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Abstract 

Background: Tumor heterogeneity is recognized as a predictor of treatment response 
and patient outcome. Quantification of tumor heterogeneity across all scales may 
therefore provide critical insight that ultimately improves cancer management.

Methods: An image registration-based framework for the study of tumor heteroge-
neity in whole-body images was evaluated on a dataset of 490 FDG-PET–CT images 
of lung cancer, lymphoma, and melanoma patients. Voxel-, lesion- and subject-level 
features were extracted from the subjects’ segmented lesion masks and mapped 
to female and male template spaces for voxel-wise analysis. Resulting lesion feature 
maps of the three subsets of cancer patients were studied visually and quantitatively. 
Lesion volumes and lesion distances in subject spaces were compared with result-
ing properties in template space. The strength of the association between subject 
and template space for these properties was evaluated with Pearson’s correlation 
coefficient.

Results: Spatial heterogeneity in terms of lesion frequency distribution in the body, 
metabolic activity, and lesion volume was seen between the three subsets of cancer 
patients. Lesion feature maps showed anatomical locations with low versus high mean 
feature value among lesions sampled in space and also highlighted sites with high 
variation between lesions in each cancer subset. Spatial properties of the lesion masks 
in subject space correlated strongly with the same properties measured in template 
space (lesion volume, R = 0.986, p < 0.001; total metabolic volume, R = 0.988, p < 0.001; 
maximum within-patient lesion distance, R = 0.997, p < 0.001). Lesion volume and total 
metabolic volume increased on average from subject to template space (lesion 
volume, 3.1 ± 52 ml; total metabolic volume, 53.9 ± 229 ml). Pair-wise lesion distance 
decreased on average by 0.1 ± 1.6 cm and maximum within-patient lesion distance 
increased on average by 0.5 ± 2.1 cm from subject to template space.

Conclusions: Spatial tumor heterogeneity between subsets of interest in cancer 
cohorts can successfully be explored in whole-body PET–CT images within the pro-
posed framework. Whole-body studies are, however, especially prone to suffer 
from regional variation in lesion frequency, and thus statistical power, due to the non-
uniform distribution of lesions across a large field of view.
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PET–CT
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Background
Tumor heterogeneity is a term used to describe how the same type of cancer may mani-
fest differently in different patients. Heterogeneity also exists on patient-level in the form 
of different subpopulations of tumor cells, each with distinct characteristics, within a 
single tumor lesion. There is both spatial heterogeneity, which describes the spatial 
organization of tumor cells, and temporal heterogeneity that describes the evolution of 
different cell populations over time as the disease progresses [1]. Tumor cells can only 
progress to other sites once they have acquired certain features identified as hallmarks 
of metastasis [2]. Spatial and temporal heterogeneity directly affects response to therapy 
[3, 4]. Detection, characterization, and quantification of tumor heterogeneity is therefore 
needed to improve therapeutic outcomes [5] and advance towards personalized cancer 
medicine [6, 7].

There is a vast set of methods or technologies for quantification of tumor heterogene-
ity across different scales [8]. Most techniques, however, relate to the study of molecu-
lar and architectural heterogeneity on cell or tumor level in tissue samples. Organ- and 
patient-level heterogeneity, as measured with imaging modalities, commonly, computed 
tomography (CT) and positron emission tomography (PET), is less studied. On this 
scale, heterogeneity manifests as variability in location, X-ray attenuation, tracer uptake, 
and shape descriptors (e.g., volume). Tumor volume is a strong predictor of radiotherapy 
outcome [9] and may also impact response to immunotherapy [10]. One advantage with 
imaging over tissue sampling is that every tumor lesion can be studied in both space 
and time non-invasively. A branch of medical imaging processing, called radiomics, has 
emerged as a tool to computationally characterize tumor lesions in terms of features 
that correlate with phenotype and patient outcome [11, 12]. Radiomics features may be 
extracted from within the tumor itself, the tumor margins, and also surrounding healthy 
tissue for use in predictive or prognostic models [13, 14]. Radiomics studies have, how-
ever, mainly been limited to local or loco-regional cancer, i.e., features are only com-
puted from one lesion. In the context of metastatic cancer, it is common to examine a 
subset of isolated lesions, but this approach may not accurately represent the full extent 
of tumor heterogeneity within an individual patient [15]. Thus, radiomics is at best a 
powerful tool to describe prognostic features of individual tumor lesions, but does not 
describe the spatiotemporal relationship between all available lesions in whole-body 
images. The spatiotemporal location of disease correlates with both clinical and molecu-
lar characteristics [16–18]. Initial tumor site is also emerging as an important prognostic 
factor itself, for example, if it is right- or left-sided, in metastatic colorectal cancer and 
lung cancer [19, 20]. A detailed description of the spatiotemporal tumor distribution in 
cancer cohorts could thus become increasingly important for patient stratification. Since 
whole-body PET–CT or CT imaging is performed in clinical routine of a majority of 
cancer patients, such images present a great opportunity for the study of spatiotemporal 
tumor heterogeneity.

In this work, we apply for the first time a spatial mapping of lesions in whole-body 
PET–CT images of cancer patients for the study of tumor heterogeneity. Manually 
segmented lesion masks from patients with lung cancer, lymphoma, or melanoma 
were assigned with image-derived features of the disease and mapped to a template 
space using image registration. In template space, the spatial relationship between 
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these features in the body was analyzed. The aim of the study was to investigate 
potential use-cases and limitations of the proposed framework and evaluate the 
applied image registration method within the context of lesion studies.

Results
Figure  1 shows voxel-wise lesion frequency maps of the three cancer subsets sepa-
rately. In the lung cancer subset (Fig. 1, top panel), lesion count is observed higher in 
the right lung than in the left lung (peak value n = 27 versus n = 18 in females; peak 
value n = 46 versus n = 32 in males). Maximum voxel-wise lesion count is lower in the 
female subset than in the male subset (n = 27 versus n = 46). In the lymphoma subset 
(Fig. 1, middle panel), the lesion frequency map of females shows a high concentra-
tion of lesions in the chest cavity. The lesion frequency map of males shows a more 
uniform distribution of lesion count in the body. Maximum voxel-wise lesion count is 
higher in the female subset than in the male subset (n = 29 versus n = 17). Peak value 
is observed in the chest cavity of females and in the neck region of males. In the mela-
noma subset (Fig. 1, bottom panel), both female and male lesion frequency maps have 
relatively low lesion counts per voxel compared to the other two subsets (peak value 
n = 6 in females; peak value n = 7 in males). Melanoma lesions are scattered through-
out the body. A lower number of abdominal lesions in the female than in the male 

Fig. 1 Voxel-wise lesion frequency maps of female (F) and male (M) patients. Lung cancer (top panel), 
lymphoma (mid panel), and melanoma (bottom panel) patients are presented separately. Subset sample sizes 
are printed below each panel. High lesion count is mapped to dark color. Images are coronal and sagittal 
maximum intensity projections
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subset is seen. Above described relative differences between female and male subsets 
are also found in percentage frequency distribution maps (see Additional file 1).

Figure 2 shows lesion feature maps of the three selected features included for this 
study. Sagittal projection images corresponding to Fig.  2 are provided as additional 
material (see Additional file  2). Differences noted between the cancer subsets, and 
also between female and male subsets, are described in more detail below.

a b c

d e f

Fig. 2 Voxel-wise lesion feature maps of features measured in subject space and summarized across female 
(F) and male (M) patients in template spaces. In each subplot, lung cancer (top panel), lymphoma (mid 
panel), and melanoma patients (bottom panel) are presented separately. In a and d, the feature shown is 
metabolic activity measured voxel-wise in subject space. In b and e, the feature shown is lesion volume 
mapped to each lesion in subject space. In c and f, the feature shown is total lesion count mapped to each 
lesion in subject space. In a–c, each pixel shows the mean feature value among lesions sampled at that 
location in space. High feature value is mapped to dark color. In d–f, each pixel shows the coefficient of 
variation (CV) among lesions sampled at that location in space. High variation is mapped to blue and low 
variation to yellow. Images are coronal maximum intensity projections. SUV standardized uptake value
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Figure 2a, d shows the results of voxel-level analysis of metabolic activity. In the lung 
cancer subset, FDG-uptake is relatively uniform in space (Fig. 2a, top panel). A smaller 
region with relatively high variation in uptake is seen in the right upper lung field in 
both females and males (Fig. 2d, top panel). In the lymphoma subset, the activity map of 
females shows a left–right asymmetry in the neck region (Fig. 2a, middle panel). In the 
melanoma subset, lesions in the abdominal region in the male subset have a lower meta-
bolic activity than lesions sampled in other parts of the body (Fig.  2a, bottom panel). 
Mean metabolic activity across the body (calculated from voxel values visualized in 
Fig. 2a) is higher in the lymphoma subset (6.7 ± 3.4 in females; 6.0 ± 2.5 in males) than in 
the lung cancer (4.1 ± 2.0 in females; 4.1 ± 1.9 in males) and melanoma subsets (5.7 ± 2.8 
in females; 4.7 ± 3.2 in males).

Figure  2b, e shows the results of lesion-level analysis of lesion volume. In the lung 
cancer subset, lesion volumes are larger in the right lung field than in the left lung field 
(Fig. 2b, top panel), but there is a high coefficient of variation in the same region (Fig. 2e, 
top panel). In the lymphoma subset, lesion volume appears largest in the chest cavity 
and neck region in the female subset, but largest in the abdominal region in the male 
subset (Fig. 2b, middle panel). High coefficient of variation is noted in the neck region of 
both females and males, and to some extent also in lymph nodes that lie in front of the 
vertebral column near the aorta (Fig. 2e, middle panel). In the melanoma subset, rela-
tively small lesion volumes are observed at most sites, except in the abdominal region 
of the male subset (Fig. 2b, bottom panel). Table 1 summarizes the lesion volume data 
shown in Fig. 2b across the body. Mean lesion volume is largest in the lung cancer subset 
and smallest in the melanoma subset.

Figure 2c, f shows the results of subject-level analysis of total lesion count. Figure 2c 
shows that lesions of the spine and hips in the male lymphoma subset (middle panel) 
and liver lesions in the male melanoma subset (bottom panel) belong to subjects with 
on average higher lesion count than lesions in other locations. Figure 2c also indicates 
that mean total lesion count is higher among female lymphoma patients with splenic 
involvement (middle panel) and, to a lesser extent, higher among lung cancer patients 
with lesions in the right lung field than in the left lung field (top panel).

Figures 3 and 4 show the relationships between spatial properties of the subjects’ 
lesion masks before and after the mapping to template space. In Fig. 3, strong cor-
relation between lesion volume in subject and template space is seen. Mean lesion 
volume change from subject to template space was 3.1 ml (median, 0 ml; standard 

Table 1 Lesion volume data summary

Values are presented on the format mean (median) ± standard deviation

SUV standardized uptake value

Diagnosis Patient sex Total lesion count Lesion volume (ml)

Lung cancer Female 706 22.5 (3.1) ± 100

Lung cancer Male 1118 24.9 (3.1) ± 87.1

Lymphoma Female 1263 16.5 (0.8) ± 82.6

Lymphoma Male 1942 11.3 (0.5) ± 76.5

Melanoma Female 2150 4.7 (0.7) ± 22.8

Melanoma Male 1090 10.6 (1.1) ± 72.1
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deviation, 52  ml). There is also strong correlation between total metabolic volume 
in subject and template space (Fig.  4a). Mean total metabolic volume change from 
subject to template space was 53.9 ml (median, 5.2 ml; standard deviation, 229 ml). 
Mean pair-wise lesion distance change from subject to template space was − 0.1 cm 
(median, 0 cm; standard deviation, 1.6 cm) among all pairs of lesions (n = 794,018). 
Mean maximum within-patient lesion distance change from subject to template 
space was 0.5  cm (median, 0  cm; standard deviation, 2.1  cm). Figure  4b shows a 
strong linear relationship between maximum within-patient lesion distance in sub-
ject and template space.

R = 0.986, p < 2.2e−16
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Fig. 3 Lesion volume in subject versus template space. A scatter plot of lesion volume measured in subject 
versus template space for each lesion identified in the dataset. Each dot represents one lesion. Dashed line is 
an identity line. Axes are logarithmic
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Discussion
In this study, we evaluated the feasibility of studying tumor heterogeneity in whole-
body PET–CT images of cancer patients through an image registration-based frame-
work. Spatial heterogeneity between the three studied subsets of cancer types, and also 
between female and male subsets, in terms of lesion frequency distribution in the body, 
metabolic activity, and lesion volume was shown. Additionally, a feature map of total 
lesion count could be used to visualize locations in the body more likely to be involved 
in advanced disease in the subsets. Lesion feature maps revealed differences between 
the subsets that could be confirmed when the data were summarized across the whole-
body images. No systematic bias was found to be introduced by the mapping of lesions 
to template space.

Frequency maps of the three cancer subsets showed some differences between females 
and males. These differences could represent actual differences in female and male dis-
ease presentations, but there are also other possible explanations. One possibility is the 
presence of different subtypes of cancer in the dataset that have distinct frequency dis-
tributions. In lung cancer, differences, such as genetic mutations, have been reported 
in right- versus left-sided cancer [21, 22]. In lymphoma, involvement of the chest cavity 
is usually a sign of widespread disease, but most cases that begin there are a subtype 
known as Hodgkin’s disease [23]. In melanoma, the initial site of the lesion can influ-
ence its potential to spread to other parts of the body. For example, lesions in the head 
and neck region tend to preferentially spread to the liver [24]. Accordingly, an unequal 
sampling of such cancer subtypes between the female and male subsets would appear as 
different female and male lesion frequency distributions. Another interpretation of the 
sex differences seen is that there could be different proportions of early versus advanced 
stage disease in the female and male subsets. Unfortunately, subtype and stage descrip-
tors of the studied dataset were unavailable, but this is of minor importance given the 
purpose of this study. Frequency maps presented here primarily illustrate the possibility 
to explore differences in lesion occurrences in the body between subsets of patients, and, 
most importantly, show that there is regional variation in lesion sample size on voxel-
level. The latter finding needs to be taken into account in any future studies aimed at 
statistically comparing lesion distributions voxel-wise in whole-body images. Statistical 
power is a major concern also in voxel-based approaches to brain lesion-behavior cor-
relations in functional neuroimaging [25].

Lesion feature maps exemplified in this study can provide different types of insight. 
Our study included both voxel-level and lesion-level features, as voxel-wise and regional 
analysis may provide important complementary information. Voxel-wise analysis is, 
in general, more easily affected by any systematic image registration errors, but can be 
especially useful for detecting focal differences [26, 27]. In the current study, the voxel-
level feature map was indeed found to be most spatially detailed among the exemplified 
feature maps. Regional analysis will highlight patterns on a larger scale, which is illus-
trated clearly in Fig. 2 when the voxel-level feature map is compared with, most notably, 
the lesion-level feature map, but also the subject-level feature map. Subject-level analy-
sis, here presented as a means to generate feature maps of global image descriptors of 
disease and their relation to tumor location in space, are tightly related to other lesion 
analysis methods. These techniques, often collectively called lesion-symptom mapping, 
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have been applied mainly in neuroimaging, but also outside neuroimaging to limited 
fields of view. A similar approach was, for example, used to create survival status maps of 
locally advanced lung cancer [28]. In lesion-symptom mapping, patient groups are com-
pared for voxel-wise statistical differences in lesion location in relation to some clinical 
variable of interest. Most commonly, a χ2-test for categorical variables and a t-test for 
continuous variables are used [29]. In the present study, the rationale for not comparing 
the patient group with lesion versus the patient group with no lesion voxel-wise is that 
our primary aim has been a description of the lesions sampled at each voxel location in 
space, i.e., a characterization of the lesion group only.

A strong relationship was found between subject and template space for the studied 
spatial properties of the subjects’ lesion masks. Our results suggest no general problem 
with the template selection and the applied image registration method, since average 
lesion volume change was less than 5 ml and average pair-wise lesion distance change 
was less than 1 cm from subject to template space. However, a relatively large difference 
between median and mean total metabolic volume change was noted. Outliers were also 
identified towards the far right in Fig. 3 that correspond to the largest lesions in the data-
set. These lesions seem to more often have increased than decreased in size during the 
mapping to template space. They are, due to their volume, likely to exert a mass effect in 
the body and can thereby affect image registration results in the image region they occur 
in. This study implemented cost function masking during image registration which in 
case of a large tumor in, for example, the abdominal region, might make alignment of 
the whole abdomen of the subject with the template subject more difficult, since there 
was no penalty for mapping valid points in template space to the subject’s tumor region. 
Despite these known consequences of cost function masking, it is still the recommended 
approach in spatial mapping of brains with focal lesions, as unmasked registration may 
underestimate lesion volumes, especially of larger lesions [30]. Other approaches that 
have been found to improve image registration of lesioned brain images, include, for 
example, using cohort-specific templates [31] or using anatomical information from the 
side with no lesions [32]. These methods may be applicable to whole-body images to at 
least some extent and can be explored further in future studies. This could potentially 
improve registration accuracy for large lesions and possibly eliminate the need for their 
exclusion before subsequent analyses.

There are several advantages with the proposed framework to study tumor character-
istics in whole-body PET–CT images. Most importantly, whole-body images can be fully 
utilized and studied, in contrast to with methods that only apply to a smaller field of 
view. This may improve the potential value of the large volumes of medical imaging data 
that are generated in healthcare each year [33, 34]. Its main feature is that it functions 
as a whole-body visualization tool that, as such, can intuitively describe the spatial loca-
tion of lesions in the body and its relationship with features of interest. Features may be 
derived from images, as exemplified, and from multiple modalities, for example, both 
PET and CT features. In-depth analysis may involve exploring the spatial distribution 
of more sophisticated lesion features, such as first-order radiomics features. Studies are, 
however, not necessarily limited to image-derived metrics. For example, genomic data 
from known biopsy locations may be visualized as well. Temporal information may also 
be incorporated by first mapping a patient’s follow-up image to its baseline image to find 
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out what has changed between the images and then map the resulting difference image 
to template space. Integration of different types data is identified as the key to build-
ing an accurate model of cancer and eventually being able to take better informed treat-
ment decisions [35]. Image registration of PET–CT data from multiple cancer patients 
to a template space enables both visual and quantitative exploration of patterns that may 
only be visible after aggregating cohort data. A visual approach may also be more inter-
pretable than other methods for feature extraction or fusion of biomedical image data 
and omics data [36]. Interpretability is especially important in healthcare, where a lack 
of such of is often seen to hinder clinical adoption of computational methods [8, 37]. 
Applications of the proposed framework can range from localized to metastatic cancer. 
Voxel-wise lesion studies of metastatic cancer are, however, as discussed above, more 
likely to suffer from low statistical power at any given patient sample size. In localized 
disease, whole-body image analysis may provide additional value in the form of a more 
comprehensive description of the patient’s disease status than image analysis applied to a 
limited field of view can. Even if the tumor is only localized, there might be other bodily 
changes related to the disease that are of study interest. Body composition, for example, 
visceral obesity and sarcopenia, is related to cancer outcome [38]. Computational analy-
sis of texture features in images also has the potential to reveal signs of tissue damage 
before confirmed metastasized disease [39, 40]. Lastly, there are application domains of 
lesion frequency maps more oriented towards image processing. Tumor probability dis-
tributions may, for example, be used to improve automatic tumor segmentation [41].

This study’s main limitation is that the studied dataset lacked associated clinical vari-
ables other than main cancer type, patient sex, and age. Limited conclusions could there-
fore be drawn from the patterns discovered by the mapping of lesions in this particular 
dataset. Other properties of the dataset, such as, an adequate sample size of multiple 
cancer types, made it useful to illustrate a concept and therefore serve the purpose of 
our study. There are, however, also other limitations with our study related to the stud-
ied dataset. First, as the dataset analyzed was provided with lesion segmentation masks, 
our study could seem to diminish the pre-processing that must be applied to images 
before lesion mapping to a template space can be realized. If the proposed concept is to 
be applied to a previously unsegmented dataset, semi- or fully automatic segmentation 
methods can be used to reduce segmentation time compared with manual segmenta-
tion [42]. Secondly, the original dataset only included the segmentation of metabolically 
active lesions, and as a result, any non-metabolically active lesions in the CT scans could 
potentially affect the accuracy of image registration in regions where they may exist. 
Lastly, the evaluation of the mapping’s effect on lesion mask properties was for practi-
cal reasons limited to lesion volume and distances, i.e., one-dimensional measures. A 
more detailed technical evaluation of the applied image registration method, including 
other performance metrics, was previously performed on two other datasets with simi-
lar image acquisition parameters to the dataset in the current study [43].

Conclusions
Our study suggests that the proposed framework can successfully be applied to explore 
spatial tumor heterogeneity in whole-body PET–CT images of cancer patients. Whole-
body visualization and quantification of tumor heterogeneity, as illustrated, may be 
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particularly useful for pattern extraction and hypotheses generation from cohort imag-
ing data. It has the potential to be of great benefit for future studies aiming at under-
standing the association between tumor patterns in PET–CT images and patient 
outcome and ultimately the development of imaging biomarkers. Future studies should, 
however, expect a regional variation in lesion frequency, and thus statistical power, 
across the body that may also vary between subgroups of patients. Whole-body studies 
are especially prone to this due to the non-uniform distribution of lesions across a large 
field of view.

Methods
Dataset

A whole-body 18F-fluorodeoxyglucose-(FDG)-PET–CT dataset with manually seg-
mented tumor lesions [44, 45] from the University Hospital Tübingen was analyzed 
in the study. The dataset is publicly available at The Cancer Imaging Archive [46] and 
comprised in total 1014 PET–CT examinations. PET images are provided with voxel val-
ues converted to standardized uptake value (SUV) based on body weight. There were 
501 studies from patients with histologically proven lung cancer, lymphoma, or mela-
noma with at least one metabolically active tumor lesion (as defined by FDG-uptake on 
PET). These positive studies were included for the study of spatial tumor heterogeneity 
between the three subsets of cancer patients in the dataset. Remaining studies (n = 513) 
were from patients imaged with a clinical indication, but with no findings of metaboli-
cally active lesions. These negative controls were only used to select female and male 
template spaces to which all positive studies were mapped for voxel-wise analysis (see 
description below). From the original dataset of positive and negative studies, 22 sub-
jects were excluded due to either one or two arms being positioned down during imaging 
(n = 21) or severe scoliosis (n = 1). These studies were excluded due to expected difficul-
ties in achieving a satisfactory anatomical alignment with the template spaces. The final 
dataset comprised 490 positive studies and 502 negative controls. Of the positive stud-
ies, 164 studies were from patients with lung cancer, 143 studies were from patients with 
lymphoma, and 183 studies were from patients with melanoma. There were nine sub-
jects with repeated imaging in the subset of positive studies; two studies (n = 7), three 
studies (n = 1), and four studies (n = 1). Patient characteristics of the final dataset are 
summarized in Table 2.

Table 2 Patient characteristics

Values are presented on the format mean (median) ± standard deviation (min–max)

Diagnosis Patient sex Number of studies Age at imaging (years)

Lung cancer Female 63 64 (62) ± 9 (48–83)

Lung cancer Male 101 67 (67) ± 9 (44–83)

Lymphoma Female 68 45 (44) ± 20 (15–79)

Lymphoma Male 75 48 (50) ± 18 (11–85)

Melanoma Female 77 65 (63) ± 13 (30–95)

Melanoma Male 106 65 (65) ± 13 (19–89)

Negative Female 228 59 (60) ± 15 (18–84)

Negative Male 274 59 (61) ± 16 (18–85)
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Image registration

Image registration of the positive studies was performed using a registration method 
previously evaluated on two whole-body PET–CT datasets [43]. In the previous study, 
the assessment covered the anatomical matching and consistency of this registration 
method in both within- and between-subject registration tasks. The current study is 
a follow-up that places a particular emphasis on the registration of images containing 
lesions. All images were resampled to a slice thickness of 3 mm using linear interpola-
tion, before undergoing further pre-processing and registration following the referenced 
method. Cost-function masking around lesions, as described in [43], was applied to pre-
serve the original shape of the lesions. Female and male subsets were registered sepa-
rately to a template space defined by one image in each subset. Template spaces were 
chosen from the subset of negative control patients based on image body fat percentage. 
Image body fat percentage was calculated as the percentage of voxels assigned as adipose 
tissue (− 190 to − 30 Hounsfield units) inside the torso part of each subject’s image. The 
torso was used, instead of the whole image, since there were field of view differences 
in the dataset. Median image body fat percentage was 44.6% for the female subset and 
36.8% for the male subset. Female and male template spaces were selected from sub-
jects whose image body fat percentages deviated by at most 2 percentage points from 
the respective subset medians. These template space images were chosen to ensure they 
did not contain any abnormalities that could introduce bias during image registration.

Lesion feature map generation

First, lesion frequency maps were generated for the three cancer subsets to determine 
how many occurrences of lesions there were at each voxel location in the body. Seg-
mented lesion masks were transferred to template space using the transforms resulting 
from image registration described in the previous section. Nearest neighbor interpola-
tion was used during resampling to generate binary lesion masks in template space. In 
template space, lesion frequency maps were generated by counting the number of occur-
rences of lesions voxel-wise in each subset. Percentage frequency distribution maps were 
also generated by normalizing the frequency maps with the number of subjects in each 
subset.

Next, three types of feature maps were generated in template space to explore spa-
tial tumor heterogeneity between and within the cancer subsets. Analysis was limited 
to voxel locations in template space with at least two occurrences of lesion in each 
female and male subset, respectively. Figure  5 illustrates the process. Each subject’s 
lesion mask was first labeled in subject space using a three-dimensional structuring ele-
ment with connectivity 2, resulting in a lesion label map. Feature maps were then gener-
ated in subject space by assigning voxels of the lesion label map with the feature value 
of interest and then transferred to template space. Each lesion’s corresponding location 
in template space could be found as described above for the lesion frequency maps. In 
template space, voxel-wise mean and coefficient of variation were computed from the 
aligned feature maps of all subjects in each cancer subset. At each voxel, averaging and 
standard deviation calculation was performed only on lesions sampled at that location, 
i.e., subjects with no lesion at a particular voxel location would not contribute to the 
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statistics. Resulting feature maps in template space thus describe the statistics among 
lesions at different positions in the body. The three types of feature maps studied include 
image intensity values on voxel-level (voxel-level analysis), features computed from each 
labeled lesion individually (lesion-level analysis), and features summarizing the seg-
mented lesion mask on subject-level (subject-level analysis). Exemplified maps for the 
purpose of this study were voxel-level analysis of metabolic activity (in SUV), lesion-
level analysis of lesion (metabolic) volume, and subject-level analysis of total lesion 
count. Total lesion count was scaled to 0–1 range by dividing the count by the maxi-
mum value in each female and male subset to improve comparability across the subsets. 
Successful image registration to the template spaces and subsequent lesion feature map 
generation should yield whole-body feature maps with enough spatial detail to discern 
similarities and differences among the three studied cancer types. The expected identifi-
able patterns include variations in the distribution of lesion frequencies throughout the 
body, the level of metabolic activity in these lesions, the size of the lesions, and the total 
count of lesions. In particular, the total lesion count is expected to correlate with disease 
progression and should enable visualization of body locations more likely to be involved 
in advanced disease in the subsets. Additionally, potential differences may be observed 
between the female and male subsets.

Evaluation of the effect of image registration on spatial properties of lesion masks

Applying image registration to map lesions from subject to template space might 
distort lesions in size or change the pair-wise distances between lesions. To inves-
tigate such effects, spatial properties of the lesion masks were measured in subject 
space and compared with the same properties in template space after the mapping. 
Spatial properties included for study were lesion volume, total metabolic volume, all 
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Fig. 5 Illustration of method used to generate lesion feature maps in template space. Each subject’s PET–CT 
image is first registered to template space (1). Voxel-, lesion- and subject-level features are extracted from 
the subject’s lesion mask and used to construct lesion feature maps in subject space (2). Lesion feature maps 
are subsequently mapped to template space using image registration results (3). In template space, feature 
values are summarized across lesions sampled at each voxel location in the body (4)
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pair-wise distances between lesions, and maximum within-patient lesion distance. 
Maximum within-patient lesion distance is a measure of lesion dissemination in space 
and was defined as the maximum value of all pair-wise distances between lesions in 
the body. The distance between any two lesions was defined as the distance between 
their centers of masses. Only lesions in subject space mapped to within the field of 
view of the template spaces were included in the analysis. Pearson’s correlation coef-
ficient was used to evaluate the relationships between subject and template space for 
the variables lesion volume, total metabolic volume, and maximum within-patient 
lesion distance. Successful image registration to the template spaces is evidenced by a 
strong correlation between subject and template space for all studied spatial proper-
ties. Summary statistics (mean, median, and standard deviation) were obtained for 
all studied variables. An appropriately chosen template space should result in a close 
to zero average change of these properties across all subjects, since there will be both 
patients smaller and larger than the template in the dataset that will be scaled accord-
ingly, including lesions, during the mapping to template space.
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