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Abstract 

Introduction: Gait impairments in Parkinson’s disease (PD) are treated with dopa-
minergic medication or deep-brain stimulation (DBS), although the magnitude 
of the response is variable between individuals. Computer vision-based approaches 
have previously been evaluated for measuring the severity of parkinsonian gait in vid-
eos, but have not been evaluated for their ability to identify changes within individuals 
in response to treatment. This pilot study examines whether a vision-based model, 
trained on videos of parkinsonism, is able to detect improvement in parkinsonian gait 
in people with PD in response to medication and DBS use.

Methods: A spatial–temporal graph convolutional model was trained to predict 
MDS-UPDRS-gait scores in 362 videos from 14 older adults with drug-induced par-
kinsonism. This model was then used to predict MDS-UPDRS-gait scores on a differ-
ent dataset of 42 paired videos from 13 individuals with PD, recorded while ON and 
OFF medication and DBS treatment during the same clinical visit. Statistical methods 
were used to assess whether the model was responsive to changes in gait in the ON 
and OFF states.

Results: The MDS-UPDRS-gait scores predicted by the model were lower on average 
(representing improved gait; p = 0.017, Cohen’s d = 0.495) during the ON medication 
and DBS treatment conditions. The magnitude of the differences between ON and 
OFF state was significantly correlated between model predictions and clinician annota-
tions (p = 0.004). The predicted scores were significantly correlated with the clinician 
scores (Kendall’s tau-b = 0.301, p = 0.010), but were distributed in a smaller range 
as compared to the clinician scores.

Conclusion: A vision-based model trained on parkinsonian gait did not accurately 
predict MDS-UPDRS-gait scores in a different PD cohort, but detected weak, but sta-
tistically significant proportional changes in response to medication and DBS use. 
Large, clinically validated datasets of videos captured in many different settings 
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and treatment conditions are required to develop accurate vision-based models of par-
kinsonian gait.

Keywords: Parkinson’s disease, Dementia, Gait analysis, Computer vision, Machine 
learning

Background
Parkinson’s disease (PD) is a neurodegenerative disorder that leads to deterioration of 
motor function [1]. There is a marked effect on gait, with forward-stooped posture, 
reduced range of motion, asymmetrical arm swing, and short shuffling steps commonly 
associated with the condition [2]. At advanced stages of PD, freezing of gait and balance 
disturbances become more common, greatly increasing the risk of falls [2, 3]. To manage 
the motor disturbances caused by PD and reduce their impact on an individual’s quality 
of life, dopaminergic medications and deep brain stimulation (DBS) therapies are com-
monly used [4]. The efficacy of these treatments varies over time within individuals, as 
well as between individuals, so timely monitoring and appropriate titration of therapies 
is essential [4].

It is often not possible for specialist clinicians to assess patients more than once or 
twice a year, so solutions that can be used to monitor motor symptoms outside of the 
clinic are needed to identify short-term fluctuations. The previous work has proposed 
the use of body or wrist-worn inertial measurement units (IMUs) to monitor tremors, 
dyskinesias, and gait of individuals with PD in clinical and residential settings [5–7]. 
Although wearable solutions are generally accurate in their measurements of parkin-
sonian motor symptoms, some concerns have been identified with respect to compli-
ance when used outside of the clinic. In one study of adults with PD, a compliance of 
62–68% (and decreasing during enrolment in the study) was noted when individuals 
were asked to wear a single wrist-worn device everyday [8]. Furthermore, wrist-worn 
devices are often insufficient to assess gait accurately, so trunk or ankle-worn IMUs are 
also required, thus further reducing the acceptability of this modality [5].

As an alternative, single-camera solutions have been proposed for assessment of 
gait quality in individuals with PD [9–11]. Camera-based solutions can be set-up 
either temporarily or permanently in group or individual residential settings, particu-
larly in hallways where individuals generally walk in a straight path towards the cam-
era [9, 12]. Previous work in this field has focused on using machine learning models 
to predict parkinsonism severity from video in accordance with the gait subscore of the 
Movement Disorders Society revision of the Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS-gait) [13]. The MDS-UPDRS-gait scale is an integer score between 0 and 
4 (inclusive) where a higher score indicates gait with more severe parkinsonian charac-
teristics [13]. Previous vision-based models are evaluated on their ability to predict the 
same MDS-UPDRS-gait score as a clinical annotator, with the existing models achieving 
promising results with F1-scores (harmonic mean of precision and recall) of 0.44–0.66 
[9, 10] and balanced accuracies of 48–72% [10, 11].

However, further investigation is needed before vision-based gait assessment systems 
can be deployed for use by patients outside of the clinic in a meaningful way. The per-
formance of previous systems has been evaluated solely on their accuracy in predict-
ing whole-number (integer) MDS-UPDRS-gait scores [9–11]. The predictions of these 
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previous systems have not been assessed for responsiveness to medication or DBS use. 
The effects of these treatments on gait quality can be visually observed by clinicians, so 
it is vital that vision-based systems are also able to reliably differentiate between on and 
off-treatment gait changes within an individual patient.

A second limitation of previous work is that models for assessing parkinsonism sever-
ity in gait have been trained and evaluated on the same dataset. Thus, we know little 
about how well a machine learning model will perform when predicting MDS-UPDRS-
gait scores on videos of previously unseen patients collected in a new setting. Models 
have also typically been developed in a clinically homogenous population [ie only PD or 
only drug induced parkinsonism (DIP)]. For a vision-based solution to be valuable for 
nonresearch use, it is important that it be reliable in detecting change across different 
individuals, across a range of diagnoses associated with parkinsonian gait, and in a vari-
ety of settings.

This study aims to address these questions by evaluating the responsiveness of a 
machine learning model developed to recognize parkinsonian gait in DIP to the assess-
ment of change in gait within a different cohort of individuals with PD when on medi-
cation and with their DBS device activated, compared to when they are off medication 
and their DBS device is deactivated. We evaluate whether the MDS-UPDRS-gait scores 
predicted by vision-based machine learning models are significantly lower when the 
participants are on treatment (medication and DBS) compared to when they are off 
treatment for walking bouts collected during the same clinical visit. Furthermore, we 
evaluate whether the magnitude of the difference between on and off states, as predicted 
by the models, are correlated with the differences noted by expert clinicians using the 
MDS-UPDRS-gait criterion. All models were trained on videos from one dataset and 
are evaluated on a different dataset to investigate how well they generalize to unseen 
data and whether the model is able identify features of parkinsonian gait common across 
diagnoses. Dopaminergic medications and DBS devices are used to manage parkinso-
nian symptoms in gait, but the efficacy of these treatments can vary and wane over time. 
Therefore, a machine learning model sensitive to when an individual’s gait begins to 
worsen and exhibit characteristics similar to untreated parkinsonism can be valuable to 
help advise clinicians whether a formal, in-clinic assessment is warranted.

Results
Prediction of MDS‑UPDRS‑gait scores

In total, 21 paired ON/OFF state walking bouts (42 total walking bouts) from 13 partici-
pants with PD were collected in the MDC. Table 1 describes the participants and avail-
able video data.

Overall, the ML model trained on the DIP dataset had difficulty predicting the exact 
clinician rating for each walk in the PD dataset. The scatter plot in Fig. 1 does not show a 
clear correlation between the clinician annotations and the model predictions. The range 
of the MDS-UPDRS-gait scores predicted by the model is also smaller than the range of 
scores annotated by the clinicians, with most model-predicted values rounding to 1. This 
is also reflected in the low macro-averaged precision (0.40 ± 0.12), recall (0.30 ± 0.05), 
and F1-scores (0.22 ± 0.07) presented in Table 2. The overall unbalanced accuracy of the 
model was 33.3%, while the balanced accuracy was 29.5%.
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A Kendall’s Tau-b correlation coefficient (τB) of 0.301 (p = 0.004, one-tailed) was calcu-
lated between the discrete MDS-UPRDS-gait scores annotated by the clinicians and the 
continuous scores predicted by the model. These results suggest a weak but statistically 
significant correlation between the mean clinician scores and the model predictions.

ICC between clinician annotations and model‑predicted MDS‑UPDRS‑gait scores

The ICC between the two clinicians’ ratings was 0.73 (CI 95% = [0.54, 0.84], p < 0.001). 
The ICC between the model-predicted MDS-UPDRS-gait scores and the mean 

Table 1 Clinical information of participants and walking bouts by dataset

DIP dataset of older adults with drug induced parkinsonism, PD Movement disorders clinic dataset of adults with Parkinson’s 
disease, MDS-UPDRS-III Motor examination (part III) of the Movement Disorders Society revision of the Unified Parkinson’s 
Disease Rating Scale, N/A Not applicable, PD Parkinson’s disease

Cohort

Training (DIP) Testing (MDC)

Number of participants 14 13

Age (years) 76.2 ± 8.7 63.8 ± 8.8

Sex (% male, n) 57.1%, 8 male 69.2%, 9 male

PD duration (years) N/A 10.8 ± 2.7

MDS-UPDRS part III total score—median (range) Unavailable 38 (17–66)

Median and range of paired clinical visits per participant (total) N/A 2 (range: 1–2, total 
pairs: 21)

Number of videos by MDS-UPDRS part III gait subscore Rater 1 Rater 2

0 91 9 9

1 111 16 18

2 160 13 9

3 0 4 6

4 0 0 0

Total 362 42 42

Fig. 1 Scatter plot of clinician annotated vs ml model predicted MDS-UPDRS-gait score on all walking bouts. 
A small amount of jitter is applied to the clinician scores to facilitate clearer visualization of walks with the 
same score



Page 5 of 16Sabo et al. BioMedical Engineering OnLine          (2023) 22:120  

Ta
bl

e 
2 

M
ac

ro
-a

ve
ra

ge
d 

pr
ec

is
io

n,
 re

ca
ll,

 f1
-s

co
re

, m
ea

n 
M

D
S-

U
PD

RS
-g

ai
t s

co
re

 p
re

di
ct

io
n 

du
rin

g 
on

 a
nd

 o
ff 

st
at

es
 a

nd
 p

ai
re

d 
t-

te
st

 s
ig

ni
fic

an
ce

 v
al

ue

Th
e 

st
an

da
rd

 d
ev

ia
tio

n 
re

pr
es

en
ts

 th
e 

m
ag

ni
tu

de
 o

f t
he

 v
ar

ia
tio

n 
be

tw
ee

n 
th

e 
fiv

e 
re

pe
tit

io
ns

 o
f t

he
 e

xp
er

im
en

ts

M
D

S-
U

PD
RS

-g
ai

t G
ai

t s
ub

sc
or

e 
(it

em
 3

.1
0)

 o
f t

he
 M

ov
em

en
t D

is
or

de
rs

 S
oc

ie
ty

 re
vi

si
on

 o
f t

he
 U

ni
fie

d 
Pa

rk
in

so
n’

s 
D

is
ea

se
 R

at
in

g 
Sc

al
e,

 S
TD

 S
ta

nd
ar

d 
de

vi
at

io
n

Pr
ec

is
io

n 
of

 ro
un

de
d 

pr
ed

ic
tio

ns
 

(m
ea

n 
±

 S
TD

)

Re
ca

ll 
of

 ro
un

de
d 

pr
ed

ic
tio

ns
 

(m
ea

n 
±

 S
TD

)

F1
‑s

co
re

 o
f 

ro
un

de
d 

pr
ed

ic
tio

ns
 

(m
ea

n 
±

 S
TD

)

M
ea

n 
pr

ed
ic

te
d 

M
D

S‑
U

PD
RS

‑
ga

it 
sc

or
e—

O
FF

 
tr

ea
tm

en
t

M
ea

n 
pr

ed
ic

te
d 

M
D

S‑
U

PD
RS

‑
ga

it 
sc

or
e—

O
N

 
tr

ea
tm

en
t

Pa
ire

d 
t‑

te
st

 
p‑

va
lu

e 
fo

r 
di

ffe
re

nc
e 

in
 

m
od

el
 p

re
di

ct
ed

 
sc

or
es

 in
 O

N
/O

FF
 

st
at

es

M
ea

n 
cl

in
ic

ia
n 

as
se

ss
ed

 M
D

S‑
U

PD
RS

‑g
ai

t 
sc

or
e—

O
FF

 
tr

ea
tm

en
t

M
ea

n 
cl

in
ic

ia
n 

as
se

ss
ed

 M
D

S‑
U

PD
RS

‑g
ai

t 
sc

or
e—

O
N

 
tr

ea
tm

en
t

Pa
ire

d 
t‑

te
st

 p
‑v

al
ue

 
fo

r d
iff

er
en

ce
 in

 
m

od
el

 c
lin

ic
ia

n 
as

se
ss

ed
 s

co
re

s 
in

 
O

N
/O

FF
 s

ta
te

s

0.
40

 ±
 0

.1
2

0.
30

 ±
 0

.0
5

0.
22

 ±
 0

.0
7

1.
22

 ±
 0

.3
2

1.
07

 ±
 0

.2
4

0.
01

7
1.

71
 ±

 0
.8

6
0.

86
 ±

 0
.6

7
 <

 0
.0

01



Page 6 of 16Sabo et al. BioMedical Engineering OnLine          (2023) 22:120 

clinician-annotated scores was 0.19 (p = 0.112, 95% CI [−0.12, 0.46]). The ICC between 
the model predictions and Rater 1 (the unblinded rater) was 0.18 (p = 0.120, 95% CI 
[−0.12, 0.46]), while the ICC between the model predictions and Rater 2 (the blinded 
rater) was 0.31 (p = 0.023, 95% CI [0.01, 0.56]). The calculation of ICC requires the 
comparison of values belonging to discrete classes, thus relying on the rounding of 
model-predicted values to the closest integer to match with the scores annotated by 
the clinicians. Due to the smaller range of values predicted by model, most values were 
rounded to 1, and yielded a low overall ICC when comparing model predictions to clini-
cian annotations. A complete analysis of performance by clinician is presented in Addi-
tional file 1: Appendix E.

Detection of change in MDS‑UPDRS‑gait score in ON and OFF state

The mean clinician gait scores were significantly lower on average in the ON states 
(0.86 ± 0.67) compared to OFF states (1.71 ± 0.86, p < 0.001; Cohen’s d (effect size) = 1.21, 
95% CI [0.65–1.81]; Table  2). The model-predicted scores also showed responsive-
ness to treatment, with predicted lower scores on average in the ON state (1.07 ± 0.24) 
compared to OFF state (1.22 ± 0.32, p = 0.017; Cohen’s d (effect size) = 0.50, 95% CI 
[0.04–0.97]; Table 2). Due to the continuous and smaller range of the model-predicted 
MDS-UPDRS-gait scores, a cut-off of 0.15—the difference in mean predicted score in 
the ON and OFF states was used to identify if the model predicted improved, worsened, 
or unchanged scores.

In 11 paired ON/OFF state walks, the mean clinician-rated gait scores improved 
(were lower) by at least 1 point on the MDS-UPDRS-gait scale during the ON state 
compared to the OFF state (Fig. 2). In 10 of 21 paired walks, the difference between the 
mean clinician MDS-UPDRS-gait score in the two conditions was 0.5 or less, indicating 
no improvement or that the improvement was not noted by both clinicians (who were 
restricted to rating using integer values). Conversely, the ML model predicted improved 
(lower) MDS-UPDRS-gait scores in the ON state when it was tested on the PD dataset 
in 11 paired assessments, unchanged scores 5 pairs, and worsened scores in the ON state 
of 5 paired assessments (Fig. 2).

Predictions of whether there was an improvement/no change/worsening of MDS-
UPDRS-gait score in ON/OFF states were congruent between the clinician and model 
in 62.0% of paired assessments. The two clinicians were congruent in their assessment of 
whether there was an improvement/no change/worsening in MDS-UPDRS-gait scores 
in 66.7% of the paired assessments. Assessments where the model failed to detect clini-
cian-noted improvement in gait with treatment tended to be when the clinician rating in 
the OFF condition was higher. Specifically, the model predictions for improvement were 
only congruent with the clinician in 5 of the 9 assessments when the mean clinician rat-
ing in the OFF state was between 2 and 3, inclusive. Conversely, the model and clinicians 
were aligned in their predictions of improved vs unchanged/worsened MDS-UPDRS-
gait scores in 8 of the 12 walks when the mean clinician assessment in the OFF state was 
between 0 and 1.5, inclusive.

To assess the reliability and stability of the model predictions, the direction of change 
of the model predictions and agreement to clinician ratings was assessed for each of the 
5 training repetitions in Additional file 1: Appendix D. Based on this analysis, we note 
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that the model can reliability detect change in MDS-UPDRS-gait score between treat-
ment conditions, even though it has difficulty predicting the absolute score.

Magnitude of change ON/OFF treatment

Kendall’s Tau-b correlation coefficient (τB) for correlation of the difference in MDS-
UPDRS-gait scores as labelled by the clinicians and by the model was 0.396 (p = 0.010, 
one-tailed). Therefore, the magnitude of the difference across the ON and OFF state 
scores was significantly correlated between clinician and model predictions. This indi-
cates that when the clinicians note a larger difference in MDS-UPDRS-gait score 
between the ON and OFF state for paired walks in the same clinical visit, the scores pre-
dicted by the model also have a larger difference.

Figure 3 presents a scatterplot of the differences in model predicted MDS-UPDRS-gait 
scores in OFF and ON states, as grouped by the difference in scores noted by the clini-
cians. This figure visualizes that the difference in scores in the OFF and ON states is cor-
related between clinician annotations and model predictions.

Discussion
In this work, we used a machine learning model trained to predict MDS-UPDRS-gait 
scores in older adults with DIP to evaluate change in parkinsonian gait in participants 
with PD in response to treatment.

Fig. 2 Spaghetti plots of MDS-UPDRS-gait scores labelled by the clinician (a) and model (b) in on and off 
states, grouped by patient and clinical visit. Green lines indicate paired walks where the mds-updrs-gait 
score was higher in the off state than the on state (indicating improvement in gait on treatment), while red 
lines denote the pairs where the mds-updrs-gait score was higher on treatment (indicating worsening gait). 
Yellow is used to denote pairs where no change was noted between the two treatment conditions. The navy 
lines represent the mean prediction for each treatment condition. Note that a small random jitter factor was 
applied to each clinician annotated score to improve the visualization
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Our results indicate that the machine learning model struggled to transfer its ability 
to predict absolute MDS-UPDRS-gait scores across datasets, with a lower precision, 
recall, and F1-score than those noted in our previous within-dataset model evaluation 
[9]. However, when comparing the difference in scores predicted during ON and OFF 
states during the same clinical visits, the predicted scores in the ON state were gener-
ally lower than those for the OFF state when the ML model was used. These findings 
suggest that while the ML model is unable to accurately capture differences in par-
kinsonism severity between participants, likely due to the variation in gait between 
individuals, the model is able to capture relative differences between paired walks 
from the same individual. Although the model is not accurate in its prediction of the 
absolute value of the clinician rated MDS-UPDRS-gait scores on the unseen dataset, 
the scores it predicts show responsiveness as the model is able to identify changes 
in parkinsonism severity in gait associated with medication and DBS use. Therefore, 
there may be the potential to leverage future iterations of this model by comparing 
the predicted scores over longitudinal measurements and assessing the change over 
time within a patient. For example, if an individual experiences a consistent increase 
in their model-predicted MDS-UPDRS-gait score over the course of several weeks 
or months, it may indicate that an adjustment to their symptom management plan is 
required, and a formal clinical evaluation should be scheduled.

It is important to note that the changes in MDS-UPDRS-gait scores predicted by 
the model are lower than the changes in scores when calculated from clinician anno-
tations. However, the magnitude of change between ON and OFF state scores pre-
dicted by the model is correlated with the change in scores between the two states 
as calculated from clinician annotations (Fig.  3). Based on these findings, the pro-
posed ML model operating on joint trajectories extracted using the Detectron 

Fig. 3 Scatterplot of difference in MDS-UPDRS-gait score as predicted by the model and labelled by the 
clinician in off and on states. The points in purple box correspond to the 4 trials in which the model noted 
worsening mds-updrs-gait scores between the off and on treatment states that were not observed by the 
clinicians



Page 9 of 16Sabo et al. BioMedical Engineering OnLine          (2023) 22:120  

pose-estimation library can capture the direction and magnitude of change in MDS-
UPDRS-gait scores within a patient similarly to a clinician annotator.

To the best of our knowledge, this is the first work to use a vision-based model to 
assess changes in predicted scores of parkinsonism in gait during ON and OFF states 
during the same clinical visit. In related work, engineered features extracted using 
pose-estimation models have been successfully used to detect the onset and remis-
sion of levodopa-induced dyskinesia in individuals with PD from video [14]. In the 
field of gait analysis, work by other groups has investigated the accuracy of vision-
based systems in predicting the same MDS-UPDRS-gait scores as clinicians, but has 
not evaluated whether the systems were sensitive to changes in medication or DBS 
within an individual [10, 11]. Work by Rupprechter and Morinan et al. demonstrated 
a significant difference in five gait features between “on medication” and “off medica-
tion” states, but did not evaluate whether the MDS-UPDRS-gait scores predicted by 
their final model were sensitive to medication or DBS use [11]. In contrast, our study 
is the first to evaluate the performance of a vision-based MDS-UPDRS-gait predic-
tion system in paired walks to assess changes by participant, a use-case that more 
closely represents a situation where an individual would use the system to monitor 
changes in their own gait (rather than that of a group) over time.

Furthermore, this is the first work to evaluate how well a model trained for MDS-
UPDRS-gait prediction on one dataset transfers to a different, independently col-
lected, dataset. Training on a cohort of older adults with DIP, we have shown that 
an appropriate model and pose-estimation library can be used to identify changes 
in parkinsonism severity within a person with PD on an unseen dataset. However, 
the absolute scores predicted by our model are not calibrated or strongly correlated 
with the clinician’s ratings, resulting in a poor overall model accuracy. For this reason, 
score changes should only be compared within a participant, rather than between 
participants or between clinician labels and model predictions.

Frequent evaluations of the gait severity in Parkinson’s disease patients are clinically 
very important. Typical gait manifestations include reduced speed and step length, 
increased axial rigidity and impaired rhythmicity. With disease progression gait prob-
lems tend to worsen and affect independence and quality of life [2]. Dopaminergic 
medications and DBS are the mainstream treatments for PD. Despite the overall good 
effect of these modalities on motor manifestations of PD, their specific effect on gait 
tends to be more variable and may lead, in some patients, to aggravation of freezing 
of gait [15]. Furthermore, some individuals might experience delayed gait worsening, 
highlighting the need for a continuous assessment. Specific DBS parameters (as low 
frequency stimulation) were found to be more beneficial to improve gait abnormali-
ties in this population, hence the need for reliable and sensitive ML methods to cap-
ture these clinical changes.

One limitation of this study is that one of the clinicians was not blinded to the ON/
OFF status of the participants which may have also biased the score assigned. A pre-
vious study has noted that there was moderate variability in MDS-UPDRS part III 
gait score annotations when rated by multiple clinicians (ICC = 0.746) [16]. This is 
similar to the ICC of 0.73 noted between the two clinicians’ ratings on the PD dataset 
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in this study. The performance of the model when compared to each clinician sepa-
rately is presented in Additional file 1: Appendix E.

Training models on data from multiple annotators could thus be used to provide addi-
tional confidence and robustness, particularly for walks for which the MDS-UPDRS-gait 
score may be ambiguous. Furthermore, the number of individuals on which the model 
was trained and evaluated (14 and 13 participants respectively) was limited due to data 
availability. Moreover, the training dataset did not include any examples of severe MDS-
UPDRS-gait ratings while the test cohort had several walks with clinical scores of 3. 
The lack of highly impaired data in the training dataset is a potential reason why the 
model struggled to identify improvement in more impaired walks when evaluated on 
the test cohort. To address this limitation, an experiment where the model was trained 
on data from both the DIP and PD datasets was performed. Using the whole DIP cohort 
and the PD dataset in a leave-on-subject-out cross-validation scheme, separate mod-
els were trained to predict the MDS-UPDRS-gait scores for each participant in the PD 
cohort. While it was hypothesized that the addition of dataset specific training data 
would improve the sensitivity of the models, this behavior was not observed. Instead, the 
inclusion of training data from datasets with two different populations, data collection 
methodologies, and annotated by two different raters provided conflicting information 
to the model during training, preventing it from learning a consistent representation of 
each score. Detailed results and further comments about this experiment are available in 
Additional file 1: Appendix B.

Additionally, this study relied on the use of videos taken from a coronal view. The 
model was trained on the DIP dataset where participants walked down a hallway while 
a camera attached to the ceiling recorded their gait. The position and orientation of this 
camera was fixed for all walks recorded as part of this dataset. In contrast, during data 
collection for the MDC dataset, the tripod-mounted camera was positioned to the side 
of the instrumented gait mat on which the participants walked, but its position and ori-
entation were not strictly controlled between walks and participants. A diagram and 
sample frame from this data collection methodology is available in [17], demonstrating 
the slight angle of the camera with respect to the direction of movement. While the lack 
of standardization in the camera position and orientation with respect to the direction 
of movement is similar to a potential real-world data collection environment, this also 
increased the variance in the input (as compared to the DIP dataset) and thus likely the 
output predictions as well. While this study only evaluated videos taken from a primarily 
coronal view, however certain aspects of gait such as those associated with step length 
or speed are more reliably captured from a sagittal view [18]. However, sagittal views 
generally require more physical space to take which is not always feasible in a home 
environment, whereas coronal view videos can be taken in hallways commonly found in 
home-living environments [19].

Another limitation of this work is that a dataset of older adults with dementia and 
DIP was used to train the model, unlike the dataset of individuals with PD on which 
the model was evaluated. Previous work comparing the gait of individuals with DIP 
and PD during the Timed Up & Go (TUG) test found that while there were significant 
differences in the rotation time, anterior–posterior step correlation, and medio-lateral 
sway, the straight walking time, cadence, step length, and medio-lateral step correlation 
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was similar amongst the cohorts [20]. However, DIP is more commonly associated with 
symmetric parkinsonism, with 30–50% of individuals presenting with asymmetric par-
kinsonism which is more commonly associated with idiopathic PD [21]. In work by 
Yahalom and Israeli-Korn et al., difference in left–right asymmetry was borderline sig-
nificant (p = 0.06) in age-matched DIP and PD cohorts [20]. It has also been noted that 
this difference in DIP and PD is more prevalent in younger patients, whereas individu-
als with PD and older adults with DIP generally present with similar motor symptoms 
[21]. However, it is important to acknowledge that different populations were used for 
model training and evaluation in this study. Finally, the study was not designed to cap-
ture the differences between dopaminergic medication and DBS when used alone and 
not in combination.

Future work will focus on strengthening the predictive ML model by better calibrating 
the scores it predicts with the MDS-UPDRS-gait scale. Currently, the proposed model 
is limited in its generalizability as it was trained on a relatively small number of videos 
from a DIP population taken from one camera angle and annotated by one clinician. As 
seen in this study, the shift to a different population in which videos were taken from dif-
ferent viewpoints and annotated by different clinicians led to model predictions which 
were not calibrated to the clinical annotations. Therefore, a more robust model that has 
been trained on a wider and more varied set of input data is needed. This will require 
the collection of additional videos of individuals with idiopathic PD, as well as MDS-
UPDRS-gait annotations from multiple raters for each video to provide more robust 
training data for our model. There is also the opportunity to record walking bouts from 
multiple planes of view as a means of data augmentation during training, and to simulate 
different testing environments during evaluation. Additionally, the collection of multiple 
walking bouts of each individual under the same treatment condition in close succession 
would allow for the assessment of the model’s reliability. A reliable model for assessing 
parkinsonism in gait should predict MDS-UPDRS-gait scores within a small range when 
walks are recorded a few minutes apart (without any change in treatment). Furthermore, 
we hope that by closely calibrating the model outputs to the MDS-UPDRS-gait stand-
ardized scale, it will be possible for clinicians to interpret predicted scores more mean-
ingfully from different participants, without having to rely on relative changes within 
a participant’s walks. Additional experiments on walking bouts of adults with PD col-
lected longitudinally in home settings (ie. between clinical visits) are needed to evaluate 
whether the machine learning model is able to detect daily fluctuations in parkinsonism 
severity. Finally, newer ML model architectures such as transformers will be evaluated 
for their applicability to this longitudinal MDS-UPDRS-gait estimation task [22].

Conclusion
A model trained on videos of older adults with DIP was sensitive to changes in medica-
tion and DBS use in a different dataset of videos of adults with PD, although not accurate 
at predicting the exact clinical score, and had difficulty detecting improvement in those 
with severely impaired gait. These results suggest that appropriate vision-based machine 
learning models are presently not accurate enough to become the standard of care but 
have potential to be used to monitor fluctuations in gait in individuals with PD in future 
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iterations. Future work will focus on more closely calibrating scores predicted by the 
model with the MDS-UPDRS-gait criteria.

Methods
PD data collection

Participants were adults with idiopathic PD at an academic movement disorders clinic 
(MDC) who were treated with dopaminergic medication and had an implanted subtha-
lamic nucleus (STN)-DBS device. The DBS stimulation parameters were determined by 
the treating neurologist. As part of a longitudinal study, each participant was assessed 
in an OFF and ON treatment state during multiple clinical visits. In the OFF state, the 
participant’s DBS device was turned off and they had not taken dopaminergic medica-
tion for at least 12  h before assessment (‘practically defined off’). Conversely, the ON 
state was assessed 45–60 min after the participant had taken their prescribed dose of 
dopaminergic medication and their DBS device had been turned on. Patients who were 
treated with medications only or DBS only were excluded from the study.

A tripod-mounted camera (640 × 480 resolution, sampling rate of 30 Hz) was used to 
record participants’ gait during each clinical visit. The participants were instructed to 
walk 6 m, turn around, and then walk back to their starting position. As the model was 
developed on video data of people walking towards the camera, only the sections of the 
video where the participants were walking toward the camera were included. Two physi-
cians affiliated (CG, AI) with the study scored each walking bout on the MDS-UPDRS-
gait criteria from the recorded videos independently. As one clinician was present 
during data collection, they were not blinded to participant ON/OFF state during scor-
ing. Conversely, the other clinician was blinded to ON/OFF state. The Research Ethics 
Board of the University Health Network approved the protocol (17-5707; March 1, 2018) 
and all study participants provided informed written consent.

Calculation of intraclass correlation coefficient for clinician annotations

The agreement between the two clinician annotators was assessed by calculating the 
intraclass correlation coefficient (ICC). The ICC(3), which assesses the agreement 
between two raters who both scored the full dataset, was calculated using the pinguin 
library for Python [23].

Model for prediction of MDS‑UPDRS‑gait scores from video

A method for predicting MDS-UPDRS-gait scores from coronal videos was developed 
as part of previous work on a dataset of 362 walking bouts from 14 participants with 
varying severities of drug-induced parkinsonism (DIP) [24–27]. To develop this model, 
three open-source human pose-estimation libraries (AlphaPose, Detectron, OpenPose) 
were first used to predict the locations of key body joints in each frame of the videos 
[28–31]. Using these joint trajectories as input, we trained a spatial–temporal graph 
convolutional network (ST-GCN) machine learning (ML) model to predict the severity 
of DIP in gait [9]. ST-GCN models are extensions of graph convolutional models pro-
posed by Kipf and Welling [32] in which convolutions are applied in both spatial and 
temporal dimensions, taking into account the structure of the data and how joints are 
connected to each other [33]. For example, in the first layer of the spatial convolution, 



Page 13 of 16Sabo et al. BioMedical Engineering OnLine          (2023) 22:120  

joints that are immediately connected will be considered in the adjacency matrix, pre-
serving the skeletal structure of the data. Work by other groups has also evaluated the 
use of ST-GCN models for the analysis of parkinsonism in gait [34, 35]. The full details 
of the model used in this study and its validation are described in detail in previous work 
by our group [9].

This model was trained on the DIP dataset was used to predict continuous MDS-
UPDRS-gait scores on the PD dataset. The inputs to the model are joint trajectories for 
each walking bout as well as the clinician annotated integer MDS-UPDRS-gait scores. 
Joint trajectories from all three pose-estimation libraries were used during training, 
but the results for model evaluation are presented for data extracted by the Detectron 
library. The data extracted using this pose-estimation library was found to perform the 
best across datasets. Full results from the AlphaPose and OpenPose libraries are pre-
sented in Additional file 1: Appendix A. The architecture of the ML model allows it to 
predict a continuous (non-rounded) value of the MDS-UPDRS-gait score for each walk-
ing bout, which provides more granularity than integer predictions. To account for per-
formance fluctuations due to known random processes during training, such as weight 
initialization or the order in which the data is input to the network, the model was 
trained five times and the mean prediction across all repetitions was used when report-
ing the model performance. The standard deviation across folds is also presented when 
appropriate. To improve the robustness of the model when transferring across datasets, 
the input data to the ML model was normalized by the mean hip to shoulder distance 
in each frame to account for different heights and video resolutions. This is a deviation 
from previous work where normalization of the skeletons was not performed [9].

OF‑DDNet

In addition to the ST-GCN model proposed in [9], an ordinal focal neural double-fea-
ture, double-motion network (OF-DDNet) proposed by Lu et al. [36] was also evaluated 
for this task. The OF-DDNet model did not achieve statistical significance when evalu-
ating sensitivity to ON/OFF state on the PD test set and will thus not be discussed in 
detail in this manuscript. For full results on this model, please refer to Additional file 1: 
Appendix C.

Statistical analysis

Prediction of rounded MDS‑UPDRS‑gait scores

To understand how well the trained ML model predicts MDS-UPDRS-gait scores on 
the PD dataset, the macro-averaged precision, recall, and F1-scores were calculated. 
The F1-score is calculated as the harmonic mean of precision and recall. The macro-
average is calculated by computing the statistic of interest for each class and then taking 
the arithmetic mean of these per-class values. This ensures that each class is weighted 
equally in the final metric.

Furthermore, the unbalanced accuracy was calculated as the percentage of walks 
where the clinician-annotated score was the same as the model prediction (when 
rounded to the nearest integer). The balanced accuracy assigns an equal weighting to 
each clinician-assigned MDS-UPDRS-gait score, ensuring that the value is not influ-
enced by class imbalance.
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When determining the clinician reference score for these metrics, the mean of the 
scores assigned by each of the two physicians was calculated and rounded to the near-
est integer and away from zero in case of ties.

Sensitivity of models to ON/OFF treatment state

To determine whether the continuous MDS-UPDRS-gait score predicted by the 
model was significantly lower in the ON state than the OFF state, a one-tailed paired 
t test was used. Walking bouts were paired by participant and clinical visit, and a Sha-
piro − Wilk test of normality was performed on the difference in predicted scores to 
validate the t test assumptions.

Magnitude of change between ON/OFF treatment‑model vs. clinician rating correlation

A second analysis was performed to determine whether the difference in MDS-
UPDRS-gait score between the ON and OFF states was correlated when model pre-
dictions and clinician rating were compared. The mean score assigned by the two 
clinicians for each walk (without rounding to integer scores) was used as the clinician 
annotation. For each clinical visit, the ON state MDS-UPDRS-gait score was sub-
tracted from the OFF state score. This calculation was performed independently for 
the model predictions and the clinician annotations.

Kendall’s Tau-b test was used to correlate the model (continuous) and clinician (dis-
crete) differences. All statistical analyses were performed using R (version 4.1.2) and 
the threshold for statistical significance was selected as p < 0.05 for all experiments.
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