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Abstract 

Background: The Gross Motor Function Classification System (GMFCS) is a widely 
used tool for assessing the mobility of people with Cerebral Palsy (CP). It classifies 
patients into different levels based on their gross motor function and its level is typi‑
cally determined through visual evaluation by a trained expert. Although gait analysis 
is commonly used in CP research, the functional aspects of gait patterns has yet to 
be fully exploited. By utilizing the gait patterns to predict GMFCS, we can gain a more 
comprehensive understanding of how CP affects mobility and develop more effective 
interventions for CP patients.

Result: In this study, we propose a multivariate functional classification method 
to examine the relationship between kinematic gait measures and GMFCS levels 
in both normal individuals and CP patients with varying GMFCS levels. A sparse linear 
functional discrimination framework is utilized to achieve an interpretable prediction 
model. The method is generalized to handle multivariate functional data and multi‑
class classification. Our method offers competitive or improved prediction accuracy 
compared to state‑of‑the‑art functional classification approaches and provides inter‑
pretable discriminant functions that can characterize the kinesiological progression 
of gait corresponding to higher GMFCS levels.

Conclusion: We generalize the sparse functional linear discrimination framework 
to achieve interpretable classification of GMFCS levels using kinematic gait measures. 
The findings of this research will aid clinicians in diagnosing CP and assigning appropri‑
ate GMFCS levels in a more consistent, systematic, and scientifically supported manner.

Keywords: Cerebral palsy, Functional sparse classification, GMFCS, Multivariate 
functional data, Sparse functional linear discriminant analysis

Introduction
Cerebral Palsy (CP) is a group of non-progressive, permanent disorders that cause 
movement and posture limitations due to disturbances occurring in the fetal or infant 
brain. Pathological stimuli from the brain result in progressive motor dysfunction and 
gait disturbances [1, 2]. Gait analysis is a key methodology for studying CP [3], as it is 
believed that CP patients’ gait deviations are linked to clinical impairments, such as 
muscle spasticity of lower extremities [4, 5]. The Gross Motor Function Classification 

*Correspondence:   
qrio1010@ajou.ac.kr; jyahn@kaist.
ac.kr

1 Department of Industrial 
and Systems Engineering, KAIST, 
Dajeon, South Korea
2 Department of Applied 
Statistics/Statistics and Data 
Science, Yonsei University, Seoul, 
South Korea
3 Department of Artificial 
Intelligence, University of Seoul, 
Seoul, South Korea
4 Department of Mathematics/
Artificial Intelligence, Ajou 
University, Suwon, South Korea

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-023-01168-x&domain=pdf


Page 2 of 18Yoon et al. BioMedical Engineering OnLine          (2023) 22:109 

System (GMFCS) categorizes CP severity in five levels (1 to 5), with lower levels indicat-
ing milder forms and higher levels indicating greater severity [6].

Gait analysis offers objective, three-dimensional (3D) quantitative evaluation of CP 
patients’ gait pathology. Observing specific deviations in a patient enables more accurate 
diagnoses and treatment options, such as surgical intervention, physical therapy, and 
medications. From 3D gait analysis, three kinematic variables are commonly derived and 
considered most relevant to CP gait pathology: knee flexion/extension angle, hip flexion/
extension angle, and ankle dorsiflexion/plantar flexion angle. Note that a flexion angle is 
defined in the positive direction whereas extension is defined in the negative.

As the human gait is inherently continuous, it is natural to present the variables 
obtained from the gait analysis as curves (functions). Figure  1 shows gait patterns of 
the three kinematic variables (hip, knee, and ankle flexion angles) in the data used in 
this study (described in the “Results” section). Each panel displays mean gait patterns 
for each GMFCS group over a full gait cycle. Level 0 represents the normal group with-
out CP, and the figure displays mean gait patterns from level 0 to 3 since there is only 
one observation with level 4 (excluded from analysis) and no observation with level 5. A 
gait cycle is defined as the time from initial contact to the next ipsilateral initial contact 
and is divided into stance and swing phases: 60% stance and 40% swing [7]. The stance 
phase is when a person bears weight on a single leg and the swing phase is when he/she 
advances his/her limb off the floor. The stance phase is further broken down into initial 
contact, loading response, mid stance, terminal stance, and pre-swing, while the swing 
phase is broken down into initial swing, mid swing, and terminal swing [8]. From Fig. 1, 
patients with higher GMFCS levels tend to have reduced changes in hip/knee/ankle flex-
ion angles during both the stance and swing phases. In the stance phase (0–60%), it can 
be seen that the angle of hip extension tends to decrease, and the angle of the hip/knee 
joints tends to increase. In other words, in the stance phase, CP patients have a signifi-
cantly reduced amount of change in maximum hip joint extension and the maximum 
values of the hip/knee joints are higher than those of normal people. Additionally, it can 

Fig. 1 Mean gait patterns of hip, knee, and ankle measures from left (upper) and right (lower), grouped by 
GMFCS levels. A Hip. B Knee. C Ankle. Level 0 in solid green, level 1 in dot–dashed blue, level 2 in dashed 
purple, and level 3 in dotted red
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be seen that CP patients with higher GMFCS levels have a higher maximum hip flexion 
angle in the gait cycle from the stance to swing phases (50–70%). For CP patients with 
higher GMFCS levels, the change point in the knee flexion angle appears later during 
the swing phase, indicating that the movement is unstable. These observed differences 
between GMFCS levels turn out to be statistically significant. All three kinetic variables 
yield p values ≤ .001 in the functional ANOVA test [9].

Since each subject’s gait data consists of three functions, the data shown in Fig. 1 is 
considered multivariate functional data. Despite this, most previous gait analysis stud-
ies have not fully utilized its continuous nature. Some studies used a single numerical 
summary of the gait, such as the Gait Deviation Index (GDI), which measures the devia-
tion of knee, hip, and ankle gait patterns from a normal gait [10]. However, reducing the 
information in infinite-dimensional functional data to a single numerical value leads to 
significant information loss. Some studies extracted several numerical gait parameters 
[11], but they still did not utilize all available information in the gait patterns.

In this study, we propose to analyze gait patterns as multivariate functional data and 
develop a novel sparse classification model to predict GMFCS levels for CP patients. 
There have been numerous efforts to associate gait patterns with CP clinical informa-
tion. Wong et  al. [12] suggested a smooth least squares estimator of a gait pattern to 
identify patient groups with unique clinical characteristics. Zhang and Ma [11] manu-
ally extracted seven features from gait patterns and applied several supervised machine 
learning methods to predict CP subtypes based on clinical observations. Kamruzzaman 
and Begg [13] utilized stride length and cadence to train Support Vector Machine (SVM) 
for classifying spastic diplegia CP patients and normal individuals. The work was fur-
ther developed by Zhang et al. [14] who employed a Bayesian approach to estimate pre-
dictive probabilities and hard predictions. Carriero et al. [15] visualized gait parameter 
subspaces via principal component analysis and found that the normal group formed a 
distinct cluster, with significant overlap among CP patients. All these studies share limi-
tations in using extracted features and using methods that are designed for Euclidean 
data.

Recently, there have been new developments in automated gait abnormality detection 
and classification models. Bajpai et  al. [16] utilized neural networks to assess the gait 
abnormality index developed by Bajpai and Joshi [17] to classify abnormal gait patterns 
into nine different types. Nguyen and Meunier [18] suggested the gait abnormality index 
that can be estimated using the adversarial auto-encoder based on sequences of 3D 
point cloud representations of human gait. Gao et al. [19] used an LSTM–CNN model 
to classify abnormal gait patterns with gait data collected from wearable sensors. These 
approaches partially incorporate the continuity of gait patterns and thus show good per-
formance in detecting abnormalities. However, they generally lack interpretability and 
only focus on classifying normal versus abnormal gait patterns, not considering the 
gradual severity of the disease.

Building upon the limitations observed in previous studies, our work is motivated by 
several key objectives:

• Exploiting the continuous nature of gait data: Unlike traditional approaches, we 
treat gait data as multivariate functional data. This enables us to fully capitalize 
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on its continuous nature, as well as incorporate the correlation between different 
kinetic measurements.

• Providing clinically relevant interpretations: A core aim of our work is to pro-
duce classification results that are not just accurate but also interpretable in a clin-
ical setting. We believe this adds a valuable layer of applicability to our findings.

• Detailed gait analysis among varying CP severity levels: Our work addresses 
the need for an advanced level of granularity in classifying CP patients according 
to their GMFCS levels. This is especially crucial for tailoring treatment plans and 
providing more personalized care.

Functional classification is a supervised learning approach that predicts discrete 
labels using functions as inputs. Functional Logistic Regression (FLR) [20] and Func-
tional Support Vector Machine (FSVM) [21] are among common techniques. Given 
a binary response variable Y ∈ {0, 1} and functional covariate X(t), FLR fits a logistic 
regression model in form of

where π = E(Y |X(t)) and I  is a domain of X(t). Here, β(t) is a discriminant function 
and α is an intercept term. On the other hand, FSVM utilizes standard vectorial SVM 
after projection of functional covariate to Euclidean Rd space. The goal of this study is 
to not only build a classification rule but also to interpret the rule with regards to phases 
in a gait cycle for a deeper understanding of CP progression. This domain-specific inter-
pretation will aid clinicians in identifying specific areas to focus on during patient exam-
ination. We note that existing functional classification methods such as FLR and FSVM 
cannot identify segments or regions in the function domain that are relevant to the clas-
sification task.

Park et  al.’s “Sparse Functional Linear Discriminant Analysis” (SFLDA) [22] is a 
binary classification method for univariate functional data that results in a “sparse” 
discriminant function, meaning the estimated function is zero where there is no 
significant difference between groups. This method cannot be applied to our CP 
gait analysis as the data consists of multi-variable functional data with three func-
tions (flexion/extension angle change of hip, knee, and ankle in the gait cycle) and 
the GMFCS levels (0, 1, 2, 3) in the data make the problem multi-class. Extending 
a binary, univariate classification method to a multi-class or multivariate one is not 
an easy task, even with finite-dimensional Euclidean vectorial data. In this study, we 
extend the SFLDA framework to multivariate and multi-class classification in the 
“Methods” section. Our approach is applied to CP gait data, along with comparison to 
FLR and FSVM and our results are interpreted in the clinical context.

The main contributions of our study are listed as follows.

• Innovation in functional classification: We propose an effective, novel functional 
classification method that is capable of accommodating both multivariate and 
multi-class functional data.

log
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π

1− π

)

= α +

∫

I

β(t)X(t)dt,
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• Enhanced interpretability: Our model is able to identify critical signal regions 
within the functional domain, which greatly increases the real-world applicability of 
our work.

• Insights into kinesiological progression: By applying our model to gait data gath-
ered from CP patients across various GMFCS levels, we have unveiled distinct kine-
siological trends that correlate with increasing GMFCS severity. This adds a new 
dimension to our understanding of Cerebral Palsy, potentially informing more per-
sonalized and effective treatment strategies.

Results
Gait data

A 3D gait data set of 833 subjects was collected at Seoul National University Bundang 
Hospital in South Korea from January 2018 to December 2021. Every procedure involv-
ing human participants in this study was conducted in accordance with relevant guide-
lines and ethical standards. This study was approved by the Institutional Review Board 
of Seoul National University Bundang Hospital in South Korea (IRB number B-2201-
735-101). As the data were obtained retrospectively, Institutional Review Board of Seoul 
National University Bundang Hospital waived the informed consent. A 3D gait analysis 
was performed with a Vicon 370 system (Oxford Metrix, Oxford, UK) equipped with 
10 cameras and two force plates. Markers were placed as per the Helen Hayes marker 
[23, 24], which was set by three professional operators who respectively had 22, 5, and 
3 years of experience in motion analysis including marker placement. This guaranteed 
consistent anatomical landmark identification and marker positioning. The three kin-
ematic gait (functional) variables respectively measuring flexion/extension angles at the 
hip, knee, and ankle at either the left or right side are chosen to be used for our analysis. 
Each patient walked barefoot on a 10-m walkway more than three times, out of which 
three trials that represented a patient’s typical gait data were selected. Eventually, the 
data from the selected three trials were averaged to obtain the gait patterns of each vari-
able. Among the 833 subjects, 500 are normal people without musculoskeletal disorders 
(GMFCS level 0) at 13 to 76 years of age, 333 are CP patients at 5 to 65 years of age, 133 
with GMFCS level 1, 156 with level 2, 43 with level 3, and 1 with level 4. The patient with 
level 4 is removed from the analysis.

We consider a total of five classification tasks in this study: Three binary classification 
tasks that compare adjacent levels (0 vs. 1, 1 vs. 2, and 2 vs. 3), a binary task that classi-
fies CP patients from the normal (0 vs. 1,2,3), and a multi-class task that separates the 
three pathological GMFCS levels 1, 2, and 3, from one another. As for the classification 
method, we implemented three univariate functional classification methods (SFLDA, 
FLR, and FSVM) for each of the three measurement variables as well as the proposed 
multivariate SFLDA (MV SFLDA). Here we present and discuss the results with meas-
urements from the right side only. The results from the left side are almost identical and 
they are given in the Additional file 1.
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Classification results

We report classification performances of the methods in Tables  1, 2, and 3, which 
respectively report the overall classification accuracy, false negative rates, and false 
omission rates. False negative rates refer to proportions of patients with higher GMFCS 
that are classified to a lower level, while false omission rates are how many patients with 

Table 1 Classification accuracy with standard errors

Variable Method 0 vs. 1 1 vs. 2 2 vs. 3 0 vs. {1,2,3} 1 vs. 2 vs. 3

R.Hip SFLDA 0.869 (0.019) 0.673 (0.053) 0.853 (0.038) 0.855 (0.021) 0.637 (0.037)

FLR 0.897 (0.020) 0.678 (0.052) 0.839 (0.036) 0.910 (0.018) 0.557 (0.038)

FSVM 0.857 (0.016) 0.593 (0.050) 0.797 (0.013) 0.835 (0.016) 0.534 (0.044)

R.Knee SFLDA 0.910 (0.018) 0.682 (0.056) 0.870 (0.029) 0.871 (0.021) 0.633 (0.042)

FLR 0.927 (0.013) 0.685 (0.045) 0.862 (0.042) 0.928 (0.013) 0.563 (0.051)

FSVM 0.909 (0.015) 0.693 (0.048) 0.877 (0.028) 0.914 (0.017) 0.654 (0.048)

R.Ankle SFLDA 0.917 (0.015) 0.629 (0.040) 0.844 (0.033) 0.912 (0.016) 0.581 (0.042)

FLR 0.924 (0.017) 0.627 (0.051) 0.842 (0.043) 0.933 (0.013) 0.505 (0.052)

FSVM 0.910 (0.022) 0.532 (0.027) 0.793 (0.001) 0.891 (0.022) 0.462 (0.023)

MV SFLDA 0.930 (0.016) 0.672 (0.053) 0.859 (0.033) 0.921 (0.016) 0.619 (0.042)

Table 2 False negative rates with standard errors

Variable Method 0 vs. 1 1 vs. 2 2 vs. 3 0 vs. {1,2,3} 1 vs. 2 vs. 3

R.Hip SFLDA 0.500 (0.070) 0.308 (0.060) 0.533 (0.132) 0.298 (0.048) 0.397 (0.071)

FLR 0.343 (0.081) 0.282 (0.058) 0.564 (0.151) 0.147 (0.034) 0.366 (0.077)

FSVM 0.612 (0.058) 0.370 (0.085) 0.956 (0.087) 0.311 (0.042) 0.647 (0.070)

R.Knee SFLDA 0.401 (0.089) 0.314 (0.059) 0.511 (0.146) 0.319 (0.052) 0.418 (0.089)

FLR 0.264 (0.064) 0.304 (0.058) 0.492 (0.139) 0.120 (0.035) 0.363 (0.075)

FSVM 0.381 (0.062) 0.312 (0.053) 0.525 (0.124) 0.170 (0.045) 0.451 (0.082)

R.Ankle SFLDA 0.331 (0.078) 0.318 (0.054) 0.603 (0.134) 0.188 (0.037) 0.438 (0.070)

FLR 0.239 (0.075) 0.328 (0.057) 0.578 (0.158) 0.100 (0.029) 0.418 (0.095)

FSVM 0.386 (0.098) 0.061 (0.139) 1.000 (0.000) 0.179 (0.044) 0.554 (0.089)

MV SFLDA 0.306 (0.077) 0.303 (0.061) 0.503 (0.138) 0.189 (0.041) 0.417 (0.087)

Table 3 False omission rates with standard errors

Variable Method 0 vs. 1 1 vs. 2 2 vs. 3 0 vs. {1,2,3} 1 vs. 2 vs. 3

R.Hip SFLDA 0.118 (0.015) 0.358 (0.057) 0.127 (0.028) 0.170 (0.023) 0.233 (0.031)

FLR 0.085 (0.018) 0.345 (0.058) 0.134 (0.030) 0.093 (0.019) 0.250 (0.031)

FSVM 0.140 (0.012) 0.439 (0.062) 0.200 (0.014) 0.180 (0.019) 0.310 (0.032)

R.Knee SFLDA 0.095 (0.019) 0.355 (0.056) 0.120 (0.029) 0.174 (0.024) 0.241 (0.035)

FLR 0.065 (0.014) 0.347 (0.045) 0.118 (0.031) 0.075 (0.020) 0.253 (0.036)

FSVM 0.091 (0.013) 0.345 (0.043) 0.122 (0.026) 0.103 (0.024) 0.244 (0.034)

R.Ankle SFLDA 0.080 (0.017) 0.397 (0.045) 0.140 (0.027) 0.112 (0.020) 0.260 (0.030)

FLR 0.060 (0.018) 0.403 (0.059) 0.136 (0.031) 0.064 (0.017) 0.276 (0.035)

FSVM 0.092 (0.021) 0.595 (0.086) 0.207 (0.001) 0.111 (0.025) 0.376 (0.020)

MV SFLDA 0.074 (0.017) 0.357 (0.057) 0.120 (0.029) 0.111 (0.021) 0.243 (0.035)
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higher GMFCS are mistakenly present within each estimated label. These metrics may 
be more relevant than the overall prediction accuracy in the clinical context. For each 
classification task, metrics were calculated with a random 7:3 split of train and test data, 
which was repeated 30 times. Within the train data, fivefold cross-validation was imple-
mented to choose the hyperparameters. To avoid potential bias from the unbalanced 
dataset, each fold was ensured to maintain the same proportion of GMFCS levels as the 
whole data. Specifically, for SFLDA, the optimal smoothness parameter τ is searched in 
the range of [0.0625,  1] and the sparsity parameter � is searched in [0.0156,  0.5]. For 
FSVM, we used a discretized representation of functions to project functional covariates 
to a Euclidean vector space, followed by the implementation of a linear SVM using R 
libraries e1071 [25]. The SVM hyperparameter is tuned in the range of [0.1, 5]. Addi-
tionally, we implemented FLR using R package fda.usc [26], treating the number of 
basis functions as a hyperparameter, with a search space of 3 to 48 with an increment of 
five. For multi-class classification with FLR, we employed a ‘1 vs. the rest’ strategy.

From the tables, it is clear that discriminating normal vs. CP patients is the easiest 
problem, while the 1 vs. 2 is the most challenging binary classification task. This implies 
a significant uncertainty in the GMFCS assignment for milder cases of CP. Among the 
three univariate methods, FLR seems to be most effective for binary problems while 
SFLDA is better for the multi-category problem. The proposed MV SFLDA performs 
comparably to other methods or better in some cases. As for the false negative rates 
in Table 2 and the false omission rates in Table 3, MV SFLDA and FLR show superior 
results, while FSVM is the weakest.

Identification of gait segments relevant to GMFCS classification

In addition to the numerical summaries of the results, a graphical display of the discrimi-
nant function β̂ can reveal more detailed information on the classification. Indeed, Davis 
[27] identified the phases in a gait cycle that characterizes abnormal gaits. Many case 
studies of CP patients have pointed out the differences in gait patterns between GMFCS 
levels. For example, Molloy et al. [28] and Malt et al. [29] showed that mean GDI scores 
are significantly different between GMFCS levels. The latter further specified the kin-
ematic variables such as minimum knee flexion and minimum hip flexion in stance that 
are different between groups. Also, Robinson et al. [30] revealed that Edinburgh Visual 
Gait Score (EVGS) which is derived from kinematic components such as knee termi-
nal swing position and hip peak extension swing significantly differs by GMFCS levels. 
Hence, it would be beneficial to identify the signal regions during the gait cycle that are 
relevant to the classification between GMFCS levels using the estimated discriminant 
function.

Figure 2 shows the estimated β̂ function from the univariate SFLDA and Fig. 3 shows 
the results from MV SFLDA. From these plots, we can identify which phase in the gait 
cycle is related to the GMFCS level differences. Note that while each curve in Fig. 2 is 
normalized to have unit L2 norm, i.e., �β̂j�2 = 1 , the curves in Fig. 3 are normalized col-
lectively so that 

∑3
j=1 �β̂j�2 = 1 . Due to this distinction, Fig. 3 can reveal the difference 

in relative contributions among the functional measurements to the classification task. 
For example, the overall magnitude of β̂j for hip is smaller than knee and ankle, which 
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may indicate that with knee and ankle measurements already utilized for the classifica-
tion, the additional contribution of hip may not be substantial.

In Fig. 2 A and B with β̂ for hip and knee flexion, we can observe that the discrimina-
tion signal is present more in the swing phase than stance phase, and the signal is most 
prominent in the terminal swing of the gait cycle. This indicates the difficulty for more 
severe CP patients with limb advancement completed by knee extension and hip ante-
rior flexion. Also in the top panels, we can see that the timing of the difference shows a 
trend according to the order of comparison. Specifically, the green curve (0 vs. 1) reaches 
a peak, followed by purple (1 vs. 2) and then orange (2 vs. 3). This trend implies the pro-
gress of severity in limb advancement corresponding to GMFCS levels. In Fig. 2 C with 

Fig. 2 Estimated univariate SFLDA discriminant functions β̂ from each kinematic variables. A Hip. B Knee. C 
Ankle. Discriminant functions from binary classification tasks ‘0 vs. 1’, ‘1 vs. 2’, ‘2 vs. 3’ are shown in the first rows, 
respectively shown in solid green, dotted purple, and dot–dashed orange curves. The β̂ from the task ‘0 vs. 
{1,2,3}’ is shown in red in the second row

Fig. 3 Estimated multivariate discriminant function by MV SFLDA (divided into corresponding kinemtaic 
variables). A Hip. B Knee. C Ankle. See Fig. 2 for a description
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β̂ for ankle flexion, it is noticeable that the discrimination signal is large in the loading 
response section (0–10% of the gait cycle) and the pre-swing section (50–60%).

The multivariate discriminant functions shown in Fig. 3 tend to be more sparse than 
the curves in Fig. 2. In A with hip, the mid-swing phase (75–87%) seems relevant to the 
difference between the normal and CP patients, as shown in the red curve in the bottom 
panel. Normally in the mid-swing phase, the knee and hip flexion get closer and the tibia 
becomes vertical, which is not the case for CP patients. Especially the terminal-swing 
region (87–100%) where the purple (1 vs. 2) curve is below zero means that the group 
with higher severity (GMFCS level 2) is more likely to move only with hip flexion mus-
cles, compared to the group with less severity (GMFCS level 1).

In the middle panels for knee flexion in Fig. 3, the signal region around the terminal 
swing indicates that a limb advancement completed by knee extension is a good indica-
tor of the severity of CP. Also, the purple curve (1 vs. 2) peak is a bit delayed at around 
the initial swing phase, which means that the higher severity group (GMFCS level 2) 
is more likely to suffer from abnormal knee flexion so that their feet are not properly 
touching the ground. The orange curve (2 vs. 3) peak is over zero means that the group 
with higher severity (GMFCS level 3) is more likely to move only with knee flexion, com-
pared to the group with less severity (GMFCS level 2) at around the initial phase. This 
means that it is possible to discriminate by MV SFLDA in the part where the orange 
curve (2 vs. 3) is almost zero in Fig. 2.

It can also be seen in the right panels for ankle flexion, the green curve (0 vs. 1) and 
purple curve (1 vs. 2) are below zero in the mid stance phase (15–20%), which indicates 
that ankle flexion, which is related to whether the foot is properly touching the ground, is 
more related to the higher severity groups (GMFCS level 1 and GMFCS level 2, respec-
tively). However, the orange curve (2 vs. 3) is only discriminated around the swing phase, 
which means that the higher severity group (GMFCS level 3) is more likely to suffer from 
abnormal ankle flexion.

Conclusions and discussion
Recent advances in technology have made 3D scans readily available in various fields, 
including medical research. Existing approaches to analyzing 3D gait data mostly rely 
on several numerical summary measures, to which traditional statistical methods are 
applied. Even though there have been approaches to train deep neural networks using 
sequential gait data to detect and classify gait abnormality, they still lack interpret-
ability with respect to the clinical context. In this work, we propose to fully utilize the 
functional nature of a gait, by developing a multivariate sparse functional classification 
method. The proposed MV SFLDA method addresses not only covariance structures 
within each functional variable but also across different variables. The regularization by 
a smoothness penalty and a sparse penalty is implemented for a smooth discriminant 
function that selects important regions. By applying the MV SFLDA method to the gait 
data to solve various GMFCS classification tasks, we could obtain comparable classifica-
tion performance with other functional classification models. Furthermore, through the 
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estimated sparse discriminant functions, we identified signal regions in the gait cycle 
that contribute to the classification of GMFCS levels.

It would be worth noting the difference between our approach and rule-based meth-
ods which also provide interpretable results. As repeatedly emphasized, our method 
utilizes infinite dimensionality of the gait data, not relying on a few summarized infor-
mation. This makes it possible to provide uniquely interpretable classification results, 
namely, the signal regions within the gait. This aspect differentiates our method’s inter-
pretability from that obtained from rule-based methods. At the same time, it is a purely 
data-driven approach that does not require external information as rule-based methods 
do. A possible disadvantage of this machine learning method is that it requires a sub-
stantial amount of data to ensure the generalizability of results for future observations.

The common covariance assumption in this work may limit the applicability of the 
proposed methodology. A simulation study in the setting where the assumption is vio-
lated provided evidence for the robustness of our method. Also, the discretization strat-
egy that we adopted for efficient computation could lead to a potential information loss 
if the underlying functional structure is not smooth. It should also be pointed out that 
the GMFCS levels (0, 1, 2, 3) are treated as nominal labels in this work, where in fact 
they are naturally ordered, i.e., they are ordinal labels. We partially address their ordinal 
nature when reporting one-sided classification measures in Tables 2 and 3. Developing 
an ordinal classification method needs consideration of the ordinality pattern (linear vs. 
nonlinear) and also the strength of the ordinality [31], which is suggested as a future 
research topic.

With respect to the interpretation of our results, it is important to clarify the nuances 
involved. While the GMFCS is generally determined by experts who evaluate the over-
all gait patterns of CP patients, our study is predicated on analyzing three specific kin-
ematic variables—namely, hip, knee, and ankle flexion angles. Also, it’s worth noting that 
although the GMFCS is generally regarded as a reliable metric, its assignment process is 
not entirely objective, particularly when distinguishing between adjacent levels [32, 33]. 
Therefore, this element of subjectivity should be carefully considered when interpreting 
the estimated discriminant functions produced by our model.

Methods
Fisher’s Linear Discriminant Analysis (LDA) is a popular tool for classifying multivariate 
vector data. Its formulaic versatility has allowed for extensions to non-vector data such 
as images [34]. It has also been applied to functional data by numerous studies [35–38]. 
However, many functional LDA methods lack interpretability as they fail to identify the 
relevant regions in the function domain that contribute to discrimination.

Although SFLDA can effectively generate a smooth discriminant function that is zero 
in irrelevant areas for classification, its capability is limited to handling binary labeled, 
univariate functional data. Therefore, we aim to extend this method to accommodate 
multivariate, multi-class functional gait data. To achieve this, we present a theoretical 
framework for multivariate functional classification and the optimal classification rule 
in the first subsection. We use this as the basis for deriving the multivariate extension 
of SFLDA. Additionally, the second subsection defines a discriminant subspace that is 
comprised of discriminant functions specifically designed for multi-class classification. 
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For a more detailed explanation of univariate functional linear classification and a theo-
retical foundation of SFLDA, refer to [22].

Multivariate SFLDA

Let X1, . . . ,Xp denote functional covariates on domains I1, . . . , Ip , respectively, and let 
Y denote the class label, which takes values in {1, 2} . In the gait data, there are p = 3 
dimensions, representing flexion/extension angle measurements for hip, knee, and 
ankle, respectively. The functional covariates all have the same domain, which is one 
gait cycle for each patient and is denoted as Ij = [0, 1] , j = 1, . . . , p . It is assumed that 
each covariate curve Xj is square-integrable, i.e., Xj ∈ L2(Ij) . The covariance function 
between the covariates is denoted as γjl(s, t) = Cov(Xj(s),Xl(t)) for j, l = 1, . . . , p , s ∈ Ij , 
and t ∈ Il . We further assume that the within-class covariance function is the same for 
both groups, thereby ensuring the appropriateness of the LDA framework.

We aim to find a collection of p discriminant functions β = (β1, . . . ,βp) correspond-
ing to the multivariate functional covariate X = (X1, . . . ,Xp) such that the linear 
combination

optimally separates the two groups. Here, �·, ·� is defined as the standard inner product 
between two functions in L2 . Given β , we use the following classification rule: a given 
multivariate functional observation X is classified as Y = 1 if the true classification func-
tion T0(X) is larger than zero, where

The misclassification error of the above classification rule is the probability that the 
estimated label is different from the true label:

where πk = Pr(Y = k) is the prior probability of each class with π1 + π2 = 1 . Sup-
pose the covariates X are Gaussian, so that (�X1,β1�, . . . , �Xp,βp�)|Y  is p-var-
iate normal for any βj ∈ L2(Ij) , j = 1, . . . , p . Then the error in (2) becomes 
Err = 1−�(|δ(β)|/(2σ(β))), where � is the distribution function of the stand-
ard normal, δ(β) = E(F(X ,β)|Y = 2)− E(F(X ,β)|Y = 1) is mean difference and 
σ(β)2 = Var(F(X ,β)) is variance of the projected covariates. Under the Gaussian set-
ting, the error is minimized when β optimizes the following ratio:

It can be seen that both the numerator and denominator can be expressed dimension-
wise: δ(β) =

∑p
j=1�δj ,βj� with δj(t) = E(Xj(t)|Y = 2)− E(Xj(t)|Y = 1) , j = 1, . . . , p , 

and

(1)F(X ,β) =

p
∑

j=1

∫

Ij

Xj(t)βj(t)dt =

p
∑

j=1

�Xj ,βj�

T0(X) = (F(X ,β)− E(F(X ,β)|Y = 2))2 − (F(X ,β)− E(F(X ,β)|Y = 1))2.

(2)Err = π1Pr(T0(X) < 0|Y = 1)+ π2Pr(T0(X) > 0|Y = 2),

(3)max
β

[δ(β)2/σ(β)2].
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where Ŵjl is the covariance operator function defined as

The solution to (3) is characterized by the set of equations 
∑p

j=1 Ŵjl(βj) = δl , l = 1, . . . , p, which is equivalent to solving

This formulation allows more flexibility in incorporating regularization penalties [39]. 
In particular, we aim for smoothness as well as sparsity for the solution. Let β̂ denote the 
estimate of β based on a finite sample. In order to obtain interpretable β̂ that can select 
important regions in Ij , j = 1, . . . , p , we first use the functional L1 norm

that will encourage β̂ to be exactly zero where there is no meaningful discriminating sig-
nal. Another desirable property of β̂ is smoothness. We use the L2 norm of the derivative 
of β:

Thus we propose to solve the following problem with the two regularization terms, after 
replacing Ŵjl and δj with the sample estimates:

where � and τ are tuning parameters that are typically chosen via cross-validation. We 
denote this method as multivariate SFLDA (MV SFLDA). Let β̂ denote a solution of (4). 
The respective roles of the two tuning parameters have been investigated by Park et al. 
[22]. In short, for a fixed � , using a larger τ will yield a smootherβ̂ . On the other hand, 
for a fixed τ , using a larger � will yield a more spares β̂ , i.e., the set 

⊎

j{tj : β̂j(tj) = 0} 
becomes larger.

Note that the proposed method in equation (4) differs from the dimension-wise appli-
cation of SFLDA. The latter solves the following optimization for each j = 1, . . . , p:

σ(β)2 =

p
∑

j=1

p
∑

l=1

Cov(�Xj ,βj�, �Xl ,βl�) =

p
∑

j=1

p
∑

l=1

�Ŵjl(βj),βl�,

Ŵjl(βj)(t) =

∫

γjl(s, t)βj(s)ds.

min
β

J (β) := min
β1,...,βp

1

2

p
∑

j=1

p
∑

l=1

�Ŵjl(βj),βl� −

p
∑

j=1

�δj ,βj�.

�β�1 :=

p
∑

j=1

�βj�1 =

p
∑

j=1

∫

Ij

|βj(t)|dt

�β ′�22 :=

p
∑

j=1

�β ′
j�

2
2 =

p
∑

j=1

∫

Ij

(β ′
j (t))

2dt.

(4)min
β1,...,βp

1

2

p
∑

j=1

p
∑

l=1

�Ŵ̂jl(βj),βl� −

p
∑

j=1

�δ̂j ,βj� + �

p
∑

j=1

�βj�1 + τ

p
∑

j=1

�β ′
j�

2
2,

(5)min
βj

1

2
�Ŵ̂j(βj),βj� − �δ̂j ,βj� + �j�βj�1 + τj�β

′
j�

2
2.
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We denote a solution to equation (5) by β̃j . The key difference between equations (4) and 
(5) is that equation (4) takes the covariance between different components into account, 
whereas equation (5) treats each component independently. For our motivating data 
with CP, it is clear that the gait patterns of the knee, hip, and ankle are correlated, and 
thus their cross-correlations must be incorporated in the classification process.

The joint estimation approach will also help us determine which component contrib-
utes more than others. It’s important to note that in component-wise estimation, the 
estimated discriminant function β̃j is typically normalized to have �β̃j�2 = 1 to ensure 
stable estimation, as it is a common practice in multivariate analysis to normalize a dis-
criminant vector. As a result, it is difficult to know which functional component is more 
relevant to the classification task. However, the multivariate functional solution β̂ may 
have different magnitudes in each functional variable so that the relative contribution of 
the variables can be easily deduced.

Multi‑class multivariate sparse functional classification

Our motivating CP gait data has four GMFCS levels. In this section, we discuss how the 
above multivariate functional classification can be extended to handle multi-class cases 
where the response variable Y takes on K values, K > 2 . The goal is to find a subspace 
spanned by β1, . . . ,βK−1 , where each βk is a collection of p discriminant functions. The 
class assignment is based on the projection of multivariate functions onto the subspace: 
(F(X ,β1), . . . , F(X ,βK−1)) , where F(X ,β) is defined in (1).

The mean difference between the kth and Kth classes, 
δkj = E(Xj(t)|Y = k)− E(Xj(t)|Y = K ) , for k = 1, . . . ,K − 1 , is used to define βk in the 
following equations:

where βk
j  corresponds to the jth functional component for βk , k = 1, . . . ,K − 1 . For 

Euclidean data, it has been noted that the optimal subspace can be found by replac-
ing (δ1l , . . . , δ

K−1
l ) with any K − 1 basis functions of span{δ1l , . . . , δ

K−1
l } [39, 40]. Often 

eigenfunctions are used as a basis, denoted as θ1l , . . . , θ
K−1
l  . We propose to find basis 

functions of (K − 1)-dimensional discriminant subspace by solving the following for 
k = 1, . . . ,K − 1

where the superscript k is omitted for the sake of simpler notations.
Using eigenfunctions has two advantages in our method. Firstly, solving (6) using δkl  

depends on the choice of the base class, which may result in unstable estimates when 
some classes are not significantly different from each other. However, by using eigen-
functions, this dependency is eliminated. Secondly, the hierarchy of eigenfunctions 

p
∑

j=1

Ŵjl(β
k
j ) = δkl , l = 1, . . . , p,

(6)

β̂k = (β̂1, . . . , β̂p)

= argmin
β1,...,βp

1

2

p
∑

j=1

p
∑

l=1

�Ŵ̂jl(βj),βl� −

p
∑

j=1

�θ̂kj ,βj� + �

p
∑

j=1

�βj�1 + τ

p
∑

j=1

�β ′
j�

2
2,
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enables flexible dimension selection in a data-adaptive manner, as shown in [41]. Inves-
tigation of the optimization properties and asymptotic classification performance of 
problems in Eqs. (4) and (6) is suggested as a future work. In the case of p = 1,K = 2 , 
Park et al. [22] established that the misclassification error approaches the Bayes error, 
ErrB := 1−�(�Ŵ−1δ�2/2) , as the sample size increases.

For the efficient computation of our method, we adopt equidistant grid points for dis-
cretization. This widely used approach allows for piecewise linear approximations of 
each function, with derivative evaluations based on finite-difference approximations. 
The discretization transforms our problem into a vector-based computation, enabling 
us to solve it through a lasso-type optimization. Specifically, we employ Fu’s coordinate 
descent method [42] for this purpose. For a class assignment, we use Fisher’s linear dis-
criminant analysis to the data projected to discriminant subspace.

Simulation study
We conducted a comparative analysis between the proposed MV SFLDA and some 
well-known univariate functional classification methods, including FLR and FSVM as 
well as the original univariate SFLDA, using simulated data. Since a key feature of the 
multivariate functional data is the dependence among functional variables, we consider 
three multivariate covariance structures named A, B, and C, for three functional vari-
ables X1,X2 , and X3 . Heatmaps of the three covariances are in Fig.  4, while the exact 
formulation can be found in the Additional file 1. The diagonal and off-diagonal parts 
respectively represent the within and between covariance structures. Under each covari-
ance structure, we consider four settings (settings 1 to 4) that are varied in terms of the 
sparsity of β , number of classes K, and sample sizes. We assume a common covariance 
structure between groups for the first four settings. We also consider setting 5 where 

Fig. 4 Three covariance structures shown in heatmaps. A Type A. B Type B. C Type C.

Table 4 Description of simulation settings

Setting β K nk Common 
covariance

1 Sparse 2 (n1, n2) = (400, 400) Yes

2 Sparse 2 (n1, n2) = (200, 400) Yes

3 Non‑sparse 2 (n1, n2) = (400, 400) Yes

4 Sparse 3 (n1, n2, n3) = (200, 200, 200) Yes

5 Sparse 2 (n1, n2) = (400, 400) No
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each group has a different covariance structure. Here, one group has a covariance struc-
ture of A while the other has B. These five simulation settings are summarized in Table 4. 
The rest of the details of the simulation setting can also be found in the Additional file 1. 
Figure 5 shows sample curves from setting 1.

Table  5 reports the average of classification rates (with standard errors) from 100 
repetitions evaluated on test data twice the size of the training data. We used fivefold 
cross-validation to select the hyperparameters based on prediction accuracy within the 
training data. The consistently superior performance of MV SFLDA suggests a clear 
benefit of taking the multivariate nature of the data into account. The benefit is most 

Fig. 5 Sample curves from setting 1 with three different covariance structures. A Type A. B Type B. C Type C. 
Red and blue thick curves are classwise means

Table 5 Results of the simulation study. Balanced classification accuracy with standard errors is 
shown

Variable
Method

X1 X2 X3 MV SFLDA

SFLDA FLR FSVM SFLDA FLR FSVM SFLDA FLR FSVM

Setting 1 A 0.796
(0.010)

0.796
(0.011)

0.794
(0.010)

0.803
(0.011)

0.822
(0.012)

0.791
(0.010)

0.741
(0.012)

0.748
(0.013)

0.701
(0.012)

0.943
(0.005)

B 0.809
(0.010)

0.812
(0.010)

0.793
(0.010)

0.863
(0.009)

0.863
(0.009)

0.855
(0.009)

0.875
(0.009)

0.876
(0.011)

0.875
(0.008)

0.970
(0.004)

C 0.902
(0.008)

0.902
(0.007)

0.896
(0.008)

0.935
(0.006)

0.937
(0.007)

0.933
(0.007)

0.885
(0.008)

0.883
(0.009)

0.883
(0.009)

0.972
(0.005)

Setting 2 A 0.776
(0.015)

0.775
(0.016)

0.771
(0.014)

0.783
(0.015)

0.807
(0.013)

0.766
(0.015)

0.712
(0.017)

0.718
(0.016)

0.648
(0.027)

0.939
(0.009)

B 0.789
(0.015)

0.792
(0.014)

0.770
(0.015)

0.849
(0.012)

0.850
(0.013)

0.839
(0.013)

0.866
(0.012)

0.863
(0.014)

0.865
(0.014)

0.968
(0.006)

C 0.894
(0.010)

0.892
(0.011)

0.887
(0.011)

0.931
(0.009)

0.932
(0.009)

0.928
(0.009)

0.875
(0.011)

0.872
(0.015)

0.871
(0.013)

0.971
(0.005)

Setting 3 A 0.922
(0.007)

0.932
(0.006)

0.893
(0.008)

0.875
(0.008)

0.872
(0.009)

0.872
(0.008)

0.862
(0.010)

0.861
(0.010)

0.864
(0.009)

0.978
(0.004)

B 0.797
(0.010)

0.797
(0.009)

0.798
(0.009)

0.880
(0.008)

0.882
(0.008)

0.867
(0.009)

0.910
(0.008)

0.910
(0.008)

0.912
(0.008)

0.948
(0.006)

C 0.738
(0.012)

0.737
(0.012)

0.726
(0.011)

0.747
(0.012)

0.752
(0.012)

0.737
(0.011)

0.752
(0.012)

0.752
(0.013)

0.753
(0.012)

0.900
(0.008)

Setting 4 A 0.914
(0.009)

0.913
(0.008)

0.911
(0.009)

0.882
(0.011)

0.893
(0.009)

0.855
(0.011)

0.650
(0.016)

0.675
(0.016)

0.619
(0.012)

0.981
(0.005)

B 0.750
(0.015)

0.745
(0.014)

0.724
(0.014)

0.857
(0.011)

0.856
(0.011)

0.815
(0.013)

0.713
(0.013)

0.705
(0.013)

0.688
(0.013)

0.957
(0.006)

C 0.825
(0.012)

0.824
(0.011)

0.757
(0.021)

0.941
(0.007)

0.946
(0.007)

0.930
(0.007)

0.890
(0.010)

0.886
(0.010)

0.879
(0.010)

0.985
(0.004)

Setting 5 A & B 0.791
(0.011)

0.794
(0.010)

0.777
(0.010)

0.833
(0.012)

0.850
(0.013)

0.827
(0.012)

0.746
(0.014)

0.757
(0.013)

0.749
(0.013)

0.925
(0.007)
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obvious under sparse settings (1 and 2) and under covariance types A and B. Also, from 
the results for setting 4, we can see that the multi-class extension of SFLDA was also suc-
cessful, showing comparable performance with other baseline models. It is important to 
highlight that settings 3 and 5 serve as robustness tests for our proposed model. Specifi-
cally, setting 3 challenges the assumption of a sparse discriminant function, while setting 
5 tests the model against a common covariance assumption. Despite these intentional 
violations of foundational assumptions, our MV SFLDA continues to deliver satisfactory 
performance.

A key feature of the proposed MV SFLDA is that the estimated multivariate discri-
minant function can be sparse, which allows a straightforward interpretation of signal 
regions. Figure 6 compares the estimated discriminant functions of MV SFLDA and FLR 
obtained from setting 1. The curves from MV SFLDA in the upper panels successfully 
identify the true signal regions, while the discriminant functions of FLR fail to do so. 
Our method allows researchers to pinpoint the specific regions and variables that are 
crucial for classification tasks. This feature not only facilitates interpretability but also 
ofurther research. Comparison plots for non-sparse discriminant functions in Setting 3 
can be found in the Additional file 1.

Abbreviations
CP  Cerebral Palsy
GMFCS  Gross Motor Function Classification System
3D  Three‑dimensional
GDI  Gait Deviation Index
SVM  Support Vector Machine
FLR  Functional Logistic Regression
FSVM  Functional Support Vector Machine
SFLDA  Sparse Functional Linear Discriminant Analysis
LDA  Linear Discriminant Analysis
MV SFLDA  Multivariate SFLDA
EVGS  Edinburgh Visual Gait Score

Fig. 6 Estimated discriminant functions β̂ from 100 repetitions for setting 1 with three different covariance 
structures. A Type A. B Type B. C Type C. Discriminant functions estimated by MV SFLDA are presented in the 
upper panels and the functions from univariate FLR are presented in the lower panels. Their mean curve is 
shown in the solid black curve while the true β are in the dotted black curve in each panel
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