleural line Hyperechoic line that represents the junction of the visceral and the
parietal pleura.

A-lines Represent reverberation artifacts and appear a horizontal, equidistant
parallel lines.

Separate B-lines B-lines are vertical line artifacts that extend from the pleural line to the
bottom of an LUS image. Separate B-lines indicate thickened
interlobular septa in the lungs, and their intensity is correlated
with the amount of fluid inflammation present in the lungs.
The presence of multiple distinct B-lines could signify interstitial
lung disease.

Coalescent B-lines Coalescent B-lines are characteristic of alveolar-interstitial syndrome.
Coalescent B-lines form due to the fusion of separate B-lines.

Consolidation The presence of hypoechoic areas surrounded by hyperechoic short line
and irregular or absent pleural lines. Indicates areas of pneumonia or atelectasis.

Lung sliding The back-and-forth sliding of the pleural line with respiration.

Table 2 LUS morphologies of LUS pathologies

Normal TTN PTX RDS CLD CON

A-lines X X X

Normal pleural line X X

Thick pleural line X X X

Irregular pleural line X X X

Lung sliding X X X X X

Separate B-lines X X X X

Coalescent B-lines X X X X

Consolidation X X X

Fig. 1 a: A sample normal Pleura from a subject with Normal Lung, b A sample thick Pleura (> 2 mm) from a 
subject with CON, c A sample thick and irregular Pleura from a subject with chronic lung disease, d Sample 
A-Lines from a subject with PTX, e Sample separate B-Lines from a subject with TTN, f Sample coalescent 
B-lines from a subject with RDS, g Sample CON illustration from a subject with Consolidation, and h Sample 
Double Lung Point from a subject with TTN
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(GDM) [8]. Similarly, Bonet et al. [9] showed that indicators of RDS and CLD in neo-
nates could be automatically detected from fetal LUS images using combinations of 
textural features and GA. Du et al. also used texture, clinical features, and spatiotem-
poral features to categorize LUS images with a higher likelihood of NRM [10, 11]. 
Veeramani et al. automated classification of PTX, RDS, and TTN from LUS images, 
among other lung pathologies, using over six hundred features among which are tex-
tural patterns typical of neonatal LUS morphologies [12].

While the aforementioned works automated the classification of lung pathologies 
from primarily fetal LUS images, POC-US studies for diagnosing lung pathologies 
in neonates using LUS morphologies are lacking in the current literature. Moreover, 
previous studies examined only a subset of the most common neonatal lung patholo-
gies. Thus, our current work aims to automate the detection and classification of lung 
pathologies in neonates using textural and morphological features of LUS images. 
Our current work also aims to expand the classification for all neonatal lung patholo-
gies commonly encountered by clinicians in a NICU. Our work could aid in improv-
ing the diagnosis of neonatal lung pathologies and alleviate neonatal mortality in 
developing countries needing well-trained physicians.

Our previous works attempt to contribute to automating the detection and classi-
fication of common neonatal lung pathologies. In Bassiouny et al. [13], seven impor-
tant LUS morphologies for specific lung conditions were identified using a Faster 
Region-Based Convolutional Neural Network (FRCNN) object detection model. 
Moreover, we previously used recurrence analysis to automatically detect recurrent 
non-linear LUS image features of common neonatal lung pathologies, such as A- and 
B-lines [14]. With an expanded data set, we extend our initial work by isolating and 
extracting localized LUS line and texture patterns of the most common neonatal 
lung diseases using a two-dimensional (2D) Dual-Tree Complex Wavelet Transform 
(DTCWT) [15]. Since wavelets have been shown to effectively capture spatially and 
temporally varying features [16, 17], wavelets may also be able to capture LUS mor-
phologies. The works by Cao et  al. [18] and Amin et  al. [19] demonstrated wavelet 
features associated with ultrasound image morphologies characteristic of COVID 
and fatty liver, respectively. Their proposed wavelet features could also be useful for 
detecting neonatal lung pathologies from LUS images.

DTCWT is effective in extracting localized spatiotemporal features from signals 
and images. Chen et  al. previously used 1D DTCWT to extract electroencephalog-
raphy (EEG) signal features for seizure detection [20]. Aydogan et al. also proposed 
using 2D DTCWT on Magnetic Resonance (MR) images to detect bone fractures and 
segment and classify brain tumors [21]. 2D DTCWT has also been used to extract 
spatiotemporal local features of ultrasound images of the thyroid glands to classify 
organ-specific diseases [22]. Therefore, we could use 2D DTCWT to extract features 
from LUS images of neonates and hone in on localized features indicative of specific 
lung pathologies. In Fig. 2, we show a block diagram of our proposed framework to 
automate the detection of LUS morphologies.

The key research contributions of the paper are listed below:
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• Extracted line and texture features from the DTCWT decomposition of neonatal 
LUS images.

• Utilized the DTCWT and clinical features to classify typical LUS pathologies among 
neonates using a Linear Discriminant Analysis model.

• Models were tested using 2 data sets, a balanced and an imbalanced data set, as well 
as 2 cross-validation methods: leave-one-out cross-validation (LOO CV) and leave-
one-subject-out cross-validation (LOSO CV).

• The proposed research can help assist the clinical community, especially in remote 
hospitals, in screening for neonatal lung conditions and ensuring early identification 
of potential issues.

Our work is organized as follows. We present our results in Section 2. We discuss how 
our results relate to the literature on LUS morphology classification in Section 3. In Sec-
tion 4, we present our conclusions and the implications of our findings to the rapid and 
accurate diagnosis of neonatal lung pathologies. We describe in Section 5 our data set, 
image preprocessing and decomposition, feature extraction, and classification methods. 
Finally, in Section 6 we provide our declarations including a list of all abbreviations.

Results
We performed the following four 6-group classification experiments: (i) Linear Discri-
minant Analysis (LDA) with Leave-one-out Cross Validation (LOO CV) on a balanced 
data set, (ii) LDA with LOO CV on the imbalanced data set, (iii) LDA with Leave-One-
Subject-Out Cross Validation (LOSO CV) on a balanced data set and (iv) LDA and 
LOSO CV on the imbalanced data set. In performing the above experiments, we also 
restricted the feature dimension to the top 15 DTCWT features selected by the fea-
ture selection method and three clinical features. Considering the approximate training 

Fig. 2 A block diagram of our proposed image feature extraction and classification framework
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group sample sizes, 18 features will form  10–15% of the training group sizes, which is 
expected to produce conservative performance without over-fitting. We also tested the 
distribution of top-selected features by the feature selection method. We found that, in 
general, Grey-Level Co-occurrence Matrix (GLCM) and Grey-Level Run Length Matrix 
(GLRLM) features were selected in larger proportions than statistical and Linear Binary 
Pattern (LBP) features.

The obtained results are presented in the four confusion matrices in Tables 3, 4, 5 and 
6. Table 3 presents the results of the 6-group classification with LOO CV on the balanced 
data set. With an overall per-image classification accuracy of 92.78%, most groups are 
classified well except PTX, which slightly overlaps between Normal and TTN. Table 4 
presents the results of the 6-group classification with LOO CV on the imbalanced data 
set. With an overall per-image classification accuracy of 74.39%, the performance drops 
considerably compared to the balanced data set. As evident from Table 4, looking at the 
TTN column, most of the issue seems to overlap with TTN. This is expected as the data 
set is skewed due to almost 1/3rd of TTN cases. As confirmed by our clinical collabora-
tor, TTN can have a varying and overlapping presentation with Normal, PTX, and RDS. 
Specifically, for the imbalanced data set experiment, Normal was misclassified as TNN 

Table 3 Classification confusion matrix for results with LOO CV on the BALANCED data set using top 
15 DTCWT features and three clinical features. The overall per-image classification accuracy achieved 
is 92.78% 

The key metrics, overall classification accuracy, the weighted F1‑score, and the classification accuracy for each class were  
shown in bold

The weighted F1‑score is 0.927

Predicted class

Normal (%) CLD (%) CON (%) PTX (%) RDS (%) TTN (%)

True
Class

Normal 98.33 0 0 0.83 0 0.83

CLD 0 100 0 0 0 0

CON 0 0 95.83 0 4.17 0

PTX 9.17 0 0.83 76.67 0 13.33

RDS 0 0 4.17 0 92.5 3.33

TTN 3.33 0 0 3.33 0 93.33

Table 4 Classification confusion matrix for results with LOO CV on the IMBALANCED data set using 
top 15 DTCWT features and three clinical features. The overall per-image classification accuracy 
achieved is 74.39% 

The key metrics, overall classification accuracy, the weighted F1‑score, and the classification accuracy for each class were  
shown in bold

The weighted F1‑score is 0.740

Predicted class

Normal (%) CLD (%) CON (%) PTX (%) RDS (%) TTN (%)

True
Class

Normal 17.84 0 0 7.03 0 75.14

CLD 0 100 0 0 0 0

CON 0 0 99.02 0 0.98 0

PTX 8.57 0 12.38 17.14 25.71 36.19

RDS 2.86 0 8.98 5.31 57.55 25.31

TTN 4.53 0 0 2.26 2.83 90.38
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75.14% of the time, PTX was misclassified as TTN 36.19% of the time, and RDS was 
misclassified as TTN 25.31% of the time. These three conditions look very similar. They 
all commonly have A-lines. However, there are differences between these diseases, such 
as the amount of fluid/air ratio present in the lungs, which can be picked up in the bal-
anced data set. These might have contributed to the reduced performance of the per-
image classification using the imbalanced data set. The weighted F1 score was 0.927 on 
the balanced data set and 0.740 on the imbalanced data set. Confusion matrices for the 
results are provided in Fig. 3.

Moving on to the LOSO results in Tables 5 and 6, we see, in general, a reduction 
as expected in the per-subject classification accuracies in comparison with the per-
image classification accuracies in Tables 3 and 4. This could be explained for two rea-
sons. First, we have removed any subject bias that may have influenced the results 
using LOO CV with images. Secondly, LOSO CV reduces the amount of condition-
specific data the model is trained on for the patient in the testing set, which affects 
the model’s accuracy and could lead to a decrease in accuracy. In addition, for the 
imbalanced data set case, the imbalanced and 1/3rd presence of the TTN might have 
amplified the difficulty level of classifying the groups. Lastly, the reduced feature 

Table 5 Classification confusion matrix for results with LOSO CV on the BALANCED data set using 
top 15 DTCWT features and three clinical features. The overall per-subject classification accuracy 
achieved is 75% 

The key metrics, overall classification accuracy, the weighted F1‑score, and the classification accuracy for each class were  
shown in bold

The weighted F1‑score is 0.713

Predicted class

Normal (%) CLD (%) CON (%) PTX (%) RDS (%) TTN (%)

True class Normal 93.33 0 0 1.67 0 5

CLD 0 100 0 0 0 0

CON 0 0 78.33 0 21.67 0

PTX 11.67 0 2.5 40.83 5.83 39.17

RDS 0 0 28.33 0 52.5 19.17

TTN 9.17 0 0 5.83 0 85

Table 6 Classification confusion matrix for results with LOSO CV on the IMBALANCED data set using 
top 15 DTCWT features and three clinical features. The overall per-subject classification accuracy 
achieved is 63.48% 

The key metrics, overall classification accuracy, the weighted F1‑score, and the classification accuracy for each class were  
shown in bold

The weighted F1‑score is 0.606

Predicted class

Normal (%) CLD (%) CON (%) PTX (%) RDS (%) TTN (%)

True
Class

Normal 4.86 0 0 11.89 0 83.24

CLD 0 100 0 0 0 0

CON 0 0 96.39 0 3.61 0

PTX 23.81 0 15.24 3.81 22.86 34.29

RDS 5.71 0 17.96 6.12 39.59 30.61

TTN 13.96 0 0 5.09 5.47 75.47
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dimension might not have enough discriminative ability to separate the groups well. 
The weighted F1 score was 0.713 on the balanced data set and 0.606 on the imbal-
anced data set.

Additionally, to examine whether additional DTCWT features could further improve 
our classification accuracy, we reiteratively implemented our pattern classification 
method with LOSO while gradually increasing the number of DTCWT features. We 
show in Fig. 4 that a maximum classification accuracy of 81.53% for a balanced data set 
could be achieved if the first 43 DTCWT features were included in our LDA model.

Fig. 3 Confusion matrices for all results

Fig. 4 LOSO accuracies for balanced and imbalanced data set with increased number of DTCWT features
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Discussion
Our work attempts to automate the detection of LUS morphologies to diagnose lung 
pathologies among neonates in developing countries. Below are the primary findings of 
our work.

• All six typical neonatal lung pathologies observed in the NICU could be classified 
using line and textural features of POC–LUS images and clinical features.

• Features extracted from LUS images using 2D DTCWT and clinical features dem-
onstrate the potential to accurately separate the six most common neonatal lung 
pathologies.

Previous works have demonstrated wavelet transform and its variants to detect line and 
texture patterns from LUS images to classify and assess lung pathologies. Jiao et al. [8] 
and Du et al. [10, 11] independently showed that NRM of an infant could be predicted 
using textural and wavelet features extracted from fetal LUS images. Clinical features, 
such as GA, gestational diabetes mellitus, and pregnancy complications, could augment 
the prediction of infant NRM. Bonet-Carne’s team used the same feature types as the 
aforementioned studies to predict NRM; however, they extracted features from the LUS 
of neonates [9]. We extend the work of Bonet-Carne et al. by exploring different texture 
and wavelet features of neonatal LUS images and expanding the classification of neona-
tal lung pathologies beyond RDS and TTN.

One of the disadvantages of a traditional Discrete Wavelet Transform (DWT) is its 
inherent spatial shift variance. Thus, features extracted using DWT may not be consist-
ent due to natural spatial shifts that occur during LUS scans. DTCWT minimizes the 
shift variance from DWT by doubling the sample rate at each level of decomposition 
[15]. We take advantage of DTCWT’s directional selectivity, great spatiospectral locali-
zation, and scale- and shift-invariance to extract morphologies of LUS images and auto-
mate the detection of the six most common neonatal lung pathologies.

We also demonstrated high classification accuracy using a simple linear classifier on 
a balanced data set. While LDA produces only a conservative estimate, we showed that 
we could achieve 92.78% per image and 75.00% per subject cross-validated classification 
accuracy via LOO and LOSO, respectively. While more intricate deep-learning classi-
fiers have been used for the classification of lung pathologies from LUS [13, 23–26], we 
illustrated that we could still achieve great classification accuracy using LDA only. Our 
classification results using only a linear classifier reflect the robustness of our proposed 
LUS image and clinical features.

The 3 most commonly selected features for LOO splits on the balanced data set were 
M2 Mean, M1 GLCM Contrast and M1 GLCM Homogeneity. M2 Mean is the global 
mean of the 2nd level low passed band. Normal, TTN and PTX have a much lower M2 
mean than the other classes. The other 3 conditions, RDS, CLD and CON, have greater 
M2 Means as they all commonly have large areas of coalescent B-lines leading to a 
greater mean value in the M2 sub-image. M1 GLCM contrast is the GLCM contrast of 
the 1st level low passed band. A larger value is due to a greater difference in intensity 
values among neighbouring pixels. Images with texture patterns that have large inten-
sity differences, such as areas with consolidations, will have greater M1 GLCM contrast 
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values. M1 GLCM Homogeneity is the GLCM homogeneity of the 1st level low passed 
band. GLCM Homogeneity is a measure of the local homogeneity of an image Images 
with large areas of similar intensity, such as areas with coalescent B-lines and large black 
areas (such as the areas between A-lines) will have greater M1 GLCM homogeneity 
values.

We tested the performance of the algorithm using two different cross-validation meth-
ods. The results using LOO CV were generally higher than LOSO CV due to the differ-
ence in per-subject and per-image database size biases. The LOO CV results provide an 
inflated estimate of model performance while LOSO CV reduces the amount of condi-
tion-specific data the model is trained on for the patient in the testing set resulting in 
conservative results.

Since we included only the top fifteen DTCWT with clinical features, we also exam-
ined whether additional DTCWT features could further improve our classification 
accuracy. Therefore, along with our three clinical features, we reiteratively implemented 
our pattern classification method with LOSO while gradually increasing the num-
ber of DTCWT features. We show in Fig. 4 that a maximum classification accuracy of 
81.53% for a balanced data set could be achieved if the first 43 DTCWT features were 
included in our LDA model. Including the first 43 DTCWT features offers an incremen-
tal improvement to our previous classification accuracy by 6.5%

We further compared the classification performance of LDA using our proposed set of 
2D DTCWT features against our previous work using the balanced and imbalanced data 
sets [14]. We achieved 85.42% and 72.00% LOO cross-validated classification accuracies 
on our balanced and imbalanced data sets, respectively, using recurrence features only: 
lower than classification accuracies when DTCWT features are used.

We tested the performance of the algorithm on two different data sets, a balanced data 
set and an imbalanced data set. The results on the balanced data set were overall better 
than the imbalanced data set. The imbalanced data set was biased toward TTN based on 
the distribution of the training set.

In our future research, we intend to explore dynamic features that detect pleural slid-
ing movement, which could further aid in distinguishing these conditions. Notably, PTX 
is the only condition without a pleural sliding sign, making its absence a clear indicator 
to rule out both Normal and TTN. Additionally, the differentiation between Normal and 
TTN becomes straightforward with the presence of more than 3 B-lines, favoring TTN, 
and their absence favoring the normal lung pattern. This provides an immediate indica-
tor to rule out PTX.

Our work introduces a multi-class classification approach to aid in the automated 
diagnosis of common neonatal lung pathologies based on LUS morphologies. While 
our study shares some similarities with the previous work by Veeramani et al. where, in 
addition to PTX, TTN, and RDS, lung pathologies such as Meconium Aspiration Syn-
drome, bronchiolitis, pneumonia, and lung cancer were classified [12], our work uses 
an expanded data set curated by well-trained clinicians to match traditional LUS mor-
phologies of neonatal lung pathologies observed in practice. We also extend the work by 
Bassiouny et al. [13] by performing direct pathology classification and extracting mean-
ingful LUS morphologies of neonatal lung pathologies. Including relevant clinical fea-
tures also enabled us to distinguish specific lung pathologies that would be otherwise 
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challenging to classify using only LUS morphologies. Finally, our work forgoes segment-
ing key lung areas for feature extraction as in [8, 10, 18, 23, 27, 28]. Rather, we separated 
each image into its top and bottom halves to localize pleural lines and image features 
associated with the amount of air in the lungs, respectively. Our proposed framework 
reduces the overall complexity of neonatal lung pathology diagnosis using POC-US 
images. Moreover, our method alleviates the need for expert input via manual or semi-
automatic supervision of image processing from POC-US especially at healthcare insti-
tutions that lack well-trained physicians.

Limitations

Our feature selection method could be improved using advanced machine learning 
methods, which is outside our current work’s scope. We chose the top fifteen DTCWT 
features to create training sets that are 10% to 15% of our sample which produced a con-
servative performance without overfitting, as we demonstrated.

We also recognize that deep-learning-based classifiers could improve lung patholo-
gies’ classification accuracy from LUS images as demonstrated by previous works [23, 
24, 26]. Nonetheless, we demonstrated that a simple linear classifier could provide a 
high yet conservative cross-validated classification accuracy. A simple linear classifier 
was chosen over the complex non-linear classifiers to emphasize extracting meaningful 
features relevant to clinical markers and keep the outcomes conservative and realistic. 
Furthermore, the performance of linear classifiers could be attributed to the close rela-
tionship between features used for classification and observed phenomena, such as LUS 
morphologies of neonatal lung pathologies. In contrast, larger data sets with complex 
relationships could benefit more from deep-learning-based classifiers.

Finally, we excluded motion-related LUS morphologies for detecting PTX due to the 
inherent characteristics of neonatal lungs. Summers et  al. showed that LUS images 
associated with PTX have unique motion artifacts in adults. However, PTX in neonates 
could still be classified without motion-related LUS morphologies since neonates with 
PTX have air between their pleural linings, natural dampers and non-echoic. Therefore, 
the lack of LUS morphology for fluids directly indicates PTX in neonates without the 
need for motion-related artifacts.

Conclusions
We demonstrated that DTCWT features of LUS images and clinical features could be 
used to classify typical LUS pathologies among neonates. With an expanded data set, 
a simple linear classifier could achieve conservative yet high cross-validated classifica-
tion accuracy. Classifier performance could be attributed to capturing clinically relevant 
morphologies and patterns via DTCWT features as observed in practice. In conjunction 
with clinical features, line and textural features of POC–LUS images allow for the clas-
sification of all six common neonatal lung pathologies observed in the NICU. Using 2D 
DTCWT for extracting features from LUS images, combined with clinical characteris-
tics, shows promise in effectively distinguishing the six prevalent neonatal lung patholo-
gies. Automated classification of LUS images could serve as a point-of-care screening 
tool to identify lung pathologies among neonates. Our future work will focus on extract-
ing dynamic features for detecting lung sliding from post-processed LUS videos for 
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classifying PTX and using advanced machine learning and data fusion techniques. Our 
current work could aid in automating diagnostic systems in healthcare institutions that 
lack well-trained clinicians to interpret neonatal LUS images. Better treatment strategies 
could be developed with an early and accurate diagnosis of lung pathologies among neo-
nates and aid in decreasing neonatal morbidities and mortalities in developing countries.

Methods
This section presents the methods and processes for obtaining the DTCWT features and 
performing pattern classifications.

Data set

Our clinical collaborator and expert in neonatal LUS (AM) from a Canadian tertiary 
neonatal intensive care unit in Mount Sinai Hospital (MSH) acquired all of the LUS scan 
videos. All scans were performed using a portable ultrasound machine (Z.One PRO 
Ultrasound System, Mindray North America, CA, USA) with a high-resolution linear 
probe (L20-5) to improve image quality and adequate penetration to help with lung 
image acquisition. Research Ethics Board approvals and data-sharing agreements were 
obtained from Toronto Metropolitan University and MSH. A breakdown of the num-
ber of patients, videos, and images for each condition are shown in Table 7. Two data 
sets were used for this work: an imbalanced data set (class imbalanced) and a balanced 
data set. The imbalanced data set comprised all of the data sets acquired by clinical col-
laborators. The imbalanced data set contains data distribution (i.e. number of patients 
per group) as collected by and as available in the NICU of the collaborating hospital. 
This distribution of the groups within this data set is not a true reflection of a real-world 
distribution, so to avoid the bias due to an uneven number of patients per group we 
also created a balanced data set with an equal number of patients in each of the groups. 
Our clinical collaborators selected the balanced data set of four patients per condition 
to create a data set that does not have a large class imbalance biased towards TTN, 
which comprises more than a third of the data set in terms of the number of images. 
This was done to train a model free of bias based on the distribution of the training set. 
Our pre-processing step was done to avoid the considerable similarity between neigh-
boring frames that would bias our classification model. The data set was created using 
five frames from each video our clinical collaborators acquired. The imbalanced data set 
contained six or more videos for most of the patients in the data set. For most patients, 
one or more videos for commonly imaged areas of the lungs (R1, R2, R3, L1, L2, and L3, 
as shown in Fig. 5) were included in the data set. R4 and L4 regions are imaged for spe-
cific conditions (pleural effusion) but not for any conditions in the data set. For patients 
with PTX, as it happens in a specific area of the lung pleura and rarely in both lungs, 
only lung areas with pneumothorax were included, so these patients usually had less 
than six videos. Five frames were taken simultaneously in the video for the imbalanced 
data set unless a particular frame was unclear. The second data set, the balanced data 
set, consisted of only four patients per condition. Six videos, one for each lung region, 
were taken for each patient, and five frames taken at equal intervals were used from each 
video, as shown in Table 8. For 2 of the PTX patients, only 3 and 4 videos were available, 
so 10 and 7 or 8 frames were taken from those videos to have 30 images per patient. Our 
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clinical collaborators determined the patients and videos for the balanced data set. The 
balanced data set was created to test the performance of the DTCWT features without 
any effects of bias stemming from a class imbalanced data set.

Preprocessing

Preprocessing of LUS images consisted of two operations: artifact removal and normal-
ization. LUS videos have regions with patient information and other overlaid artifacts 
close to the image’s max intensity. LUS video artifacts remain at the exact x–y coordi-
nates throughout a video, so they were removed semi-automatically by selecting a region 

Fig. 5 The 6 standard lung regions scanned during lung ultrasound (L1, L2, L3, R1, R2, R3). This is a standard 
clinical method

Table 7 Imbalanced data set overview

Patients Videos Images

Normal 6 37 185

CLD 6 36 180

CON 7 61 305

PTX 5 21 105

RDS 7 49 245

TTN 11 106 530

Total 42 310 1550

Table 8 Balanced data set overview

Patients Videos Images

Normal 4 24 120

PTX 4 19 120

TTN 4 24 120

CLD 4 24 120

RDS 4 24 120

CON 4 24 120

Total 24 139 720
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of interest (ROI), including the artifacts for all frames of an LUS video. LUS artifacts 
were removed by selecting pixels in the ROI with intensities greater than 50% of the 
maximum intensity. The 8-pixel connected neighbors were also selected. All the selected 
pixels were replaced with median intensity for the ROI. For normalization, LUS images 
were resized to [520 420]. Also, ten columns/rows of pixels were removed from each side 
of the image, resizing to [500 400]. The image resizing steps were performed to create 
a uniform image size for the images in the data set and to remove any non-ultrasound 
pixels from the edges of some of the images. These steps were taken to remove the high-
intensity artifacts that can easily be picked up by some of the sub-images and normalize 
the images for DTCWT decomposition. Finally, LUS images were cropped to remove 
unimportant parts and artifacts that appeared at the edges of the video. An example of 
the preprocessing steps is provided in Fig. 6.

Time‑frequency/time‑scale transformation

The LUS morphologies combine spatially localized information, texture patterns, 
and small oscillations. These patterns can be characterized as belonging to different 
spatial frequencies and relative locations, so 2D time-frequency/time-scale transfor-
mations may be able to capture these patterns, making extracting features that can 
quantify them easier.

DWT

The 2-D discrete wavelet transform (DWT) can be used to analyze an image and iso-
late these different frequencies using different scales. The 2-D discrete wavelet trans-
form uses basis functions to decompose various scaled versions of the input image 
[29, 30]. The 2-D DWT is implemented by using 1D wavelet and scaling functions 
[29]. The 1D DWT of a signal can be defined as

Fig. 6 Artifact removal and image normalization
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Where aJ ,k is the approximation coefficients and dj,k is the detail coefficients at octave 
decomposition levels j. ψ(n) is the orthonormal wavelet function, φ(n) is the scaling 
function and k is the translation parameter.

Using the 2D-DWT an image I(k1, k2) can be decomposed as follows[31]:

Where N and M are the row and column numbers. Aj are the approximation coefficients 
or approximation sub-images and Dhj , Dvj and Ddj are the detail coefficients or detail 
sub-images for every level of decomposition j. The function f dj  is defined as:

However, an issue with the DWT is that it is shift-variant. This means that if the mor-
phologies in the LUS images were translated, the DWT would generate a different set of 
DWT coefficients.

DTCWT 

DTCWT-type approaches can be used as it is nearly shift-invariant. Also, DTCWT 
has good directional selectivity and perfect reconstruction [32]. A 2D time-fre-
quency/time-scale transformation with shift-variance, good directional selectivity 
and nearly perfect reconstruction may capture spatially localized information, texture 
patterns, and small oscillations [33]. Isolating these patterns makes it easier to quan-
tify these patterns using image features. The LUS morphologies are a combination of 
these patterns so that these patterns can provide clues about the morphologies in the 
image. A 2D DTCWT uses two separate decomposition trees to calculate the complex 
transform of an image. One of the trees is used to calculate the real parts of the com-
plex coefficients, and the other is used to calculate the imaginary parts of the complex 
coefficients [15]. The DTCWT is implemented by using two separate two-channel fil-
ter banks. Approximate shift invariance was achieved by doubling the sampling rate 
at each tree level by using two trees [15]. DTCWT decomposition of an image uses a 
complex scaling function and six wavelet functions [15, 34]. The operational cost of 
the DTCWT is 4O(MN) where M and N are the length and width of the image [35, 
36]. After the DTWCT decomposition statistical, Grey-Level Co-occurrence Matrix 
(GLCM), Grey-Level Run Length Matrix (GLRLM) and Local Binary Pattern (LBP) 
features are extracted from the decomposition subimages produced by the DTCWT. 
The DTCWT results in a low-passed version of the image at each decomposition level 
and six high-frequency sub-images at each decomposition level corresponding to the 
six wavelet functions oriented at angles α=(±15◦,±45◦,±75◦ ). The near-symmetric 
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biorthogonal filter pair with lengths 5 (scaling filter) and 7 (wavelet filter) was used 
for the mother wavelet and the images were decomposed to 5 levels. An example of 
the 1st level decomposition of a TTN image is shown in Fig. 7.

The decomposition of an image I(k1, k2) can be performed by using a complex scal-
ing function and six complex wavelet functions as follows [37]:

Where j0 is the number of decomposition level, Aj0,l and Dg
j,l are scaling coefficients and 

wavelet coefficients respectively. φj0,l(k1, k2) represents the scaling function and 
ψ

g
j,l(k1, k2) represents the six wavelet functions [37].

Feature extraction

We extracted features from the top and bottom half of the DTCWT sub-images. The 
rationale is the top half of the images will have features related to the pleural line and 
the bottom half will have features related to B-lines and A-lines. We used statistical 
features directly on the image to extract features that can describe the intensity dis-
tribution of the pixels, grey-level co-occurrence features, and rotation-invariant uni-
form LBP features. We used grey-level run length matrix features to extract features 
that measure the morphology in the image. A combination of textural and morpho-
logical features was selected to obtain a complementary feature set that should pro-
duce a more robust classification model [38]. Statistical features were extracted from 
the pixel intensities of the images [39].

(4)I(k1, k2) =
∑

l∈Z2

Aj0,lφj0,l(k1, k2)+
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g∈α

j0
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j=1

∑
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D
g
j,lψ

g
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Fig. 7 One level of DTCWT decomposition. a: Image of Patient with TTN, b: Low-Passed Band: smoothed 
image c: Subimage at +15◦, d: Subimage at +45◦, e: Subimage at 75◦,f: Subimage at -75◦, g: Subimage at 
-45◦, h: Subimage at -15◦)
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Statistical features

The statistical features below were chosen as they are commonly used as global features in 
medical image analysis.

Where n is the number of rows in the image, m is the number of columns in the image, i 
is the row number, j is the column number and I is the image.

GLCM features

The grey-level co-occurrence matrix is calculated by determining how often pairs of pix-
els with specific values and in a specified spatial relationship occur in an image. Then, 
statistical measures are extracted from the GLCM [40]. To calculate the GLCM we first 
quantized the image to 8 levels, generating an 8x8 GLCM, and chose 6 offsets, [0 1; 1 0; 
0 2; 2 0; 1 1; 2 2;], to generate 6 different GLCMs. Our previous work shows that quan-
tization to 8 intensity levels accentuates the differences around the LUS morphologies, 
increasing the ability of the features to pick up these morphologies [14]. Element (i,  j) 
of the gray level co-occurrence matrix represents the number of occasions a pixel with 
intensity i is adjacent to a pixel with intensity j in the LUS image. The GLCM stores the 
co-occurring values representing the distance and angular spatial relationship of pixels 
in a structured matrix. We then extracted 5 features from the GLCM [41].
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Where i is the row number of the GLCM, j is the column number of the GLCM and G 
is the GLCM. Where u is the mean pixel intensity in the quantized image and σ 2 is the 
pixel intensity variance in the quantized image.

GLRLM features

The grey-level run length matrix stores run lengths based on the grey-level value and 
length of the run. A grey-level run is a set of pixels with the same grey-level value, which 
are consecutive and collinearly distributed in some given direction [42]. We calculated 
the 4 GLRLM for each of the 2 ROIs in the image using 4 directions 0 ◦ , 45◦ , 90◦ and 
135◦ . Then extracted 11 features from the GLRLM. The equations are shown in Table 9 
[43, 44].

LBP features

The LBP histogram is used to store LBP pixel labels for the image. The pixel labels are 
calculated by thresholding the 3x3-neighborhood of each pixel with the center value 
and considering the result as a binary number [45]. We used the rotation-invariant LBP, 
which resulted in 10 bins. First, only uniform LBPs, with a maximum of two circular 0-1 
or 1-0 transitions, are considered unique patterns. All non-uniform patterns are stored 
in one bin. Then, in the rotation-invariant version, LBP patterns that result in the same 
value when rotated are stored in the same bin. The values of the bins were used as the 
feature set.
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n
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m
∑

j=1

(Gi,j)

1+ (i − j)2

(14)Entropy =−

n
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m
∑

j=1

(Gi,j log2(Gi,j)

Table 9 GLRLM equations

∗ In the above GLRLM feature equations, i is the grey level, j is the run length and R is the GLRLM. The definitions for the 
features are provided in the Abbreviation section
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Clinical features

As used in previous works and our initial work [8, 9, 14], we included three clinical fea-
tures (Gestational Age (GA), Cumulative Gestational Age at the Time of Scan (CGATS) 
and Days of Life (DOL)) in our models as they are essential in differentiating cases with 
CLD versus RDS as their features in LUS may overlap. Further, our clinical collabora-
tors affirmed that the LUS image morphologies could not separate the conditions. With-
out these features, a meaningful clinical diagnosis of the conditions is impossible or 
extremely difficult only using LUS images. While these are essential features in a classifi-
cation sense, it is critical to note that the clinical features cannot help differentiate other 
conditions such as PTX and normal lung. For example, Normal and PTX are unrelated 
to the clinical features and can occur in neonates regardless of gestation age, days of life, 
and age at the time of the scan. The clinical features can only separate the conditions 
meaningfully and play a supportive role when LUS information is available.

Pattern classification

In this work, we used a simple Linear Discriminant Analysis (LDA) based classifier to 
classify the 6 LUS conditions using the features extracted from the LUS images. A simple 
linear classifier, such as an LDA, was chosen over the complex non-linear classifiers to 
emphasize extracting meaningful LUS features relevant to clinical markers and keep the 
outcomes conservative and realistic. More importantly, LDA is less prone to overfitting 
when compared to more complex models [46], which is very important when dealing 
with a small data set. While performing classification on the balanced data set, the mod-
els were trained based on equal prior probabilities between the groups. For the imbal-
anced data set, we used prior probabilities based on group size. A simple linear classifier 
was chosen over the complex non-linear classifiers to emphasize extracting meaning-
ful features relevant to clinical markers and keep the outcomes conservative and realis-
tic. Similarly, we employed a univariate feature selection approach utilizing Chi-square 
tests [47], as we needed a feature selection method with low computational complexity 
for performing feature selection within the cross-validation loop. In the Chi-square fea-
ture selection process, an individual Chi-square test is performed for each feature and 
the class labels. A small p value indicates that the corresponding feature depends on 
the class and is ranked accordingly as an essential feature. Chi-square feature selection 
selects the features with the lowest p values as the top features [48]. For the results given 
in Tables  3, 4, 5 and 6, the features with the 15 lowest p values were chosen. Feature 
selection was performed within the cross-validation loops to avoid data leakage.

In terms of cross-validation, we tested the performance using two forms of cross-
validation. First, we used leave-one-out cross-validation (LOO CV), a form of cross-
validation where only one image is used as the testing set, and the model is trained 
on the rest of the images. This is repeated so that each image is used as a testing set. 
The average accuracy of all these runs then results in per-image classification perfor-
mance. We also used leave-one-subject-out cross-validation (LOSO CV). In this form 
of cross-validation, all images belonging to a subject are used as the testing set and 
the rest of the images as the training set. This is repeated until each subject has served 
in the testing set. The average accuracy of all these runs then results in per-subject 
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classification performance. The motivation behind the LOSO cross-validation is to 
avoid biasing the model due to the similarity between images from the same patient. 
LOO CV was used to estimate the system’s performance when used to make predic-
tions on data not used to train the model. LOSO CV was used to estimate the sys-
tem’s performance when used to make predictions on a subject that was not used to 
train the model. We only selected five images from each video to avoid the signifi-
cant similarity between frames in the same video for our LOO results. The images 
were selected at equal intervals throughout the video. If the lung was not imaged in 
the frame, another frame was selected, as at the beginning or end of a few videos. 
In the results section, we provide overall classification accuracies, confusion tables 
and weighted F1-score. The weighted F1-score computes the F1 score for individual 
classes and then averages using each class’s true label count [49].
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