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Background
The Rectus Abdominis Muscle (RAM), a striated muscle without tendon, extending 
along the abdomen to the pubic symphysis, undergoes physiological adaptations dur-
ing pregnancy [1–5]. As a striated muscle, the main focus of research has been on con-
tractile muscle cells [6]. RAM has synergistic contractile activity with the pelvic floor 
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Background:  Ex-vivo myography enables the assessment of muscle electrical activity 
response. This study explored the viability of determining the physiological responses 
in muscles without tendon, as rectus abdominis muscle (RAM), through ex-vivo myo-
graphy to assess its potential as a diagnostic tool.

Results:  All tested RAM samples (five different samples) show patterns of electrical 
activity. A positive response was observed in 100% of the programmed stimulation. 
RAM 3 showed greater weight (0.47 g), length (1.66 cm), and width (0.77 cm) com-
pared to RAM 1, RAM 2, RAM 4 and RAM 5 with more sustained electrical activity over 
time, a higher percentage of fatigue was analyzed at half the time of the electrical 
activity. The order of electrical activity (Mn) was RAM 3 > RAM 5 > RAM 1 > RAM 4 > RAM 
2. No electrical activity was recorded in the Sham group.

Conclusions:  This study shows that it is feasible to assess the physiological responses 
of striated muscle without tendon as RAM, obtained at C-section, under ex vivo 
myography. These results could be recorded, properly analyzed, and demonstrated its 
potential as a diagnostic tool for rectus abdominis muscle electrical activity.
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muscles in labor and urinary continence mechanisms [5, 7, 8]. The importance of the 
RAM analysis may be underscored by the fact that some complications during the 
pregnancy, such as gestational diabetes mellitus (GDM), cause serious morphological 
changes [9–11] leading to atrophy and, as a consequence, urinary incontinence (UI) up 
2 years after C-section [1, 9, 12–14].

The challenge of identifying such abnormalities of RAM contractility is overcome by 
its accessibility during C-sections allowing detailed studies of the muscle contractil-
ity [15–17]. For this analysis, the ex-vivo myography of RAM samples may clarify the 
knowledge of the pathophysiology of diseases and disorders that affect the RAM [17–
22]. Although it is widely known that the ex-vivo myography is used to record muscle 
contractility through the myogram, a tracing graphic recording [18, 19, 23], that requires 
tendon attachments through the myograph [24–26]. Currently, there is no informa-
tion available on the ex-vivo electrical activity in skeletal muscle, such as RAM without 
tendon. Therefore, efforts are needed to be made for the success of the RAM analysis 
through myography that will serve as an important tool for female muscle functional 
evaluation, its disorders and the pathophysiological mechanisms involved [26, 27].

The main goal of this study was to determine the viability of detecting electrical activ-
ity through ex-vivo myography in RAM samples without tendon collected during C-sec-
tion as a physiological response to assess its potential as a diagnostic tool, for continuous 
electric stimulation, the fatigue and loss of tissue viability.

Results
Baseline maternal demographics, RAM sample characteristics and the programmed 
parameters of ex-vivo myography are summarized in Table  1. Of the five patients 
with RAM samples collected, all are from term pregnancy, three are primiparous, one 
has obesity plus chronic hypertension and pre-eclampsia and all are continent and 
normoglycemic.

A100% of RAM samples without tendons responded positively to programmed electri-
cal stimulus allowing to record and to analyze the muscle functionality (Fig. 1, Table 1). 
All these 5 RAM samples presented a serial peak of contractile activity with two differ-
ent patterns, viz, three samples (RAM 1, 4, and 5) showed contractility activity charac-
terized by high and low peaks consecutively, and two samples (RAM 2 and 3) showed 
contractility activity with only by high peaks (Fig. 2A–E, Table 1). Both record patterns 
decreased in force at half (22.5 min) of the experiments and all samples remained viable 
during 1 h and 15 min experiments. The elastic ribbon (inert material) from the sham 
group showed no activity, as expected (see Fig. 2F). The response to the programmed 
electrical stimulation in the five RAM samples was measured considering the same 
major and minor peak values, and 100% of response in the ex-vivo myography. RAM 
3 showed higher parameters of weight, width and length, average peak heights greater 
than 17.5 ± 12.5 compared to the other RAM samples, initial peak greater than 20.5 mN. 
However, a higher percentage of fatigue or loss of viability in RAM 3 was observed with 
a decrease in muscle contraction strength at 22.5 min compared with the other samples 
(Figs. 2Cand 3).

RAM 2 showed lower average peak heights and had an initial peak height of 10.8 mN 
and a lower peak of fatigue or loss of viability at 22.5 min (see Figs. 2, 3 and Table 1).
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Figure  3 shows muscle fatigue or loss of viability of five RAM (RAM 1–5) samples, 
respectively. RAM 1 (6.40 mN), RAM 2 (1.56 mN), RAM 3 (8.23mN), RAM 4 (7.23mN), 
RAM 5 (4.42mN) which is at half the time of the electrical activity.

Discussion
This study shows that fresh striated muscle without tendon reacted to electrical stim-
uli and stays viable showing a 100% response to a programmed electrical stimulation. 
This experimental model provides information on the performance and functionality of 
striated muscle without tendons from pregnant women, opening a promising field that 

Table 1  Baseline maternal characteristics of ex vivo myograph—programmed parameters and RAM 
activity

Experimental group Sham group

Clinical characteristics of pregnant woman

Age In years 24 27 25 31 24

Parity Primiparous Second-
pregnancy

Primiparous Primiparous Second-
pregnancy

Gestational 
week

In weeks 38.2 38.4 38.6 37 38.3

Obesity Yes (Y) or No 
(N)

N Y N N N

Chronic arte-
rial hyperten-
sion

Yes (Y) or No 
(N)

N Y N N N

Preeclampsia Yes (Y) or No 
(N)

N Y N N N

Pregnancy 
specific 
urinary 
incontinence

Yes (Y) or No 
(N)

N N N N N

Gestational 
diabetes 
mellitus

Yes (Y) or No 
(N)

N N N N N

RAM 
activity

Description Response Krebs 
solution and 
elastic ribbonRAM 1 RAM2 RAM 3 RAM 4 RAM 5

Total number 
of major 
peak

Major 
peaks/5 min

248 248 248 248 248 –

Total number 
minor peak

Minor-
peaks/5 min

248 248 248 248 248 –

Response 
rate

Compared 
to previously 
programmed 
(%)

100.0 100.0 100.0 100.0 100.0 –

Contraction 
force (mN)

8.50 ± 0.67 6.67 ± 5.03 17.5 ± 12.5 6.7 ± 0.4 15.9 ± 17.6 –

Character-
istics RAM 
samples

Weight 
(grams)

0.30 ± 0.09

Width (cm) 0.51 ± 0.09

Length (cm) 1.50 ± 0.19
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would allow making inferences, analyses, evaluations, and measurements, using their 
tissues through the ex vivo myography method in humans.

It is reported that women with GDM showed altered muscle morphology and 3D 
ultrasound which may influence the functionality of RAM with consequences for UI [14, 
28]. We are aware of other modalities for studying contractility, such as electromyogra-
phy, ultrasound, morphology, etc. However, myography may be considered an approach 
to detect the contractile activity in muscles without tendon not only in UI due to GDM 
but also to allow testing of the effects of ex-vivo drug application to human and animal 
tissues. The electrical stimulation and other parameters used in this study were based 
on previous literature on different muscles with tendons [24, 25]. This study shows that 
RAM reacted to electrical stimulation with contraction force and fatigue. These results 
may, however, be affected by parameters that may interfere with the contraction force 
of RAM samples, such as sample size, width, and length, and the region of the RAM 
collection, which varies from superficial, medial, and deep RAM [29], the presence of 
fat, fascia, the muscular collagen concentration, and the presence of slow and fast fibers 
percentage.

The electrical activity of RAM biopsies after 11.8  Hz electrical stimulation 
(force ~ 10 mN)was lower than other striated muscles, such as the extensor digitorum 
muscle longus (EDL) which showed a force ~ 80 mN [24] and the gastrocnemius muscle 
with a force ~ 62 mN [30–32]. Thus, the absence of a tendon may have a great impact on 
the lower observed contraction force in RAM. As verified in RAM 2, a lower contraction 
force may be linked to the concentration of collagen which is largely found in striated 
muscles during pregnancy [10, 14]. RAM 3 showed a higher initial peak, greater weight, 
width, and length, probably related to a greater number of motor units and sarcomeres 
recruited during muscle contraction likely capable of performing a stronger contraction. 
Since RAM3 was collected before birth its larger force may relate to less muscle fiber 
damage compared to RAM 2 collected after birth which presented a lower initial peak, 
weight, and length [31–34].

A selection of best possible parameters to describe the RAM ex-vivo myography tech-
nique may include: (i) the two types of contraction,(ii) the peak contraction to verify 

Fig. 1  Four steps of the experiment performed from the RAM without tendon
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contraction strength and relaxation time, (iii) the loss of strength characterizing muscle 
fatigue, and (iv) loss of muscle viability by having less processing time from collection 
to experiment that can be graphically manifested by a rising trend of the waves, show-
ing loss of sustainability of contractility of the muscle fiber. It is critical to consider the 
region of the RAM sample collection, which varies from superficial, medial and deep 
RAM [29]. It is known that RAM regions act in series [34] and the differences in the 
force of contraction can be verified by evaluating its electrical activity by separated. In 
addition, the absence of a tendon may have a great impact on the lower observed con-
traction force.

The functionality of the RAM to the electrical stimulus is characterized by a larger 
peak and a smaller peak. This response may be related to the response of the total 
number of slow and fast fibers captured by the myograph transducer. Previous studies 

Fig. 2  Response to the programmed electrical stimulation in five RAM samples. The myograph shows the 
behavior of elastic ribbon (sham) under the same electrical stimulation as RAMs; A–E represents RAM 1–5 
and F represents the sham group
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confirmed that the composition and amount of fiber types slow and fast are key factors 
in muscles’ functionality [35]. The limitations of this study are the reduced number of 
samples analyzed, and the collection procedure and characteristics of the RAM biopsies 
obtained through an invasive surgical procedure. RAM may vary in size, weight, length, 
fiber composition, and the presence of fasciae.

Conclusions
This pilot study demonstrates the viability of ex-vivo myography in striated muscles 
without tendons. The results obtained in this study are the first description of the RAM 
response under electrical stimulation, such as contraction force and fatigue, supporting 
the potential of RAM biopsy obtained at C-section as a tissue that can be used in ex-vivo 

Fig. 3  Fatigue andloss of the viability of five RAM. A–E Samples at half the time of the electrical activity
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myography. This experimental model provides information on the performance and 
functionality of striated muscle without tendons in pregnant women. Myography is an 
approach that might be relevant in detecting the contractile activity in muscles without 
tendon not only in UI due to GDM but also to allow testing of the effects of ex-vivo drug 
application on human and animal tissues. The ex-vivo myography of fresh RAM samples 
is an approach suggested to be included in the full analysis of hyperglycemic myopathy 
as an underlying mechanism of long-term UI due to GDM.

Materials and methods
Recruitment

The pregnant women were recruited at the Perinatal Diabetes Research Center (PDRC) 
of Botucatu Medical School-UNESP, Brazil, between 24 and 28th weeks of gestation. The 
objectives and importance of the research were explained to the pregnant woman. Writ-
ten informed consent to include in the study was obtained. The RAM samples were col-
lected during C-section.

Study population and groups

This viability study constitutes part of a Diamater cohort study protocol [13]. This cur-
rent study followed the CONSORT-2010 statement for the extension to randomized 
pilot and viability trials [36]. This study was approved by the Institutional Research 
Bureau of Botucatu Medical School-UNESP (protocol nº CAAE: 82225617.0.0000.5411). 
Three primiparous and two second-birth pregnant women over 18  years of age were 
included. The recruitment was carried out from August 2019 to March 2021. Two 
groups were used in this study, the study group (RAM biopsy) and the sham group (elas-
tic ribbon).

RAM samples collection

The RAM biopsy collection was performed by the medical staff after surgical suture of 
the myometrium, visceral and parietal peritoneum during C-section with medical and or 
obstetric.

indication, within a maximum period of 10  min after fetal extraction. In non-emer-
gency C-sections, RAM samples could be obtained before childbirth. Immediately after 
resection, a RAM sample of 1  cm was collected, the fat and connective tissue were 
removed, and the muscle samples were placed in a Falcon tube containing 5 mL Krebs 
solution (118.5 μM NaCl, 30 μM KCl, 290 μM NaHCO3, 9 μM MgSO4, 9 μM KH2PO4, 
20 μg CaCl2, 5.5 g D-glucose, 300 μM l-arginine, pH 7.4) and kept at 4 °C until analy-
sis. The time between sample collection and the beginning of ex-vivo myography was a 
maximum of 30 min.

Equipment

This study used a DMT-myograph system (model 820MS DMT-Danish Myo 
Technology®, Ann Arbor, Michigan USA)to assess the electrical activity. The chamber 
contains hooks, where the muscles are mounted to the edges, one end of the cham-
ber, contains a force transducer that converts kinetic energy (muscle responses, under 
electrical stimulation) into an electrical signal that can be recorded and analyzed with 
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PowerLab equipment (PowerLab Data Acquisition System, AD Instruments, São Paulo, 
Brazil) and LabChart software (LabChart 8 for Windows, AD Instruments). The equip-
ment was calibrated according to the manufacturer’s recommendations and as per the 
training obtained at the DTM Company (Ann Arbor, Michigan, USA).

Muscle mounting method

The settings adjusted in the stimulation equipment were performed based on previous 
literature [24, 25, 37] and performed using other muscles with tendons and tissues [24, 
38, 39].

Sample recovery/acclimatization and assembly/fixation of RAM sample to chamber hooks (1.st 

step)

An isolated organ bath was performed in Krebs solution with carbogenic gas for 15 min, 
previously heated to 37  °C, to recover the mechanical properties of the muscle. The 
RAM fragment was mounted vertically, following the arrangement of the fibers, in the 
myograph chamber filled with 4  mL of Krebs solution with continuous gas flow and 
minimal bubbling, which provides essential gases to maintain muscle in conditions that 
simulate the organic environment.

Fiber stabilization (2nd step)

the Krebs solution was changed twice at 15  min intervals, with a fixed tension force 
of 10  mN applied at each Krebs change. To carry out the 3rd and 4th stages, electri-
cal stimulation was performed using platinum electrodes, placed parallel to the longi-
tudinal axis, at 0.8 cm from the muscle tissue and integrated into the myographic cells, 
which provide electrical stimuli through the electrodes, by a series of predefined quad-
ratic waves, due to its characteristic digital pulse (0–1). These conditions allow the 
observation of minimum and maximum points (dual pulse wave, gradient, ramp, sine, 
and triangle), controlled by MyoD analog output software (Danish Myo Technology®, 
Michigan, USA), with voltage-controlled (20 V) computer software and constant current 
management. To capture muscle responses with greater sensitivity and precision, muscle 
stimulation was performed with stimulation equipment (Grass Model S48, Danish Myo 
Technology®, Michigan, USA);

Sample viability (3rd step)

to verify the viability, electrical stimulation was performed with three stimuli of biphasic 
wave force of 10 mN, the voltage of 20 V, and pulse width of 25 mS. Approximate run 
time of 2 min.

Programmed stimulation protocol (4th step)

the application of the continuous alternating current stimulation protocol was per-
formed with a fixed pulse train. Pulse voltage (volts): 20 V, pulse width (milliseconds): 
25  ms, pulse interval (milliseconds): 60  ms, power: 10mN, pulse frequency (Hertz): 
11.8 Hz, pause between pulse trains (milliseconds): 500 ms, pulse trains in the group: 
500, repeat group: 10 times, pause between groups of trains (milliseconds): 60000 ms, 
total run time: 45 min.
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Metric evaluation (5th step)

After the stimulation, the equipment was turned off and the parameters of the muscle 
sample, length(cm), width(cm) and weight(g) were determined. In the analysis of the 
results, the average of three measurements performed to normalize the results was con-
sidered. A digital caliper (STARFER®, Vargem Grande do Sul, SP, Brazil) was used to 
measure muscle length and a digital analytical balance (model SHIMADZU® ATX224K 
ern ABT220-4NM, Kyoto, Japan) was used to weigh the fragment. Muscle weight was 
recorded in grams (dry weight).

Analysis of muscle biomechanics response under electrical stimulation of RAM

Frequency per quadrant

A quadrant with a standard time interval was used for all analyses. A 10:1 speed was 
taken and the interval time was 5 min. All the highest and lowest peaks are counted in 
this 5 min time interval. These results corroborated the contraction frequency in rela-
tion to the electrical stimulus used to confirm whether the muscle contracted or not 
according to the programmed training (electrical stimulus performed by the equipment 
as set up in the software).

Peak height and time to peak

The speed was decreased between the biggest and the smallest peaks so they became 
more evident. The highest and lowest peak height values were recorded and the strength 
and response to the stimulus (muscle function) were calculated.

Force

The speed was increased to detect the descent of the graph (decreased strength which 
probably characterizes fatigue or viability loss).

Datapad

The values of the highest and lowest peaks were extracted from the datapad, this way we 
were able to assess when the peak started to be lowest (decrease in strength and fatigue).

Pulse calculation

According to the equipment set up there are 2 repetitions (two stimuli) in 1 s (2 stimuli/
second), each repetition has 1 ms of duration separated by 500 ms which is the inter-
val time named “rest”. Finally, the overall electrical pulses were calculated, it would be 2 
stimuli per second multiplied by the period of time analyzed.

Statistical analysis

This is a descriptive study to document the viability of the ex-vivo myograph technique 
in RAM samples of pregnant women. Therefore, there were no comparisons, and basic 
statistical analyzes of mean, median, and standard deviation were applied to properly 
assess the data for each sample.
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