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Background
Electrocardiography (ECG) and photoplethysmography (PPG) are two methods that are 
used to measure different physiological parameters of the body, such as heart rate (HR) 
and heart rate variability (HRV); with which it is possible to monitor the behavior of the 
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Background:  Remote photoplethysmography (rPPG) is a technique developed to 
estimate heart rate using standard video cameras and ambient light. Due to the multi‑
ple sources of noise that deteriorate the quality of the signal, conventional filters such 
as the bandpass and wavelet-based filters are commonly used. However, after using 
conventional filters, some alterations remain, but interestingly an experienced eye can 
easily identify them.

Results:  We studied a long short-term memory (LSTM) network in the rPPG filtering 
task to identify these alterations using many-to-one and many-to-many approaches. 
We used three public databases in intra-dataset and cross-dataset scenarios, along 
with different protocols to analyze the performance of the method. We demonstrate 
how the network can be easily trained with a set of 90 signals totaling around 45 min. 
On the other hand, we show the stability of the LSTM performance with six state-of-
the-art rPPG methods.

Conclusions:  This study demonstrates the superiority of the LSTM-based filter experi‑
mentally compared with conventional filters in an intra-dataset scenario. For example, 
we obtain on the VIPL database an MAE of 3.9 bpm, whereas conventional filtering 
improves performance on the same dataset from 10.3 bpm to 7.7 bpm. The cross-
dataset approach presents a dependence in the network related to the average signal-
to-noise ratio on the rPPG signals, where the closest signal-to-noise ratio values in the 
training and testing set the better. Moreover, it was demonstrated that a relatively small 
amount of data are sufficient to successfully train the network and outperform the 
results obtained by classical filters. More precisely, we have shown that about 45 min of 
rPPG signal could be sufficient to train an effective LSTM deep-filter.
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heart. ECG is a method that measures the electrical field caused by heart activity. On 
the other hand, PPG measures variations in light absorption in tissues due to the pul-
satile nature of the cardiovascular system and the variation in blood volume [1]. Heart 
rate monitoring can be conducted by invasive methods such as pulmonary artery cath-
eterization [2], and noninvasive methods classified as contact-based and non-contact-
based. ECG and PPG methods perform contact-based HR measurements, and they may 
cause hygiene issues, discomfort, or even be impossible on fragile skins. Due to these 
possible disadvantages, in [3], Verkruysse et al., demonstrated that PPG signals could be 
measured remotely from a standard video camera, using ambient light as an illumination 
source. This technique, known as remote photoplethysmography offers the advantage of 
measuring the same parameters as PPG in an entirely remote way. In fact, rPPG is the 
non-contact equivalent to the reflective mode of PPG using ambient light as a source 
and a camera as a receptor. The light reflected by the skin is then estimated by capturing 
subtle skin color variations by the camera as blood volume changes. Several images and 
signal processing steps allow to obtain a pulse signal, also called the rPPG signal.

With rPPG or PPG signals, several biomedical parameters can potentially be meas-
ured: heart rate, pulse rate variability, breathing rate, vascular occlusion, peripheral 
vasomotor activity, and blood pressure by pulse transit time [4, 5]. Likewise, the applica-
tions are multiple, and some examples are mixed reality [6], physiological measurements 
of car drivers [7], living skin segmentation [8], control of vital signs in the elderly and 
newborns [9], and face anti-spoofing [10] to name a few.

The first approach implemented to estimate rPPG signals was only based on the green 
channel [3]. Then, approaches based on blind source separation techniques were pro-
posed, e.g., PCA, ICA, EVM, PVM [11–15], and others based on a light tissue interaction 
model to determine a projection vector, e.g., PbV, POS, and Chrom [16–18]. In-depth 
state-of-the-art reviews of these rPPG signal estimation techniques are presented in 
[19–21]. More recently, some methods have adopted the strong modeling ability of deep 
neural networks for physiological measurements from video sequences [22–24]. The 
main advantages of these methods are that it allows achieving good results without the 
need for the designer to analyze the problem in-depth [25]. With the hand-crafted meth-
ods, it is necessary to detect and track the region of interest (ROI) through the frames, 
combine the RGB channels, filter them and estimate the physiological parameters such 
as heart rate or respiration rate. In the deep-learning-based measurement, on the other 
hand, a pipeline-based framework is no longer necessary. Consequently, deep-learning-
based methods are less prone to error propagation in their pipeline. However, recent 
work has focused on heart rate measurement performance rather than understanding 
[25]. Subsequently, the limitations of the system are not always clear. Besides, it is well 
known that the training dataset used is critical.

Usually, the rPPG signal estimated from any of these methods is noisy due to the 
estimation technique, illumination variations, internal noise of the digital camera, and 
motion. Consequently, once the rPPG signals are acquired, unnecessary information 
such as frequencies out of the normal physiological range of interest are removed using a 
filtering process. The smoothing operation is commonly performed by a bandpass filter 
(BP) [12, 26–30], sometimes by a wavelet-based filter (WV) [13, 31–34], and recently, by 
the Savitzky–Golay filter (SG) [35–37]. Although these methods do smooth the rPPG 
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signals, they do not necessarily remove particular signal alterations, which can, however, 
be easily identified by experts. Figure 1 shows the conventional pipeline used in the liter-
ature. The rPPG signal extracted from the video is smoothed through a classical filter for 
subsequent estimation of physiological parameters. However, even after the filtering pro-
cess, irregular shapes of the rPPG signal are observed (see signal parts in green boxes in 
Fig. 1). The remaining alterations in the rPPG signal may affect the accuracy of heart rate 
measurements, but more gravely, avoid further advanced analysis of rPPG signals that 
can be based on peaks detection and pulse shape characteristics on temporal signals. For 
example, authors in [38] measured HRV by estimating the time elapsed between con-
secutive peaks of an rPPG signal to estimate emotional states. In this particular appli-
cation, a noisy rPPG signal with false peaks would lead to erroneous measurement of 
HRV and, consequently, a misinterpretation of the emotional state. Therefore, there is 
a need to improve the accuracy of heart rate measurement and the rPPG signal quality. 
In this work, we want to benefit from the advantages of deep-learning-based methods, 
specifically by carrying out an in-depth study on the use of recurrent neural networks to 
improve the filtering of rPPG signals, proposing different protocols that allow a better 
understanding of these networks in the filtering application.

Recurrent Neural Networks (RNNs) are commonly used in applications where the 
structure embedded in the data sequences transfers valuable information, much like an 
expert would identify the wrong peaks in an rPPG signal. However, these networks show 
the well-known vanishing/exploding gradients problem during backpropagation, and 
because of this, RNNs cannot store information for a very long time. The long short-
term memory (LSTM), on the other hand, is a network with memory blocks in its recur-
rent connections, saving information for more extended periods, avoiding the problem 
present in RNNs networks [23, 39]. The LSTM networks have been used successfully in 
the literature to process medical signals such as ECG, proving the potential of this type 
of network [40–42]. In [43], the authors propose a method of PPG denoising based on a 
bidirectional recurrent denoising auto-encoder (BRDAE) to retain the recurrent infor-
mation in the PPG signal. The network training and testing are performed on an artificial 
noise-augmented PPG database, along with additional PPG signals acquired from sub-
jects during their daily routine. Slapnicar et al. [44] propose an LSTM-based method to 

Fig. 1  Conventional pipeline for video-based physiological parameters estimation. The rPPG signal is 
acquired from a video then a classical filtering method is used. The physiological parameters are calculated 
from the filtered signal. After the filtering, some irregular shapes of the signal remain (ground truth is the 
blood volume pulse (BVP) signal measured with the CONTEC CMS60C pulse oximeter)
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enhance reconstructed rPPG signals obtained by the POS method. For this purpose, they 
use a bandpass filter and a two-step wavelet filter to finally use a 2-layer LSTM network, 
using a many-to-one sequence-to-sequence approach. Although the results are satis-
factory, using two classical filtering methods before using LSTM networks is necessary, 
when a single LSTM filtering stage could be sufficient. To the best of our knowledge, the 
only approach used in the literature to filter rPPG signals directly with an LSTM-based 
filter is the one proposed in [45], where the authors proposed a two-layer LSTM model 
to filter the rPPG signals in the MMSE-HR database. The authors affirm that a deep neu-
ral network requires thousands of training data, and their way of facing this problem is 
to train the network in synthetic signals based on sine signals with random Gaussian 
noise and then fine-tune the network in the database. However, although the proposed 
synthetic signals manage to simulate the rPPG signals with frequencies corresponding 
to the heart rate, they do not contain the characteristic shape of the signals in a real 
acquisition scenario, preventing the network from learning the subtle details of the sig-
nal such as saving the dicrotic notch shape or suppressing double peaks as described in 
[46]. Table 1 shows the publications mentioned above organized according to the type of 
signal and the method used for their respective objective.

In summary, these previous works filter PPG or rPPG signals with different 
approaches, where the authors agree that it is necessary to obtain these signals with the 
best possible quality. Although these works already generate considerable progress in 
extracting quality rPPG signals, there is still room for improvement. In addition, despite 
the excellent performances of biomedical signal filtering techniques based on machine 
learning (e.g., [43, 47]), they are still rarely used compared to more classical techniques 
(like bandpass, etc.). We believe that this is due to the lack of studies investigating the 
advantages, limitations, and sensitivity of these methods. There is no in-depth study on 
the specific aspect of neural-network-based filtering, namely the influence of amount of 
training data, influence of input signal quality and influence of dataset used for training 
and testing. To our knowledge, our paper is the first to present such a study on biomedi-
cal signals and, in particular, on rPPG signals.

Indeed, in deep-learning-based applications, the amount of data used during the 
training of a network plays a fundamental role in its performance. For example, in com-
puter vision applications, generalization tends to improve with the size of the training 
sets [48]. However, there is no definitive answer to whether the amount of data during 

Table 1  Publications related to classical and machine learning methods for filtering ECG, PPG, and 
rPPG signals

Publications Signal Method Objective

[12, 26–30] rPPG Bandpass Filtering

[13, 31–34] rPPG Wavelet Filtering

[35–37] rPPG Savitzky–Golay Filtering

[40–42] ECG LSTM Classification

[43] PPG BRDAE Filtering

[44] rPPG Bandpass+wavelet+LSTM Enhance 
reconstructed 
rPPG

[45] rPPG LSTM Filtering
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training improves all deep-learning applications. For this reason, it is critical to define 
in each deep-learning-based application if there is a dependency on the amount of data 
used during the training. In this way, it is possible to better understand the limitations 
and sensitivities of these networks.

In [47], we proposed the LSTM-DF filter to be used on rPPG signals estimated by the 
PVM method in the MMSE database [49], where we considered the filtering of these sig-
nals as a sequence-to-sequence regression problem, so we entered multiple inputs (sam-
ples) to the LSTM-DF filter to generate multiple outputs. This sequence-to-sequence 
approach is known as many-to-many (LSTM-MTM). The other sequence-to-sequence 
approach is the many-to-one (LSTM-MTO), where multiple inputs give a single output, 
like the one used in [44]. In this article, we analyze the performance of LSTM recurrent 
networks in rPPG signal filtering. Using the LSTM deep-filter, we develop an in-depth 
study of the network performance, adding experiments and approaches to determine the 
limitations and sensitivities of using these networks, allowing us to understand the best 
configuration to train an LSTM-based model to filter rPPG signals.

To the best of our knowledge, this is the first work where the performance of LSTM 
recurrent networks for rPPG signal filtering is studied. The main contributions of this 
work include (1) using three public-domain databases in intra-dataset and cross-dataset 
scenarios, we experimentally demonstrate the advantages of using LSTM networks in 
rPPG signal filtering. (2) We present a comparison between two sequence-to-sequence 
LSTM-based filters, namely MTO and MTM approaches, where MTM proved to be the 
most successful method. (3) We compare the use of the LSTM-based filter with six state-
of-the-art rPPG signal estimation methods: PVM, POS, PbV, G-R, Chrom, and Green, 
where we observed high stability of the LSTM-based filter concerning different input 
data obtained with different methods. (4) Interestingly, we also show that a relatively 
small dataset can be enough to train the network and that there is a significant depend-
ence on the signal-to-noise-ratio average on the training signals.

The remainder of the paper is organized as follows: in “Results” and “Discussion” sec-
tions, we present the outcome of the proposed experiments and a discussion. After 
“Conclusions” section, in “Methods” section, we explain the three public databases used, 
the protocols proposed to understand the limitations and sensitivities of the LSTM-
based network, and the two approaches of the LSTM-based filter, namely MTO and 
MTM. Finally, we show the evaluation metrics and the implementation details of the 
network used.

Results
In this section, we present the results of a series of experiments where we compare 
three classical filters: bandpass, wavelet, and Savitzky–Golay, with two LSTM-based 
deep-filter approaches—MTO and MTM. We use fivefold subject-independent cross-
validation on the MMSE-HR, VIPL-HR, and COHFACE databases. To evaluate the 
filtering methods rigorously, we use the mean absolute error (MAE) and the Pearson 
correlation coefficient (r) to describe the quality of the heart rate estimations, and also 
the signal-to-noise ratio (SNR), and the template match correlation (TMC), to describe 
the signal quality. Metrics are calculated with a 15-s sliding window with a 0.5-s step. 
SNR, TMC, and r are to be maximized, while MAE has to be minimized For ease of data 
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visualization, the MAE metric is presented in the figures with the vertical axis inverted; 
this is done so that the best performances for the four metrics are always at the top of 
the graphs. Best results in experiments intra-dataset and cross-dataset are presented in 
bold red. Metrics, databases, and protocols are explained in detail in “Methods” section.

Intra‑dataset

Figure 2 presents the results associated with the heart rate measurement metrics in the 
MMSE-HR, VIPL-HR, and COHFACE databases. On the left are the MAE values, and 
on the right r, on the upper part are the results of the k-fold cross-validation, and on the 
lower part is the final evaluation. Figure 3 depicts the metrics related to the signal qual-
ity, in the left part the SNR coefficient and the right part the TMC coefficient.

Table 2 contains the rPPG-SNR average of the signals acquired in each method, where 
the same 2,256 subjects have a total rPPG signal duration of 1,114.5 min for the six 

Fig. 2  Intra-dataset heart rate measurement evaluation. Results of the filters: bandpass (BP), wavelet (WV), 
Savitzky–Golay (SG), LSTM-DF MTO and MTM. Best values are presented in bold red

Fig. 3  Intra-dataset signal quality evaluation. Results of the filters: bandpass (BP), wavelet (WV), Savitzky–
Golay (SG), LSTM-DF MTO and MTM. Best values are presented in bold red

Table 2  RPPG-SNR average in the VIPL-HR signals acquired by the methods: PVM, POS, PbV, G-R, 
Chrom and Green

PVM-VIPL POS-VIPL PbV-VIPL GR-VIPL Chrom-VIPL Green-VIPL

rPPG-SNR [dB] 1.07± 4.25 0.32± 3.71 −0.29± 3.3 −0.51± 4 −0.92± 3.4 −1.36± 4.05
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sets. As the second part of this experiment, six state-of-the-art methods for rPPG sig-
nal estimation: PVM, POS, PbV, G-R, Chrom, and Green, were chosen to be applied to 
the VIPL-HR images. Figure 4 compares the six state-of-the-art rPPG signal acquisition 
methods after using the MTM filter. Tables  3 and  4 present the cross-validation and 
final evaluation results, respectively, for the six methods (best results in bold).

Cross‑dataset

Figure 5 shows the results of the metrics related to the estimation of the heart rate and 
signal quality, during the cross-dataset experiment, for the MMSE-HR, VIPL-HR, and 
COHFACE databases. The first row contains the MAE values, the second one is r, the 
third one with the SNR coefficient, and the fourth one with the TMC coefficient.

Amount of training data

Table 5 contains the parameters of the rPPG signals used in this experiment, the average 
rPPG-SNR, the total duration of the signals in minutes, and the number of signals. Note 
how the average rPPG-SNR is similar for the seven sub-sets; this ensures that the results 
obtained in this experiment are not affected by the quality of the signals but only by the 
quantity. Figure 6 depicts the results of this experiment. On the left side of the figure are 
the metrics MAE and r, and on the right side, SNR along with TMC. MAE, SNR, and 
TMC are the metric average with its confidence interval.

rPPG‑SNR dependence

The characteristics of the rPPG signals used in this experiment are presented in Table 6, 
the average SNR of the rPPG signals, the total duration, and the number of signals. Note 
how the duration and number of signals for the VIPLA sets are balanced, while the more 
considerable variation is found in rPPG-SNR due to the quality of the videos and the 
rPPG estimation method. Figure 7 presents the metrics MAE and r on the left and SNR 
with TMC on the right for the first part of this experiment, where we trained the LSTM 
network in VIPLAQi, i=[0,1,2,3,4] and tested in VIPLB.

As the second part of this experiment, the LSTM network is trained in VIPLB to be 
tested in VIPLAQi, i=[0,1,2,3,4]. Figure 8 depicts the results given by this second part 
of the current experiment. The first row has the MAE metric, the second one r, the third 
one SNR, and the final one TMC.

In the following section, we will discuss the results presented.

Discussion
Based on the tables and figures presented in ”Results” section, this section analyzes in 
detail the behavior of the LSTM network in each of the proposed experiments.

In the intra-dataset experiment, Figs. 2 and  3 show that MTO and MTM present good 
results in the MMSE-HR database compared with classical filters. The BP and WV fil-
ters have results very close to those obtained by LSTM-based filter approaches in MAE 
and r. We believe this is due to the good quality of the videos and scenarios within the 
database, verifiable in the minimal difference in MAE and r from the raw rPPG signal 
and all the filtering methods analyzed. In the VIPL-HR database, the MTO and MTM 
approaches always have the best results, being the MTM approach the best one. The 
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good performance of the LSTM-based filter in this particular dataset is due to a large 
number of signals available, allowing the network to learn in a greater variety of signals 
than the MMSE-HR and COHFACE databases, where there is less variety of the signals. 
In the COHFACE dataset, the MTM approach is the LSTM-based filter that gives the 
best results, with the only exception of r in the final evaluation, where the value r = 0.19 

Fig. 4  rPPG methods comparison with LSTM-DF MTM. Comparison between rPPG estimation methods after 
using LSTM-based filter many-to-many approach in a intra-dataset scenario

Fig. 5  Cross-dataset. Results of MAE, r, SNR and TMC metrics in the cross-dataset experiment

Table 5  Parameters of the rPPG signals in amount of training data 

VIPLA100 VIPLA050 VIPLA025 VIPAL010 VIPLA005 VIPLA001 VIPLB

rPPG-SNR [dB] 1.27± 4.07 1.25± 4.04 1.21± 4.0 1.15± 4.13 0.99± 4.11 1.03± 3.92 1.09± 4.28

Duration [min] 891.78 446.11 223.5 88.87 45.1 9.04 222.7

Number of signals 1084 902 451 180 90 18 452
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is very close to the best result r = 0.22 . The poor values shown in the raw signal rPPG in 
MAE and r can be associated with the compression of the videos present in this specific 
database. It is important to note that for the three databases, the best SNR and TMC 
values are those acquired by the two approaches of the LSTM network. However, MTM 
increases the quality of the signals to a greater extent.

In Tables  3 and 4, it can be seen that the LSTM-based filter always gives the best 
results compared with the filtering methods used in the literature. In MMSE, VIPL, and 
COHFACE databases, SNR and TMC metrics show significant improvements in signal 
quality when using the MTM approach. On the other hand, the MTO approach is only 
slightly higher than MTM in the MAE and r metrics. Finally, Fig. 4 shows that the filter 
is stable and able to work with rPPG signals from different algorithms. As a conclusion 
of this experiment, we could say that in an intra-dataset scenario, both sequence-
to-sequence approaches outperform the results provided by the filters found in the 

Fig. 6  Amount of training data. Results in the amount of training data experiment

Table 6  Characteristics of the rPPG signals in rPPG-SNR dependence protocol

VIPLAQ0 VIPLAQ1 VIPLAQ2 VIPLAQ3 VIPLAQ4 VIPLB

rPPG-SNR [dB] 6.42± 2.48 5.64± 3.15 1.89± 6.23 0.73± 5.56 −2.69± 2.66 1.09± 4.28

Duration [min] 195.22 196.42 195.22 198.3 197.56 222.7

Number of signals 400 400 397 407 400 452

Fig. 7  rPPG-SNR dependence 1. Results of MAE, r, SNR and TMC metrics in the rPPG-SNR dependence 
experiment. Training in VIPLAQ0, VIPLAQ1, VIPLAQ2, VIPLAQ3, and VIPLAQ4, and testing in VIPLB
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literature; however, MTM turns out to be better than MTO, especially when it comes to 
improving the quality of the signal.

The cross-dataset protocol is particularly interesting because based on Fig. 5, there is 
a dependence between the signals used during training and testing. This behavior may 
be because each dataset has rPPG signals of a specific quality. For example, the MMSE 
database has an rPPG-SNR average of 7.65± 4 dB, indicating that the signals are mostly 
of good quality, VIPL-HR has a larger amount of data, and its rPPG-SNR average is 
1.04 ± 4 dB, COHFACE on the other hand, has an rPPG-SNR average of −0.96± 4 dB. 
This signal quality difference between the three datasets is also visible in Fig. 9. There-
fore, if there is a dependence between the quality of the signals used for training and 
testing: first, training the network on high-quality signals (MMSE-HR) and testing on 
low-quality signals (COHFACE) or vice versa should give poor performance, and sec-
ond, training on a broad spectrum of good and poor quality signals (VIPL-HR) should 
give good performance.

Analyzing the metrics in Fig. 5, we notice that when training in VIPL-HR and testing 
in MMSE-HR, LSTM-MTO performs better in r, SNR, and TMC than other filters, but 
in MAE, it is the second-best value after WV. LSTM-MTM improves the signal qual-
ity metrics but fails to outperform the other methods in the heart rate measurement. 
Training in VIPL-HR and testing in COHFACE shows how the LSTM-based filter out-
performs the other filters. The MTM approach is the best of the two proposed. Training 
in MMSE-HR and testing in VIPL-HR allows the LSTM-MTM filter to present the best 
result in MAE, a value very close to the best values given by BP and WV in r, and the 
best results in SNR and TMC. LSTM-MTO, on the other hand, gives values close to the 
best values in MAE and r but decreases the values of SNR and TMC. Continuing with 

Fig. 8  rPPG-SNR dependence 2. Results of MAE, r, SNR and TMC metrics in the rPPG-SNR dependence 
experiment. Training in VIPLB and testing in VIPLAQ0, VIPLAQ1, VIPLAQ2, VIPLAQ3, and VIPLAQ4 sub-sets
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the training in MMSE-HR but testing in COHFACE, we can see that LSTM-MTO has 
the best results for the MAE and r metrics, but some values are lower in SNR and TMC. 
LSTM-MTM, on the other hand, has a contrary behavior, it improves the other filters in 
SNR and TMC, and although it improves the result of r, it does not manage to overcome 
the BP and WV filters in MAE. Therefore, neither of the two proposed methods is suf-
ficiently robust to over-perform the four metrics.

LSTM-DF-MTM shows to be more sensitive to the noise of the training signals, this is 
visible when we test in VIPL and MMSE having trained in COHFACE, LSTM-DF-MTO 
on the other hand, is more stable in the same conditions.

Therefore, the cross-dataset scenario shows that for the LSTM-based filter, there is a 
dependence on training and test data related to the quality of rPPG signals, reflected in 
the rPPG-SNR value of the databases. We corroborated this hypothesis in the rPPG-SNR 
experiment.

Regarding the experiment amount of training data, in Fig 6, the many-to-one approach 
shows that when decreasing the number of data from 100% to 50% and 25%, MAE and r 
remain stable, when decreasing from 10% and 5%, MAE is stable but the value of r starts 
to decrease, finally when having 1% of data MAE and r decrease. Concerning signal qual-
ity metrics, the behavior is similar; MTO still has higher values than the classic filters in 
all configurations, although in the 5% and 1% of data, SNR and TMC show lower values 
than those present between 100% and 10% of data.

In HR measurement, the MTM filter shows a higher sensitivity to the amount of train-
ing data than the MTO. Even though the MAE value remains relatively constant, r starts 
to decrease from taking percentages equal to and less than 25%. In the case of signal 
quality metrics, the many-to-many approach shows a higher performance than many-
to-one regardless of the amount of training data, and it is always higher than the conven-
tional filters.

Both sequence-to-sequence approaches can be trained with a set similar to the 
VIPL005 (45 min, 90 signals) and start to obtain better results than conventional filters 
in a test set with similar rPPG-SNR values.

In the HR measurement metrics presented in the experiment rPPG-SNR dependence 
(Fig.  7), the MTO filter does present dependence on the rPPG-SNR during training; 
MAE values improve from VIPLAQ0 to VIPLAQ3, and the results decrease only a little 
in VIPLAQ4, r presents a similar behavior by having better results in the training sets 
with low values of rPPG-SNR than in the sets with the higher ones. In terms of signal 
quality, the variation in both SNR and TMC results is small, but the lower values agree 
with the cleaner VIPLAQ0 and the noisier VIPLAQ4.

In the MTM filter, the dependence is more evident. Related to HR measurement, 
MTM is more sensitive to train in signals with the lowest and highest indices of rPPG-
SNR (VIPLAQ4 and VIPLAQ0, respectively) than the MTO approach. The high-
est performances are presented in VIPLAQ2 and VIPLAQ3 for MAE and r. In signal 
quality, SNR and TMC only seem to be sensitive to the training set VIPLAQ4 because 
for the other four training sets, their values are constant and even higher than those 
presented by the MTO approach. As a conclusion of the first part of this experiment, 
we can say that using the VIPLB test set whose rPPG-SNR average is 1.09± 4.28 dB, 
the two best training sets are VIPLAQ2 and VIPLAQ3, which coincide as they are the 
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closest in quality of the rPPG signals with an rPPG-SNR average of 1.89± 6.23 dB and 
0.73± 5.56 dB, respectively. Therefore, there is a dependence with the rPPG-SNR aver-
age in the training and testing sets, specifically, the rPPG-SNR in the training set must be 
similar to that of the test set to have good results.

The second part of the experiment, rPPG-SNR dependence depicts in Fig.  8 that in 
MTO and MTM, results are better in the test set VIPLAQ0, and they degrade as the test 
set VIPLAQ4 is reached. The only exception is presented in TMC given by MTM, where 
the values are independent of the testing set. For the rest of the metrics, all values with 
their standard deviation get worse when the testing set gets noisier. In HR measurement, 
the performance of MTO decreases more abruptly than with MTM. On the other hand, 
interestingly, if the LSTM training can be ensured in a data set with a high and low aver-
age rPPG-SNR signal balance, there will be an improvement in the heart rate measure-
ment and in the quality of the rPPG signals compared to classical filters.

Conclusions
In this article, we analyzed the performance of an LSTM network for rPPG filtering 
using multiple protocols. Two sequence-to-sequence filter approaches were evaluated: 
many-to-one and many-to-many. We used three public databases in different experi-
ments from which we can draw the following conclusions: the experiment amount of 
training data showed that a relatively low number of signals is needed to train the LSTM 
network efficiently. It was shown that even a dataset of approximately 90 signals total-
ing 45 min in total could be sufficient as a training set. In an intra-dataset scenario, both 
MTO and MTM over-perform the conventional filters, but it is the MTM approach that 
gives the best results.

We presented a comparison between the six state-of-the-art methods for rPPG esti-
mation: PVM, POS, PbV, G-R, Chrom, and Green after using the LSTM-based filter. The 
results suggest stable values better than conventional filters, where using the LSTM-
based filter on rPPG signals acquired by the PbV method gave the best performance.

The cross-dataset and rPPG-SNR dependence protocols are perhaps the most inter-
esting experiments as they reflect a clear dependence of the LSTM-based filter on the 
rPPG-SNR average of the training and testing sets. Concerning this aspect, experiments 
showed that it is recommended that the rPPG-SNR average of the training set has to be 
as close as possible to those of the test set. This ensures the LSTM-based filter overper-
forms classical filters even in a cross-dataset scenario.

The experiments let us appreciate how an LSTM-based filter is a better alternative 
than the classical filters, which improves not only the heart rate measurement but also 
the quality of the signal. Finally, as future work, we are using the LSTM-based filter for 
rPPG signals acquired in the near-infrared NIR spectrum to improve the quality of the 
signals, and we will evaluate the benefits of our LSTM-DF to improve the performance 
of methods based on a precise analysis of rPPG signals, such as, for example, the analysis 
of HRV for the estimation of emotional states.

Methods
Data

We used the following three public databases in our experiments.
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MMSE‑HR

The Multimodal Spontaneous Emotion Corpus—Heart Rate database (MMSE-HR) 
[49] includes videos with many facial movements and expressions. The database 
has been built for further investigation in emotion recognition. Forty subjects are 
recorded performing 102 tasks, the resolution of each video is 1040 x 1392 pixels with 
a frame rate of 25 fps, the BIOPAC 150 data acquisition system was used to obtain the 
blood pressure ground truth at 1 kHz. The duration of each video is between 30 and 
60 s.

VIPL‑HR

The research in this paper uses the VIPL-HR database collected by the Institute of Com-
puting Technology Chinese Academy of Sciences [22, 50]. The database contains 107 
subjects recorded by three different instruments in nine scenarios: stable, motion, talk-
ing, dark, bright, long distance, exercise, phone stable, and phone motion. Although this 
database contains 752 near-infrared videos, we only consider the 2378 visible light vid-
eos, the resolutions of the videos are between 960 x 720 and 1920 x 1080, at 25 and 30 
fps, respectively. The ground truth photoplethysmography signals were recorded using 
the CONTEC CMS60C BVP sensor at 60 Hz.

COHFACE

In the COHFACE database [51], four 1-min videos with different luminance were 
acquired from 40 subjects, generating 160 videos with a resolution of 640x480 pixels 
and a frame rate of 20 Hz. The BVP ground truth signals of photoplethysmography were 
acquired at 256 Hz.

Ground truth selection

In the databases used, due to the movement of the subjects, or failures in the acqui-
sition devices, some ground truth signals present anomalies. These inconsistencies 
(gaps and false peaks) usually happen at the beginning and end of the acquisitions and 
less frequently during the measurement. However, due to the nature of the LSTM-
based networks, it is not suggested to perform the training procedure with ground 
truth signals that present these types of problems. Therefore, a ground truth selec-
tion step is necessary. For this purpose, ground truth signals are checked individu-
ally to take only the continuous segment with a reliable ground truth morphology. 
In most signals, it was sufficient to remove the first and last seconds, while a con-
siderable part of the signal was removed in a small group. In order to maintain the 
reproducibility of the studies carried out in this article, attached to this document 
are the supplementary files with the information of the signals that were cropped in 
each database (Additional files 1, 2,  3). Once only the reliable ground truth signals 
are selected; Table 7 contains the parameters related to rPPG signals acquired by the 
PVM method (PVM-rPPG) [13] from the three databases: MMSE-HR, VIPL-HR, and 
COHFACE. rPPG-SNR is the average of the SNR coefficient of rPPG signals. Figure 9 
depicts examples of rPPG signals from the three databases used. Note how the quality 
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of the acquired rPPG signals varies for each database. This is due to the nature of the 
scenarios where the videos were acquired for each database, i.e., luminance, move-
ment, and other factors present during the acquisition.

It is essential to mention that the VIPL-HR database was designed to estimate rPPG 
signals and contains a large amount of data during various scenarios. Due to this, its 
average rPPG-SNR is 1.07 dB. MMSE-HR and COHFACE, on the other hand, have 
a considerably smaller amount of data and differ from each other, being MMSE-HR 
the database with the best quality in its rPPG signals with an average rPPG-SNR 
of 7.65 dB, and COHFACE with an average rPPG-SNR of -0.96 dB, being the most 

Table 7  Parameters of the PVM-rPPG signals presented in the MMSE-HR, VIPL-HR, and COHFACE 
datasets

MMSE-HR VIPL-HR COHFACE

rPPG-SNR [dB] 7.65± 3.78 1.07± 4.25 −0.96± 4.17

Duration [min] 64 1,114.5 166

Number of signals 98 2256 164

Fig. 9  rPPG examples. Examples of rPPG signals from the three databases used: MMSE-HR, VIPL-HR, and 
COHFACE
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challenging database, these negative values are perhaps due to the level of compres-
sion of the videos or the luminance in the scenarios.

Protocols

In the following, we will describe the experiments carried out to validate the use of an 
LSTM network for filtering rPPG signals. We conducted a classical intra-database evalu-
ation followed by a cross-dataset evaluation. Additionally, we present experiments to 
study in more detail the advantages and limitations of using an LSTM-based network 
for rPPG filtering. First, we demonstrate that it is not necessary to use a large amount of 
data to train the network successfully and that there is a clear dependence of the rPPG-
SNR average in the rPPG signals during training. It is important to mention that there is 
no overlap between training and testing data in any of the experiments presented.

Figure 10 shows the distribution made in the databases used to study intra- and cross-
dataset evaluations. A lists the databases used: COHFACE, MMSE-HR, and VIPL-HR. B 
contains the rPPG signals acquired by: PVM [13], POS [17], PbV [16], G-R [17], Chrom 
[18], and Green [3]. C presents the intra-dataset and cross-dataset evaluations with met-
rics measurement. Figure 11 resumes the PVM-VIPL signal generated in Figure 10, to be 
used in the study of the influence of the amount of data and noise on the rPPG signals 
during the training of the LSTM network, the protocol related to the amount of training 
is later called amount of training data (top panel), and the protocol related to noise is 
called rPPG-SNR dependence (bottom panel).

Intra‑dataset

In this standard evaluation protocol, we divided each dataset into 80% training and 20% 
testing to perform a final evaluation, within the 80% we developed k-fold cross-valida-
tion (CV for short) of fivefold, as shown in Fig. 12. In the first part of this experiment, 
we evaluated the performance of the LSTM-MTO and LSTM-MTM for the PVM-
MMSE, PVM-VIPL, and PVM-COHFACE sets. In the second part, to analyze the filter 

Fig. 10  Intra- and cross-dataset rPPG evaluation. A Are the list of the databases used. B Are the rPPG 
measurement methods used, and C are the evaluation criteria along with the measurement of metrics
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robustness with rPPG signals acquired by different state-of-the-art methods, we chose 
the PVM-VIPL, POS-VIPL, PbV-VIPL, GR-VIPL, Chrom-VIPL, and Green-VIPL sets.

Cross‑dataset

A realistic evaluation of the filter is to train the system using one database and to test it 
using other databases: this is the cross-dataset protocol. For this reason, the rPPG sig-
nals of the three sets, PVM-MMSE, PVM-VIPL, and PVM-COHFACE, were used indi-
vidually as a training set to perform the test on the two remaining sets of data.

Amount of training data

In this experiment, we wanted to study the sensitivity of the LSTM-based filter to the 
amount of information given during training. A stratified train–test–split in PVM-VIPL 
was made, having the VIPLA and VIPLB sets with 80% and 20% of signals, respec-
tively. Consequently, we used the VIPLB set as a testing set and VIPLA as the train-
ing one. This way, we take the set VIPLA and perform a stratified division at 100%, 
50%, 25%, 10%, 5% and 1% of the data, calling these training sub-sets VIPLAx with 
x=[100,050,025,010,005,001]. Note that the set VIPLA100 is indeed the same VIPLA, 
but this notation is used only to appreciate the sub-sets characteristics easily. The strati-
fied division guarantee sub-sets with a balanced rPPG-SNR. This last detail is important 
as we will see in rPPG-SNR dependence, that having training and testing sets with unbal-
anced average rPPG-SNR may change the performance of the network.

Fig. 11  Protocols. PVM-VIPL is used to perform the protocols amount of training data (top panel), and 
rPPG-SNR dependence (bottom panel)

Fig. 12  Evaluation. Fivefold cross-validation and final evaluation used in the intra-dataset protocol
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rPPG‑SNR dependence

In this experiment, we wanted to simulate a scenario where the training and testing 
sets of the LSTM-based filter present a different signal quality given by the rPPG-
SNR values. This scenario may happen when rPPG signals are estimated from differ-
ent approaches, as we did in cross-dataset, and in the intra-dataset experiment with 
PVM-VIPL, POS-VIPL, PbV-VIPL, GR-VIPL, Chrom-VIPL, and Green-VIPL. In 
order to assign a label representing the level of the rPPG-SNR, the SNR average of 
each subject ( SNRi with i ∈ [1,N ] ) was measured and assigned a label ei : 0, 1, 2, or 
3, where 0 indicates a low value of rPPG-SNR and 3 a high one. We relate the value 
of rPPG-SNR to the quality of the signals, and to define the rPPG-SNR thresholds 
for the labels, the maximum and minimum SNR values were taken from all subjects, 
and this range was divided among h-length 4 sub-ranges. This rPPG-label-assignment 
procedure is defined in equation 1:

where h is given by equation 2:

Using these labels, we generated five new sets VIPLAQi with i=[0,1,2,3,4]. Where 
VIPLAQ0 represents a set of data with signals mostly with good quality (high rPPG-
SNR), the four remaining new sets decrease in quality until they reach VIPLAQ4, whose 
signals mostly have bad quality (low rPPG-SNR). The first part of this experiment con-
sists of taking the VIPLAQi as training sets and VIPLB as a testing set, and in the second 
part, the VIPLB set was chosen as the training set to be tested in VIPLAQi.

(1)ei =











0 SNRi < min(SNR)+ h,
1 min(SNR)+ h ≤ SNRi < min(SNR)+ 2h,
2 min(SNR)+ 2h ≤ SNRi < max(SNR)− h,
3 SNRi ≥ max(SNR)− h,

(2)h =
max(SNR)−min(SNR)

4
.

Spatial ROI 
selection and

tracking

rPPG
estimation Denoising

Physiological 
parameters
estimation

Color 
channel

combination
Filter

Face 
detection

and tracking FFT-based analysis Physiological 
parametersSpatial

averaging

Fig. 13  Framework. A spatial ROI selection and tracking video is performed, then the rPPG signal is 
estimated, and filtered by the MTO or MTM approach. Finally, the physiological parameters estimation is 
performed through a FFT-based analysis
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Model

To perform the rPPG signal filtering, we use the long-short-term deep-filter proposed in 
[47]. The workflow of the procedure is presented in Fig. 13. As a first step, we perform 
face tracking allowing us to take into account the pixels of the skin of the face only (ROI 
selection) followed by a spatial averaging process. Then, we use the RGB channels, and 
according to an rPPG estimation method, a color channel combination is performed. 
Afterward, the denoising of the rPPG signal is performed, and finally, the physiological 
parameter estimation on the filtered rPPG signal is computed through a fast Fourier-
transform (FFT)-based analysis.

In the rest of this section, we will explain the LSTM-DF filter with its two approaches, 
MTO and MTM, followed by the procedure for organizing the databases so that they 
can be used to train the network.

Long short‑term deep‑filter

We need to extract the raw rPPG signal from the videos in the databases. Therefore, 
having one video with T frames, we compute a spatial ROI selection and tracking on the 
face of the subject to perform a spatial averaging between the pixels related to the skin. 
The result is a triplet of RGB values for each frame rj , gj , and bj , where j ∈ [1,T ] . Con-
sequently, the vectors r , g , and b represent the RGB values for the full video. This way, 
being ω a color channel combination function applied by an rPPG estimation method, 
the rPPG vector y is presented in Eq. 3:

With the signal to be filtered, we use an LSTM network constituted by an input, a mem-
ory block, and an output. The memory block has the following parts: one input gate that 
learns which information is stored in the memory block, a forget gate that learns how 
much information is forgotten or retained from the memory block, and finally, an output 
gate that takes care of learning when the collected information can be used. We consider 
the rPPG filtering a sequence-to-sequence regression problem in univariate time series 
data. There are two LSTM network approaches explained below:

Many-to-one (MTO): In this approach, multiple inputs allow to predict one single out-
put, specifically, to forecast the next value based on the inputs. For this reason, we use a 
L-length sliding window with a step of one frame on the rPPG vector y . Then, we use the 
LSTM-MTO filter ϕo to obtain the filtered rPPG vector ŷ as shown in Eq. 4:

where θ is the set of all gates parameters and weights already trained, and j ∈ [1,T ] . 
Note how the first estimated sample given by the filter is actually at L+ 1.

Many-to-many (MTM): The MTM approach uses multiple inputs to give multiple out-
puts, specifically the number of inputs is the same number of outputs. Similarly, as in 
MTO, we use a L-length sliding window with a step of one frame, to use the MTM fil-
ter as ỹ(j) = ϕm(y[j:j+L−1]; θ) with j ∈ [1,T − L+ 1] . The L-length outputs ỹ(j) are later 
combined to create a single signal ŷ using the overlap-add procedure as presented in 
Eq. 5:

(3)y = ω(r, g,b).

(4)ŷ[j] =

{

y[j] j ∈ [1, L],
ϕo(y[j−L:j−1]; θ) others,
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The process is illustrated in Fig. 14.
To train the MTO and MTM networks, we need more than one rPPG signal. Below we 

explain the process to create the training set from signals of different duration.

rPPG training dataset building

To create the training set for the LSTM network, we consider the rPPG signal yi related 
to the video i with length Ti , where i ∈ [1,N ] and N is the number of videos. Then, for 
the N videos, we use an L-length sliding window with a step of one frame to create the 
training matrices Y and G (vector G for MTO). In MTM and MTO, Y is composed of 
rPPG signals with a fixed length L. G represents the ground truth. In MTM, G is a matrix 
of PPG signals of same size than Y . G is a vector in MTO approach. Y and G are given as 
the training set for the LSTM-based filter. The whole procedure mentioned is presented 
in Algorithms 1 and 2.

(5)ŷ[j] =

L
∑

l=1,j−l+1>0

ỹ(j − l + 1)[l].

Fig. 14  Overlap-add. Illustration of the overlap-add procedure computed after filtering rPPG signals by 
means of MTM ( ϕm)
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ALGORITHM 1: rPPG training dataset building for the LSTM-DF MTO net-
work
Input : y – original rPPG signals to train

g – original ground truth signals to train
L – sliding-window length
N – list of available signals
T – list of signal sizes

Output: Y – L-length rPPG matrix
G – ground truth vector

1 c ← 1 /* counter */
2 for i ← 1 : N do
3 for t ← 1 : Ti − L− 1 do
4 Y[c] ← yi[t : t+ L];
5 G[c] ← gi[t+ L+ 1];
6 c ← c+ 1;
7 end
8 end

ALGORITHM 2: rPPG training dataset building for the LSTM-DF MTM
network
Input : y – original rPPG signals to train

g – original ground truth signals to train
L – sliding-window length
N – list of available signals
T – list of signal sizes

Output: Y – L-length rPPG matrix
G – L-length ground truth matrix

1 c ← 1 /* counter */
2 for i ← 1 : N do
3 for t ← 1 : Ti − L do
4 Y[c] ← yi[t : t+ L];
5 G[c] ← gi[t : t+ L];
6 c ← c+ 1;
7 end
8 end

With the input data and the neural network defined, all that remains is to know the 
architecture of the two approaches, MTO and MTM. Both architectures are shown in 
Fig. 15 where L is the input length, b is the batch size, and Return Sequence (RS) is an 

Fig. 15  Network architecture. LSTM network architecture for MTO and MTM. Numbers in red represent the 
size of each data. RS=return sequences, T=true, F=false, b=batch size, L=sliding window length
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argument that decides whether a layer outputs each time step or its final time step. A 
dropout step is done on the first three layers to avoid the overfitting problem. The three 
LSTM layers contain 125 units.

Evaluation metrics

Mean absolute error

The mean absolute error was calculated as the window-wise mean of the heart rate cal-
culated using the contact-based ground truth waveform obtained by pulse oximeter 
( Hc ), and the heart rate calculated using the rPPG signal ( Hr ). The MAE of the two vec-
tors Hr and Hc of size n is presented in Eq. 6:

where Hrj and Hcj are the value of Hr and Hc at position j, respectively.

Pearson correlation coefficient

Pearson correlation coefficient measures the linear correlation between vectors Hc and 
Hr . A value of r = 1 means a positive total linear correlation, while a r = −1 implies a 
negative linear correlation, finally, a r = 0 indicates that there is no linear correlation 
between the estimations and the reference values. r is given by Eq. 7:

where Hr and Hc are the averages of Hr and Hc , respectively.

Signal‑to‑noise ratio

The SNR is a measure used to compare the power of a signal P̄signal with the power of the 
background noise P̄noise . This metric is used to characterize the signal quality and it is 
calculated in Eq. 8:

where the power average is given by P̄ [52], results are given in decibels (dB). The SNR 
metric is performed regarding full-length signal.

Template match correlation

The template match correlation [53] is also used as an rPPG signal quality assessment 
metric. The following steps are performed regarding full-length signals: 

1	 The signal peaks are detected.
2	 The median beat-to-beat interval is calculated.
3	 With a window width equal to the median beat-to-beat interval, all pulses are 

extracted individually centered on their respective peak.

(6)MAE =
1

n

n
∑

j=1

∣

∣Hrj −Hcj
∣

∣,

(7)r =

∑n
j=1

(

Hrj −Hr
)(

Hcj −Hc
)

√

∑n
j=1

(

Hrj −Hr
)2
√

∑n
j=1

(

Hcj −Hc
)2

,

(8)SNR =
P̄signal

P̄noise
,
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4	 The template is calculated as the average of all the pulses.
5	 The TMC coefficient is calculated as the average of the correlation of all the pulses 

with the template.

A value close to TMC = 1 means that the pulse shape of the evaluated or filtered signal 
is uniform, and therefore close to the expected signal, while a value close to TMC = 0 
indicates the contrary.

Implementation details

For the face detection procedure, we used the deep-learning-based OpenCV model, 
used in the Single Shot MultiBox Detector method implemented by Liu et al. [54]. Then, 
the Conaire et al. algorithm was used to select the skin pixels [55]. All ground truth and 
rPPG signals were re-sampled at the same frequency (25 Hz), then a detrending proce-
dure was made followed by a normalization between -1 and 1. Finally, all ground truth 
signals were smoothed by the smooth SciPy function1. Classic filters were set as follows: 
bandpass filter with cutoff frequencies at 0.7 and 3.5 Hz, wavelet-based filter using the 
same parameters as in [31], and the Savitzky–Golay filter with a 9-samples window 
length and a polynomial order of two2.

We used a personal computer with the following features: Intel Xeon 2.4 GHz CPU, 16 
GB RAM, and a Graphics Processing Unit (GPU) NVIDIA GeForce RTX 2070 GPU. The 
LSTM network was implemented with the following libraries: Keras (v.2.2.4) with Ten-
sorflow (v.2.0) backend. The activation functions for the LSTM and Dense layers were 
hyperbolic tangent and linear, respectively. The loss function was mean squared error, 
the first two LSTM layers had a dropout equal to 0.2, and the Adam optimizer was set 
with a learning rate scheduler of 0.002 between 1 and 10 iterations, 0.001 between 11 
and 20, 0.0005 between 21 and 50, and 0.0001 for 51 or more iterations. The Glorot uni-
form initializer, also called Xavier uniform initializer, was used for the random weights 
initialization. The number of epochs used was 100, with a batch size of 32, following the 
same procedure explained in [47]. The sliding window used during the training setup 
had length L = 125 frames, equivalent to 5 s. The network training during the final eval-
uation took for each dataset approximately: 1 h for the MMSE-HR, 14 h for VIPL-HR, 
and 3 h for COHFACE. The process of filtering on a 1-min signal takes approximately 1 
s.

Abbreviations
ECG	� Electrocardiography
PPG	� Photoplethysmography
rPPG	� Remote photoplethysmography
HR	� Heart rate
HRV	� Heart rate variability
PCA	� Principal component analysis
ICA	� Independent component analysis
EVM	� Eulerian video magnification
PVM	� Pulse rate variability measurement
PbV	� Blood-volume pulse vector
POS	� Plane-orthogonal-to-skin

1  https://​scipy.​github.​io/​old-​wiki/​pages/​Cookb​ook.​html..
2  https://​bit.​ly/​37DSV​PY.
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G-R/GR	� Green and red image channels
Chrom	� Chrominance-based rPPG
ROI	� Region of interest
BP	� Bandpass filter
WV	� Wavelet filter
SG	� Savitzky–Golay filter
RNNs	� Recurrent neural networks
LSTM	� Long short-term memory
LSTM-DF	� Long short-term memory deep-filter
LSTM-MTO/MTO	� Long short-term memory deep-filter, many-to-one
LSTM-MTM/MTM	� Long short-term memory deep-filter, many-to-many
MAE	� Mean absolute error
r	� Pearson coefficient
SNR	� Signal-to-noise ratio
TMC	� Template match correlation
Hc	� Contact-based heart rate
Hr	� Remote-based heart rate
MMSE-HR	� Multimodal spontaneous emotion corpus—heart rate database
VIPL-HR	� Visual Information Processing and Learning—heart rate database
Hz	� Hertz
dB	� Décibels
GPU	� Graphics processing unit
CV	� Cross-validation
rPPG-SNR	� SNR level in rPPG
PVM-rPPG	� rPPG signal acquired by PVM method
PVM-MMSE	�rPPG signal acquired by PVM method in MMSE-HR
PVM-VIPL	� rPPG signal acquired by PVM method in VIPL-HR
PVM-COHFACE	� rPPG signal acquired by PVM method in COHFACE database
POS-VIPL	� rPPG signal acquired by POS method in VIPL-HR
PbV-VIPL	� rPPG signal acquired by PbV method in VIPL-HR
GR-VIPL	� rPPG signal acquired by GR method in VIPL-HR
Chrom-VIPL	�rPPG signal acquired by Chrom method in VIPL-HR
Green-VIPL	� rPPG signal acquired by Green method in VIPL-HR
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