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Background
At‑home sleep staging

Sleep disorders such as sleep apnea and narcolepsy are diagnosed using polysomnogra-
phy (PSG), a procedure where the patient spends one or more nights sleeping in a clin-
ical setting while their EEG, ECG, heart rate, and sometimes their body temperature, 
blood oxygenation, and respiratory rate are recorded continuously. A clinician will then 
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manually inspect the signals in 30-s ’epochs’ and determine whether the patient is awake, 
in rapid eye movement (REM) sleep, stage 1 sleep, stage 2 sleep, or stage 3 sleep accord-
ing to the American Academy for Sleep Medicine rules [1]. Various statistics, such as the 
time spent in stage 3, time spent in REM or time spent waking up throughout the night 
are used as diagnostic tools. The procedure is expensive, however. A single polysomno-
gram can cost as much as $4000 [2] with the cost of sleep staging alone amounting to 
$800 [3]. Sleep stage scores can also be inconsistent, with technicians having an inter-
rater reliability of 83% [4].

PSG is also unsuitable for long-term monitoring, as it typically requires special equip-
ment and training to set up the equipment, and so patients cannot simply take record-
ings on themselves. Long-term monitoring of sleep disorder treatment is instead 
conducted using surveys of subjective sleep quality or having the patient note the time 
at which they went to bed or woke up each night, however, these methods are highly 
inaccurate compared to PSG [5] and are unable to measure certain metrics such as REM 
onset latency or total time spent in deep sleep. Sleep can be measured more accurately 
and with more detail using actigraphy [5], however this is still less accurate than PSG [5].

Wearable medical devices

Wearable medical devices such as the Actiwatch (Philips, Amsterdam, Netherlands), 
Apple Watch (Apple, Cupertino, CA, USA), Sleep Profiler (Advanced Brain Monitoring, 
Carlsbad, CA, USA) and Dreem Headband (Dreem, Paris, France) have seen a surge in 
interest for their use as an alternative to in-hospital monitoring for a number of tasks, 
including PSG. Wearables can be used continuously in an at-home setting for lengthy 
periods of time by an untrained user, thereby facilitating long-term monitoring and 
eliminating the need for patients to be brought into a hospital.

Processing the comparatively large amount of data has driven the push for automated 
processing of medical data using machine learning [6–12]. However, the small amount 
of data available from wearable devices is an obstacle, as machine learning algorithms 
are immensely data-hungry. Furthermore, machine learning models trained on in-hos-
pital recordings will not achieve good performance on wearable recordings due to a 
multitude of differences between in-hospital and wearable recordings, including signal 
quality, sensor location, available modalities, and differing pathologies between patients 
receiving a diagnostic polysomnogram vs those requiring long-term monitoring.

Transfer learning

Transfer learning is the process of boosting machine learning performance on one 
domain (referred to as the ’target’ domain with sample set Xt ) by pre-training the model 
on another, similar domain (referred to as the ’source’ domain with sample set Xs ), 
thereby compensating for potentially insufficient target data by allowing the model to 
apply knowledge it gained from the source domain. Transfer learning poses a potential 
solution to the lack of data available from wearable devices. A large amount of data are 
available from recordings taken in a hospital using conventional medical sensors, which 
could potentially be used to boost machine learning performance on wearable devices.
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Limitations in current transfer learning research

There are several areas of transfer learning research which are underexplored for sleep 
staging. Much of supervised transfer learning is done using very simple methods such 
as re-training a few layers of the model (hereafter referred to as head re-training) or re-
training the entire model at a smaller learning rate [13–15]. However, there are other 
more sophisticated transfer learning methods such as Correlation Alignment (CORAL) 
[16], Deep Domain Confusion (DDC) [17], and Subspace Alignment (SA) [18] which are 
rarely tested on sleep staging tasks. Alternatives to fully supervised domain adaptation 
include semi/unsupervised transfer learning [19, 20], meta-learning [21], pre-training on 
a related but separate task [22], and transfer learning onto individual subjects [19, 23]. 
Such approaches, however, have shortcomings such as not utilizing labeled data from 
the target domain, the need for additional labeled data that are rarely collected in clini-
cal tasks, or the need for models to become specialized for a single subject. Therefore, 
the automated sleep staging field would generally benefit from a greater understanding 
of which fully supervised transfer learning methods would work best and when. More 
research comparing transfer learning techniques head-to-head is required.

Similarly, various design decisions must be made when re-training models in addition 
to the choice of transfer learning algorithm, such as which architecture to use, which lay-
ers to re-train and which datasets to pre-train on. There is some research on measures 
of transferability between datasets which are potentially useful for determining which 
of several pre-trained models or datasets to use in transfer learning, but again, these are 
rarely tested and there is little research comparing methods head-to-head. There is also 
little research on using transferability measures for deciding which of several transfer 
learning algorithms to use.

Lastly, most transfer learning research focuses on computer vision or natural language 
processing tasks—comparatively little research focuses on transfer learning for medi-
cal tasks, which poses a problem for medical machine learning researchers as they may 
erroneously use techniques which work well for computer vision or natural language 
processing but not on medical signals.

We tested several popular transfer learning algorithms in a supervised setting. Several 
publicly available in-hospital PSG datasets were used as source datasets and the target 
dataset was 75 recordings taken on 24 healthy adult volunteers using a wearable EEG 
sensor. Several transferability measures were also tested to determine which was most 
strongly correlated with accuracy on unseen data.

Transfer learning algorithms

Head re‑training

One of the simplest and more widely used transfer techniques is simply freezing every 
layer except for the few closest layers to the output and re-training the unfrozen layers 
on the target. This method was used as a baseline. After pre-training the model on the 
source, every layer except for a single dense layer adjacent to the output was frozen and 
the model was re-trained on the target.
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CORAL

CORAL works by transforming the source data to resemble the target dataset. It works by 
creating a linear transformation A on the zero-meaned features of the source dataset which 
results in source features with a similar covariance matrix Cŝ to that of the target features Ct:

where Cs is the covariance matrix of the untransformed source features. It can be shown 
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Cs or Ct , whichever is smaller. Once A is found, it is used to transform the source data so 
that they more closely resemble the target data, after which training on the transformed 
source data proceeds as normal.

Although CORAL was originally designed to be unsupervised, it is easy to modify to be 
supervised by training the model on both the transformed source and untransformed target 
data. For this work, we also used a modified version of CORAL of our own design which 
takes class into account when learning the transformations. The modified CORAL will be 
referred to as Per-Class CORAL. Per-Class CORAL computes a different transformation Ai 
for each class by aligning the covariances of source samples in class i with the covariances of 
target samples which are also in class i. Each class in the source dataset is then transformed 
individually.

CORAL can be applied to deep learning by performing the described transformations 
on learned features φ(xs) and φ(xt) obtained using the output from some layer of the base 
model, then re-training the succeeding layers of the model on the transformed features. 
For this work, we froze every layer of the base model from the input up to and including 
the convolutional layer closest to the output, then performed the CORAL algorithm on the 
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layers on the target and transformed source activations.

Deep domain confusion

Instead of transforming learned features, DDC works by training models in which the 
learned features differ little between the source on target to begin with. Training invariant 
features is done by adding an additional loss function equal to the maximum mean discrep-
ancy [24] (MMD) between source and target samples within each batch.
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where Hk is a reproducing kernel Hilbert space with characteristic kernel k. Using the 
property that < x, y >Hk

= k(x, y) allows 2 to be further simplified:

Note that unlike other measures of distance between probability distributions such as 
KL-divergence or Wasserstein distance, MMD can be computed directly from samples, 
and does not require an estimate of the probability density. Time consuming and poten-
tially inaccurate computations of probability density such as through kernel density esti-
mation are thus unnecessary. 4 is computed with quadratic time complexity, but if the 
samples xs and xt are independent and identically distributed and |Xs| = |Xt | = n , an 
unbiased estimate can be used which can be computed in linear time [24]:

The efficiency at which MMD can be calculated makes it useful in machine learning 
algorithms in which it may need to be computed repeatedly.

In DDC, the MMD of activations at one or several layers is calculated between source 
and target samples in each batch and used as a loss function in addition to the stand-
ard cross-entropy loss. In doing so, the neural network is incentivized to learn features 
which are very similar between source and target, and so the model can be simultane-
ously trained on both source and target datasets without losing accuracy on the target. 
To maintain consistency with the other transfer learning methods we implemented, we 
chose the final convolutional layer as the layer at which to calculate the MMD loss.

Subspace alignment

SA works by projecting both the source and target data onto two lower-dimensional lin-
ear subspaces, then using a linear transformation M to align the source subspace with 
the target subspace. The lower-dimensional subspaces for both the source and target are 
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found through principal component analysis (PCA) using a fixed dimensionality d. M 
can be efficiently computed using:

where Vs and Vt are matrices of the basis vectors for the source and target subspaces. 
A new source sample xs can then transformed into the target subspace using xTs VsM . 
In the fully or semi-supervised setting, the source and target samples are transformed 
into the target subspace, after which a model can be trained on both. As with CORAL, 
we froze each layer in the base model from the input to and including the convolutional 
layer closest to the output, then performed SA on the activations from the convolutional 
layer closest to the output, then re-trained the unfrozen layers on the transformed acti-
vations. We choose the dimensionality of the transformed features to be 100, which we 
determined via grid search on a subset of 7 target subjects.

Transferability measures

Log expected empirical prediction

Log expected empirical prediction (LEEP) is a measure of transferability which creates a 
simple Bayesian classifier which attempts to classify target samples based on the outputs 
of a model trained on the source dataset:

where z are the label outputs of the pre-trained model, θ(xt,i)z is the model’s estimated 
probability that sample xt,i has label z, and 
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H(φ) can thus be used as indicator of how well suited a classifier with learned feature 
extractor φ is for a particular dataset. Note that the exact value of H(φ) will depend 
on the dataset, and thus that a higher H-score on one target dataset does not mean a 
model re-trained on that dataset will necessarily perform better than a model trained 
on another dataset with a lower H-score. Bao et al. [25] also derives a value they dub 
transferability which can be compared across different target datasets by normalizing 
H-score by its theoretical minimum possible value, however it is not necessary to do 
so to determine which of several possible models will perform best on a fixed dataset, 
and the calculation of transferability requires a more time-consuming iterative proce-
dure. We therefore performed all testing using H-score and not transferability in order 
to reduce computation time.

Hypothesis margin

One practical advantage of LEEP and H-score is that they only require the model and the 
target dataset to compute—it is not necessary to have any data from the source dataset. 
However, this is also a disadvantage from a theoretical standpoint as it is more difficult 
to interpret what characteristics of the source dataset make it effective for pre-training. 
We thus propose using several measures of statistical characteristics of datasets which 
have more concrete interpretations.

Hypothesis margin is a measure of the margins between sets of points with differ-
ing labels, which has been used in feature selection [26–29] and in loss functions for 
machine learning [30]. The hypothesis margin M(x) for a single point x is:

where nearmiss(x) is the nearest point to x which is in a different class from x and 
nearhit(x) is the nearest point to x which is in the same class. We used the average 
hypothesis margin ¯M(Xt ,Xs) to study the margin between learned features extracted 
from points in the source dataset and learned features extracted from points in the tar-
get dataset using the feature extractor φ from a model pre-trained on the source dataset:

In this work, we downsample Xt and Xs by a factor of 10 to reduce the computational 
resources used in computing the distances between each pair of samples. We hypoth-
esized that when there is less of a margin between the learned features from the source 
and target dataset, performance on the target dataset will be better because it requires 
less adjustment for the model to achieve good performance.

Silhouette score

Similarly, we hypothesized that when there is a greater degree of overlap between 
learned features of the source and target dataset, transfer learning performance will be 
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better due to the smaller amount of adjustment necessary to make to the model. We 
measured degree of overlap using silhouette score:

where A(x) is the average L2 distance from point x to every other point in the same class 
and B(x) is the average L2 distance from x to every point in a different class.

Silhouette score is a measure of the degree of overlap between sets of points of dif-
fering classes or clusters, and is most often used in evaluating the quality of clustering 
algorithms [31, 32].

Silhouette score between the learned features from the source and target 
S(φ(Xt),φ(Xs)) is:

In this case, A(φ(x)) is then the average L2 distance from φ(x) to every point in the same 
dataset and B(φ(x)) is the average L2 distance from φ(x) to every point in the other 
dataset.

Target density around source

Target density around source [18] (TDAS) is a measure of the local density of target 
samples within some neighborhood of the source samples, and is mainly intended for 
use in nearest-neighbor models [18]. Let sim(xs, xt) = (xsVsM)(xtVt)

T for xs and xt are a 
source and target sample, Vs , Vt are the subspace bases found through PCA on the source 
and target, and M is a transformation for aligning the source and target basis vectors as 
explained in Section 1.5.4. sim(xs, xt) can be considered a measure of similarity between 
a source and target sample following alignment of their lower-dimensional projections. 
To measure the transferability between two datasets, TDAS is defined as the average 
number of target samples that have similarity of at least ǫ to a given target sample:

We chose ǫ to be the median Euclidean distance between samples in the target dataset m 
multiplied by either .1, 1 or 10. The reason why we use ǫ at 3 different values is to evalu-
ate the sensitivity of TDAS to ǫ . The reason we chose to tie ǫ to the median value instead 
of using some fixed value was so that the effectiveness of TDAS would be more stable 
across target datasets of differing pairwise distances between samples.

Maximum mean discrepancy

As explained in Section 1.5.3, MMD is a measure of the similarity between probability 
distributions which is used in machine learning, both for training algorithms [17, 33] 
and in making design decisions for transfer learning [17]. We use the radial basis func-
tion for the kernel with width parameter γ parameter equal to .1Ŵ , 1 Ŵ or 10Ŵ , where 
Ŵ = −1/(2 ∗M) . Using the value γ = 1Ŵ is the median heuristic [24, 34] for calculating 
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γ , but as with TDAS we computed MMD using the parameter value increased or 
decreased in order to observe the sensitivity of the MMD measure to γ.

Results
Several publicly available PSG datasets using standard 10–20 scalp montages were 
used as source domains: Sleep Heart Health Study dataset (SHHS) [35, 36], the Com-
puting in Cardiology Challenge 2018 dataset (CiCC) [37, 38], the Institute of Systems 
and Robotics, University of Coimbra dataset (ISRUC) [39], the Osteoporotic Fractures 
in Men Study dataset (MrOS) [35, 40], The Montreal Archive of Sleep Studies (MASS) 
[41], and the Wisconsin Sleep Cohort (WSC) [35, 42]. The target dataset consisted of 
75 recordings from 24 subjects we obtained using an X4 Sleep Profiler (Advanced Brain 
Monitoring, Carlsbad, CA)—a commercially available wearable EEG sensor. Two archi-
tectures were used: a novel and relatively simple bespoke (13-layer convolutional neural 
network (CNN)) model that we designed for use on resource-constrained body-worn 
systems (Fig 1); and a more computationally intensive contemporary open-source algo-
rithm called DeepSleepNet [43] (Fig 2). This algorithm was selected due to its state-of-
the-art performance on sleep staging tasks, its open architecture, and for its frequent use 
as a basis of comparison by other researchers [7, 22, 44–47]. DeepSleepNet contains 35 
layers, including both convolutional and long short-term memory (LSTM) layers [43].

Performance on bespoke CNN

Table 1 lists the leave-one-subject-out cross-validation accuracies attained on the target 
dataset when using each source dataset for pre-training and each transfer learning algo-
rithm for re-training. Table  2 lists the leave-one-subject-out Cohen’s κ values. Table 3 
lists the fraction of instances in which a particular learning algorithm outperformed 
other techniques. Every transfer learning algorithm had better than or equivalent 

Table 1  Cross-validation % accuracy (average ± standard deviation) obtained using each algorithm 
and source dataset to re-train the CNN

CiCC ISRUC​ MASS SHHS WSC MrOS

Head Re-train 78.1 ± 6.3 75.9 ± 6.8 75.5 ± 6.9 76.0 ± 6.5 76.5 ± 6.4 76.2 ± 8.9

Subspace alignment 53.7 ± 14.1 48.0 ± 12.6 43.3 ± 11.8 45.9 ± 11.3 45.0 ± 12.0 36.7 ± 12.9

CORAL 78.0 ± 6.3 76.1 ± 6.3 76.8 ± 6.1 75.5 ± 6.3 76.6 ± 6.0 77.1 ± 6.4

Per-Class CORAL 78.0 ± 5.7 75.7 ± 6.8 76.4 ± 5.9 75.6 ± 6.2 76.0 ± 6.1 77.2 ± 5.9

DDC 75.7 ± 8.3 77.7 ± 6.7 77.4 ± 8.5 78.8 ± 7.5 75.9 ± 9.1 79.0 ± 6.3

Table 2  Cross-validation Cohen’s κ (average ± standard deviation) obtained using each algorithm 
and source dataset to re-train CNN

CiCC ISRUC​ MASS SHHS WSC MrOS

Head Re-train 0.689 ± 0.086 0.659 ± 0.093 0.652 ± 0.092 0.661 ± 0.087 0.669 ± 0.085 0.667 ± 0.115

Subspace align-
ment

0.332 ± 0.183 0.279 ± 0.151 0.146 ± 0.139 0.230 ± 0.140 0.183 ± 0.137 0.153 ± 0.136

Per-Class CORAL 0.690 ± 0.077 0.660 ± 0.090 0.666 ± 0.079 0.658 ± 0.083 0.663 ± 0.081 0.681 ± 0.080

CORAL 0.689 ± 0.085 0.663 ± 0.084 0.672 ± 0.081 0.655 ± 0.084 0.669 ± 0.080 0.679 ± 0.086

DDC 0.660 ± 0.109 0.686 ± 0.088 0.682 ± 0.111 0.703 ± 0.098 0.663 ± 0.118 0.704 ± 0.085
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performance to the baseline method of head re-training except for SA, which did notice-
ably worse. CORAL and Per-Class CORAL were not significantly better than head re-
training ( p > 0.05 , n = 144 ). DDC (indicated in bold) was significantly better than head 
re-training ( p < 0.05 , n = 144 ). DDC also performed better than any other method a 
majority (52.1%) of the time. As an additional baseline, we also trained the model from 
random initialization on the target dataset without pre-training and achieved an accu-
racy of 77.0%, which is slightly better than head re-training but slightly below the highest 
achieving method of DDC. We also tested re-training the entire model instead of just the 
head, which achieved a similar performance of 77.3%.

Correlating transfer learning performance with transferability measures

Table 4 lists the Spearman’s correlations of each transferability measure with the accu-
racy of a bespoke CNN model re-trained using each transfer learning method. Every 
transferability measure except hypothesis margin achieved significant ( p < 0.05 ) corre-
lations with accuracy when using at least one transfer learning algorithm. This contin-
ued to be true even after a Bonferroni adjustment ( p < 0.0017 ). H-score achieved the 
highest overall correlation ( r = 0.23 ). Measures were generally more strongly correlated 

Table 3  Accuracy, κ , and % of cases where each algorithm outperformed all other algorithms for 
bespoke CNN

Algorithm Average ± standard 
deviation % accuracy

Average ± standard 
deviation Cohen’s κ

% of cases where 
algorithm was best

Head Re-train 76.4 ± 7.1 0.666 ± 0.095 22.2

Subspace alignment 45.4 ± 13.5 0.220 ± 0.163 0.7

Per-Class CORAL 76.5 ± 6.2 0.670 ± 0.083 9.0

CORAL 76.7 ± 6.2 0.671 ± 0.084 14.6

DDC 77.4 ± 7.9 0.683 ± 0.104 52.1

Table 4  Correlations of each transferability measure with CNN accuracy for individual algorithms as 
well as overall

*p < 0.05

**p < 0.01

***p < 0.001

Measure Head 
Re-train, 
n = 144

CORAL, 
n = 144

Per-Class 
CORAL, 
n = 144

SA, n = 144 DDC, n = 144 Overall, 
n = 720

LEEP − 0.03 0.24** 0.28*** 0.30*** − 0.11 − 0.07

H-score 0.36*** 0.47*** 0.47*** − 0.05 − 0.10 0.23***

Hypothesis 
margin

− 0.07 0.05 0.07 − 0.11 0.15 0.08

Silhouette score − 0.31 − 0.21* − 0.21* 0.13 0.07 − 0.11*

MMD, γ = 0.1Ŵ − 0.25** − 0.14 − 0.11 − 0.36*** 0.33*** − 0.11**

MMD, γ = 1Ŵ 0.07 0.08 0.03 − 0.44*** 0.05 − 0.04

MMD, γ = 10Ŵ 0.16 0.29*** 0.25** − 0.53*** 0.07 0.05

TDAS, ǫ = 0.1m 0.17* 0.24** 0.28*** − 0.17* 0.01 0.11***

TDAS, ǫ = 1m − 0.36*** − 0.42*** − 0.42*** 0.19*** 0.08 − 0.18***

TDAS, ǫ = 10m − 0.35*** − 0.41*** − 0.42* 0.19* 0.07 − 0.18***
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with accuracies within individual algorithms than across all algorithms. The correlation 
strengths of MMD and TDAS also varied by the value of their respective parameters.

Effect of re‑training layers on performance

To test the sensitivity of each algorithm to the layer on which the domain transformation 
is applied, we re-tested the bespoke CNN when re-training additional layers (Tables 5 
and 6). See Section 5.5 for training details.

As with Section 2.0.1, Table 7 lists the fraction of instances in which a particular learn-
ing algorithm outperformed other techniques. All algorithms performed better except 
DDC, which performed worse. With the exception of DDC, the algorithms’ perfor-
mances relative to each other are similar to when re-training a smaller number of layers 
(i.e., Head Re-train, CORAL, and Per-Class CORAL performed similarly while SA per-
formed the worst). Head Re-train outperformed all other transfer learning algorithms 
on the largest number of cases, but did not have a significantly higher average accuracy 
than CORAL ( p > 0.05 ). Head Re-train, CORAL, and Per-Class CORAL also now out-
performed the baseline of training from random initialization without transfer learn-
ing. Table 8 lists the correlations between each measure of transferability and accuracy 

Table 5  % Accuracy (average ± standard deviation) obtained for each algorithm and source when 
re-training additional layers of CNN

CiCC ISRUC​ MASS SHHS WSC MrOS

Head Re-train 79.0 ± 7.3 78.2 ± 7.2 79.0 ± 7.3 78.3 ± 7.3 79.1 ± 7.3 78.9 ± 7.4

Subspace alignment 56.1 ± 6.7 56.3 ± 6.8 54.2 ± 6.8 57.5 ± 6.8 52.5 ± 6.8 48.4 ± 6.9

CORAL 80.0 ± 8.4 78.4 ± 8.4 79.0 ± 8.4 78.2 ± 8.5 78.9 ± 8.5 78.7 ± 8.7

Per-Class CORAL 78.2 ± 7.3 75.8 ± 7.7 78.0 ± 7.7 77.6 ± 7.8 77.5 ± 7.8 77.3 ± 7.8

DDC 64.3 ± 9.9 65.3 ± 9.8 59.4 ± 9.8 64.2 ± 9.9 63.6 ± 9.8 62.6 ± 10.0

Table 6  Cohen’s κ (average ± standard deviation) obtained for each algorithm and source when 
re-training additional layers of CNN

CiCC ISRUC​ MASS SHHS WSC MrOS

Head Re-train 0.704 ± 0.099 0.692 ± 0.098 0.703 ± 0.098 0.694 ± 0.099 0.704 ± 0.098 0.702 ± 0.100

Subspace align-
ment

0.364 ± 0.003 0.389 ± 0.003 0.326 ± 0.003 0.404 ± 0.003 0.298 ± 0.004 0.305 ± 0.004

Per-Class CORAL 0.691 ± 0.058 0.657 ± 0.118 0.691 ± 0.142 0.684 ± 0.162 0.681 ± 0.180 0.681 ± 0.200

CORAL 0.718 ± 0.062 0.696 ± 0.222 0.704 ± 0.303 0.693 ± 0.362 0.702 ± 0.402 0.700 ± 0.438

DDC 0.522 ± 0.000 0.535 ± 0.001 0.469 ± 0.002 0.525 ± 0.002 0.516 ± 0.002 0.498 ± 0.003

Table 7  Accuracy, κ , and % of cases where each algorithm outperformed others when re-training 
additional layers of CNN

Algorithm Average ± standard 
deviation % accuracy

Average ± standard 
deviation Cohen’s κ

% of cases where 
algorithm was best

Head Re-train 78.7 ± 6.4 0.700 ± 0.087 39.6
Subspace alignment 54.2 ± 17.0 0.348 ± 0.216 2.1

Per-Class CORAL 77.4 ± 6.9 0.681 ± 0.096 12.5

CORAL 78.9 ± 6.4 0.702 ± 0.086 31.3

DDC 63.2 ± 20.5 0.511 ± 0.24 13.2
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achieved when re-training a larger number of layers. Correlations are generally lower, 
but TDAS and H-score continue to be the most strongly correlated with accuracy and 
achieve statistical significance in half of all cases, even after applying Bonferroni correc-
tion ( p < 0.001).

Testing on differing network architectures

We also tested each transfer learning algorithm and transferability measure on the 
open-source sleep staging model DeepSleepNet [43] to determine how performance is 
affected by changes in the network architecture (Tables 9 and 10). Note that DDC was 
not tested on DeepSleepNet because the derivation of DDC assumes that each sample is 
presented in a random order during training [17, 24], an assumption which is violated in 
recurrent models.

As with the bespoke CNN, SA exhibited the lowest performance and CORAL, Per-
Class CORAL and Head Re-train all exhibited similar (higher) performance (Table 11), 
but with Head Re-train now being statistically significantly better than CORAL 
( p < 0.01 ). However, no transfer learning method was able to out-perform the base-
line of training from random initialization without transfer learning, which achieved an 
accuracy of 74.5%.

Table 8  Correlations of each transferability measure with CNN accuracy when re-training additional 
layers of CNN

*p < 0.05

**p < 0.01

***p < 0.001

Measure Head 
Re-train, 
n = 144

CORAL, 
n = 144

Per-Class 
CORAL, 
n = 144

SA, n = 144 DDC, n = 144 Overall, 
n = 720

LEEP − 0.14 − 0.19* − 0.12 0.08 0.03 − 0.07

H-score 0.17* 0.35*** 0.31*** − 0.03 − 0.07 0.14***

Hypothesis 
margin

0.05 0.01 0.10 − 0.15 − 0.05 − 0.01

Silhouette score − 0.05 − 0.19* − 0.09 − 0.09 0.00 − 0.08

MMD, γ = 0.1Ŵ 0.14 0.04 − 0.03 − 0.19* − 0.01 − 0.01

MMD, γ = 1Ŵ 0.14 0.12 0.03 − 0.14 − 0.02 0.03

MMD, γ = 10Ŵ 0.06 0.08 0.01 − 0.16 0.04 0.00

TDAS, ǫ = 0.1m − 0.07 − 0.05 − 0.02 − 0.05 0.01 − 0.03

TDAS, ǫ = 1m 0.24** 0.42*** 0.28*** 0.15 0.06 0.15***

TDAS, ǫ = 10m − 0.10 0.24** − 0.09 0.10 0.01 − 0.06

Table 9  % Accuracy (average ± standard deviation) obtained for each algorithm and source using 
DeepSleepNet

CiCC ISRUC​ MASS SHHS WSC MrOS

Head Re-train 72.4 ± 9.6 59.9 ± 9.0 63.2 ± 9.4 62.3 ± 8.9 59.9 ± 8.4 64.2 ± 10.9

Subspace alignment 62.0 ± 6.8 55.3 ± 9.6 53.1 ± 11.4 52.4 ± 8.2 50.8 ± 9.2 53.5 ± 11.4

CORAL 70.6 ± 9.3 60.5 ± 8.8 61.8 ± 9.6 60.3 ± 8.1 58.8 ± 7.4 62.9 ± 8.8

Per-Class CORAL 70.8 ± 8.5 57.0 ± 8.8 62.0 ± 8.8 59.8 ± 7.4 57.7 ± 9.2 60.6 ± 10.8

DDC N/A N/A N/A N/A N/A N/A
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Correlations between accuracy and each transferability measure were highest for 
TDAS and MMD (Table 12). Unlike with the bespoke model, H-score’s correlation 
with accuracy no longer achieves Bonferroni-adjusted significance for any algo-
rithms except for SA, but is still significant in the overall case.

Table 10  Cohen’s κ (average ± standard deviation) obtained for each algorithm and source using 
DeepSleepNet

CiCC ISRUC​ MASS SHHS WSC MrOS

Head Re-train 0.611 ± 0.127 0.432 ± 0.133 0.477 ± 0.133 0.466 ± 0.123 0.432 ± 0.121 0.493 ± 0.140

Subspace align-
ment

0.446 ± 0.131 0.345 ± 0.135 0.301 ± 0.155 0.293 ± 0.113 0.264 ± 0.119 0.342 ± 0.150

Per-Class CORAL 0.584 ± 0.117 0.393 ± 0.118 0.449 ± 0.127 0.424 ± 0.106 0.391 ± 0.129 0.450 ± 0.137

CORAL 0.586 ± 0.119 0.437 ± 0.127 0.452 ± 0.134 0.431 ± 0.113 0.412 ± 0.107 0.478 ± 0.112

DDC N/A N/A N/A N/A N/A N/A

Table 11  Accuracy, κ , and % of cases where each algorithm outperformed others when using 
DeepSleepNet

Algorithm Average ± standard 
deviation % accuracy

Average ± standard 
deviation Cohen’s κ

% of cases where 
algorithm was 
best

Head Re-train 63.7 ± 4.2 0.637 ± 0.144 63.9

Subspace alignment 54.5 ± 3.6 0.545 ± 0.147 1.4

Per-Class CORAL 61.3 ± 4.6 0.613 ± 0.139 13.2

CORAL 62.5 ± 3.9 0.625 ± 0.132 19.4

DDC N/A N/A N/A

Table 12  Correlations of each transferability measure with DeepSleepNet accuracy for individual 
algorithms as well as overall

*p < 0.05

**p < 0.01

***p < 0.001

Measure Head 
Re-train, 
n = 144

CORAL, 
n = 144

Per-Class 
CORAL, 
n = 144

SA, n = 144 DDC, n = 144 Overall, 
n = 576

LEEP 0.01 0.13 0.11 0.36*** N/A 0.15****

H-score 0.12 0.15 0.23* 0.26*** N/A 0.19***

Hypothesis 
margin

− 0.32*** − 0.16* − 0.27 0.10 N/A − 0.16***

Silhouette score − 0.31*** − 0.21* − 0.21* 0.13 0.07 − 0.11*

MMD, γ = 0.1Ŵ − 0.40*** − 0.31*** − 0.46*** − 0.18* N/A − 0.34***

MMD, γ = 1Ŵ − 0.28*** − 0.29*** − 0.40*** − 0.29*** N/A − 0.31***

MMD, γ = 10Ŵ − 0.12 -0.13 − 0.28*** - 0.13 N/A − 0.17***

TDAS, ǫ = 0.1m 0.48*** 0.47*** 0.40*** 0.30*** N/A 0.40***

TDAS, ǫ = 1m 0.38*** 0.37*** 0.31*** 0.25** N/A 0.33***

TDAS, ǫ = 10m − 0.11 − 0.09 − 0.10 0.07 N/A − 0.06
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Discussion
Our findings are twofold: (1) we evaluated the performance of several transfer learning 
algorithms head-to-head on a sleep staging task and (2) we evaluated how well several 
measures of transferability work for assessing the accuracy achievable when using a par-
ticular source dataset and transfer learning algorithm.

Transfer learning techniques were tested and compared on a sleep staging task in 
which a model pre-trained on clinical data was re-trained on data from a wearable 
device using one of two possible models, two possible sets of layers to re-train, and five 
different algorithms. Out of all source datasets, architectures and algorithms tested, the 
highest accuracy and Cohen’s κ achieved was 80.0% and .718, respectively, which were 
obtained using CORAL on the bespoke model when re-training more (four) layers.

With the exception of DDC, the relative performance of each transfer learning algo-
rithm was consistent across different conditions. CORAL and Per-Class CORAL both 
performed similarly to the baseline performance. SA was the poorest performing in all 
cases. We speculate that the reduced effectiveness of SA occurs because SA involves 
projecting the learned features onto a lower-dimensional linear subspace which risks the 
loss of critical information. DDC usually obtained the highest accuracy when applied 
to a layer close to the output, but not when applied to a layer further from the out-
put, suggesting that DDC can be effective but is highly sensitive to the layer to which 
it is applied, and so tuning may be necessary. The higher performance when the loss is 
applied to layers closer to the output makes sense given the principle behind DDC. That 
is, DDC works by incentivizing the model to learn a similar hidden-layer representation 
across both source and target datasets, so if the layer it is applied to already generalizes 
well between datasets (and layers closer to the input have indeed been found to learn 
simpler, more generalizable features [48–50]), it may be of limited benefit. In contrast, 
head re-training resulted in the best or second best performance in all training condi-
tions, suggesting it is the most robust choice for obtaining a good (even if not necessarily 
the best) performance when time and resources available for hyperparameter tuning are 
limited.

Unlike with the bespoke CNN, All transfer learning methods reduced performance 
when using DeepSleepNet. This could be attributable to the greater depth of DeepSleep-
Net relative to the bespoke CNN, so re-training and domain adaptation at the output 
layer was inadequate for compensating for how much information from the source data-
set had been encoded into the network.

The correlations between accuracy and several measures of transferability were 
also assessed to determine whether these measures were potentially useful for trans-
fer learning design. Most measures attained significant correlations on at least some 
transfer learning algorithms, which is consistent with previous research [14, 17, 18, 
25]. The search for effective measures of transferability is relevant to machine learning 
engineers seeking to reduce development time. Using transferability measures to guess 
which transfer learning methods will work best could avoid the need for exhaustive 
testing.

When performing transfer learning on the bespoke model with a smaller number of 
re-trainable layers, the transferability measure most correlated with accuracy overall 
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was the H-score, and the second most correlated was TDAS. On the other two testing 
conditions however (i.e., transfer learning on DeepSleepNet and transfer learning on 
the bespoke model with a larger number of re-trainable layers), TDAS outperformed 
H-score, especially when using DeepSleepNet. Therefore, although the H-score may per-
form well in some cases, its performance is inconsistent and so TDAS may be the more 
robust option. TDAS did exhibit some sensitivity to choice of parameter ǫ , however Fer-
nando et al.’s. recommendation of setting ǫ to the median Euclidean distance between 
target samples [18] outperformed other choices for ǫ in most cases and was the second 
best choice in the remaining cases, and so can be considered a good heuristic. Despite 
the high overall correlations of TDAS and H-score, other measures still achieved higher 
correlations with accuracy for specific algorithms, and so it may be more advisable to 
make design decisions (such as on which source dataset to pre-train) using the transfer-
ability measure most suitable for a particular learning algorithm.

It is important to note that no single transfer learning method performs best in all 
cases. DDC, for example showed the strongest performance overall when re-training 
with a smaller number of layers, but still performed worse than the baseline when re-
training with a larger number of layers.

Similarly, no transferability measure had significant correlations with the perfor-
mance of all transfer learning algorithms. H-score, for example was significantly 
correlated with performance on every transfer learning algorithm on the bespoke 
architecture when re-training a smaller number of layers except DDC. The poor cor-
relation with DDC is likely because H-score assumes a fixed feature extractor [25], 
whereas DDC involves fine-tuning the feature extraction layers. We can thus conclude 
that H-score would be effective as an indicator when using CORAL, but one should use 
some other transferability measure such as MMD or TDAS when using DDC. Further-
more, H-score achieved significant correlations for very few algorithms when applied to 
DeepSleepNet, which again, may result from the state-dependence of the LSTM layers 
violating H-score’s assumptions.

Since no transfer learning algorithm or transferability measure performed best in all 
cases, the results here cannot be taken as a replacement for exhaustive testing. The only 
guaranteed way to determine which of several methods will work best is to test them. 
However, when there is limited time and resources available, the results presented in 
this work can be used to narrow down the list of possible methods to a few with a higher 
probability of success. When there is insufficient time to experiment with multiple pos-
sible transfer learning algorithms, our results indicate that head re-training can lead to 
the most robust results (i.e., it consistently performs comparably to, or better than other 
approaches). If multiple pre-trained models are available, our results favor choosing the 
model which attains the highest TDAS score on the target dataset. When there is limited 
time for testing, but there are a large number of possible transfer learning algorithms 
and/or pre-trained models to choose from, we recommend calculating the TDAS value 
of all possible combinations of algorithms and pre-trained models, selecting the highest-
scoring combinations, and directly testing them to determine which achieves the highest 
performance.
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More research is needed to determine why some algorithms work better in some cases 
but not others, but we speculate that performance varies according to whether the fun-
damental assumptions of the algorithms are met. CORAL works well when the target 
distribution can be approximated by a linear transformation of the source distribution. 
DDC works well when the domain shift between the source and target is amplified along 
the layers of the neural network, possibly due to overfitting to the source dataset at lay-
ers closer to the output, in which case the model benefits from an additional loss func-
tion which punishes differences in the activations. Subspace Alignment works well when 
the relevant features lie on a lower-dimensional manifold, in which case projection onto 
this manifold does not cause significant loss of information.

When the assumptions of the more sophisticated transfer learning methods are not 
met, the additional constraints, operations and loss functions employed by such algo-
rithms can instead cause loss of information or steer the model away from an optimal 
solution, in which case the simplest method of head re-training provides the highest 
performance.

The same is also true for the transferability measures. Performance depends on 
whether the assumptions of the measures are met. The H-score works well when the 
network layers closer to the input are fixed, but this assumption is violated by transfer 
learning methods which involve re-training such layers (such as DDC) or when those 
layers have state-dependence (such as when using an LSTM layer).

The randomization of samples in the MMD approach may reduce its reliability as a 
transferability measure through the introduction of stochasticity, but MMD can still 
out-perform deterministic measures such as TDAS in some cases despite TDAS work-
ing better in general. TDAS tallies the number of target samples in close proximity to 
source samples, but target samples far away from any source samples have little effect 
on the TDAS score. MMD on the other hand takes all samples into account. As a result, 
MMD may work better as a measure of transferability when there are many target sam-
ples which are distant from source samples or the data exhibit extreme outliers, even if 
TDAS works better in general. MMD may also out-perform TDAS when training via 
DDC, as DDC explicitly minimizes MMD between source and target, and so a large 
MMD may indicate that performance improvements can be made by an algorithm 
designed to reduce the value of MMD.

This is the first work we know of to test transferability measures across multiple trans-
fer learning algorithms, and is also the first work we know of to evaluate transferability 
measures on a sleep staging task. Our findings also add to the body of research on the 
use of automation for wearable medical sensors, particularly regarding the use of trans-
fer learning to boost performance [7, 51–53]. In particular, our work adds to the body of 
work on fully supervised transfer learning without the need for tuning models to specific 
patients.

One limitation was that the test subjects were healthy adults of similar age, and so 
more testing is necessary to determine the effectiveness of the learned models against 
older adults and people with sleep disorders. The findings here should also not be con-
sidered a conclusive evaluation of which transfer learning algorithms or measures neces-
sarily work best in all instances, as we used a single target domain with similar source 
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domains in a supervised setting. Many of the transfer learning algorithms and transfer-
ability measures were developed for computer vision tasks, for an unsupervised/semi-
supervised setting, or when using engineered instead of learned features, and so more 
research is necessary to determine whether the results found here are true of other tasks, 
other source/target combinations, other sensors or other settings. However, our find-
ings do highlight that the source data and target data influence both the type of transfer 
learning approach and the measure for identifying the best approach.

Conclusion
It was experimentally found that the most widely used transfer learning method (re-
training the head layers) was the most robust approach, as it was either the best or sec-
ond best in all three experimental conditions. DDC however was able to out-perform 
head re-training in one case, but showed considerable sensitivity to the choice of lay-
ers to which it is applied. H-score was correlated best with accuracy in cases where 
the assumption of a fixed feature extractor is met, but this assumption is violated for 
transfer learning methods which involve re-training all layers and for architectures 
with state-dependence. TDAS can be a strong correlate with accuracy across cases, 
but shows some sensitivity to the choice in the ǫ parameter. Future research direc-
tions could include training different layers with different learning rates to see how this 
impacts each algorithm and measure, investigating the characteristics of the data that 
make some algorithms more effective than others, and testing in semi- or fully unsu-
pervised settings.

Materials and methods
Datasets

CiCC contains 994 healthy subjects or patients experiencing spontaneous arousals, res-
piratory effort related arousals, bruxism, hypoventilation, hypopneas, apneas, vocali-
zations, snores, periodic leg movements, Cheyne–Stokes breathing or partial airway 
obstructions. SHHS contains 6441 healthy subjects or patients with atherosclerosis, air-
way obstructive diseases or other cardiovascular problem. ISRUC contains 126 healthy 
subjects and patients with various disorders including REM sleep behavior disorder, 
obstructive sleep apnea, snoring, periodic limb movement, epilepsy, depression, Par-
kinson’s or insomnia. MrOS contains 2900 healthy subjects and patients with sleep dis-
ordered breathing or nocturnal hypoxemia. WSC contains over 1100 healthy subjects 
and patients with sleep disordered breathing. The MASS dataset contains 200 subjects 
with apnea/hypopnea indices of up to 20 but were otherwise healthy except for 15 with 
mild cognitive impairment and 7 with restless leg syndrome. In order to avoid biasing 
the model towards subjects who had done more recordings, only the first recording from 
every subject was used when training on datasets in which some subjects had multiple 
recordings. In all datasets, a single EEG channel was used. Either the C3-M2 or C3-A2 
EEG channel was used (depending on which was available) in the source datasets in 
order to keep the signal content as similar as possible to the channels available in the 
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target dataset, which were across the forehead. The target dataset contains 24 subjects 
with 1–6 recordings each (75 recordings total) using an X4 Sleep Profiler (Advanced 
Brain Monitoring, Carlsbad, CA). The X4 consists of a headband and several sensors 
across the forehead. A single channel (AF7-Fpz) was used. Ground truth sleep stage 
labels were manually determined by a human sleep staging technician. Subjects were 
volunteers recruited from Georgia Tech’s graduate student body and from Emory’s Bio-
medical Informatics department. As with the source dataset, no more than two record-
ings per subject were included in the training set in order to avoid biasing the model 
towards subjects who volunteered for more recordings. However, no data were excluded 
during evaluation.

Training and testing procedure

To evaluate the effectiveness of each transfer learning algorithm, six base models using 
each of the two architectures (12 models total) were pre-trained on one of the six source 
datasets before being re-trained on the target dataset using one of the transfer learning 
algorithms described above. The pre-training procedure for the open-source model was 
done using the same methods and parameters described in [43]. The bespoke model was 
pre-trained using ADAM with an initial learning rate of 0.001 either for 1000 epochs or 
until the early stopping criteria (running 30 epochs without obtaining more than a .1% 
improvement in accuracy on a validation set) were met, whichever came first. Dropout 
at a rate of .5 was applied to the fully connected layer and all layers used an L2 regu-
larization weight 10−6.9 (values found using Bayesian hyperparameter tuning). Transfer 
learning hyperparameters for both architectures were the same as the hyperparame-
ters used in pre-training the bespoke model. For source datasets where some subjects 
had multiple recordings, only the first recording from each subject was used in order 
to avoid biasing the model towards the subjects with multiple recordings. Some of the 
transfer learning algorithms required training on source and target simultaneously; in 
these cases, a subset of source recordings equal to the number of target recordings were 
selected so as to maintain a balanced number of source and target samples. The subset 
of source recordings was selected by choosing every nth recording in the order in which 
they were numbered to ensure the subset was representative of the full dataset. The aver-
age accuracy and Cohen’s κ were obtained using leave-one-subject-out cross-validation. 
The number of times a particular transfer learning algorithm outperformed every other 
learning algorithm for a particular validation subject was also tallied. A paired t-test was 
used to determine whether each transfer learning algorithm significantly outperformed 
the baseline method of head re-training.

Transferability measures were evaluated only on the target subjects used in training—
measures were not evaluated on the subject being left out for validation. The relation-
ship between each transferability measure and the performance of the re-trained model 
was evaluated using Spearman’s rank correlation between the transferability measure 
and the accuracy of the pre-trained model on the validation set. A high correlation with 
accuracy suggests the transferability measure is a reasonable indicator of how well a par-
ticular model will perform on the dataset. The reason Spearman’s correlation was used 
instead of Pearson’s correlation is because the transferability measures do not necessarily 
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increase linearly with the accuracy of the trained model. The overall correlation between 
accuracy and each transferability measure is found along with the correlation for each 
individual transfer learning algorithm.

Inclusion of women and minorities

In compliance with Sex and Gender Equity in Research (SAGER) guidelines, we report 
the demographic makeup of all datasets. MrOS is the only dataset which is entirely male. 
ISRUC is 40% female (47 female patients total), WSC is 46% female (515 patients total), 
CiCC is 34% female (227 female patients total), and SHHS is 52% female (3039 patients 
total). The SHHS is 86% White, 9% Black, and 7% Other. MrOS is 93% White, 4% Black, 
3% Asian, 0.1% Native American, Native Hawaiian or Native Pacific Islander, 1% Multi-
racial and 2% Unknown. The WSC is 94% White, 2% Black, 1% Asian, 1% Hispanic and 
1% Native American. CiCC and ISRUC did not report the racial distribution, but are 
obtained from hospital PSG records without regard for race, and are thus expected to 
reflect the racial distribution of patients referred to sleep labs.

Base models

Two base models were used—one bespoke model of our own design (Fig 1) and an 
open-source architecture, DeepSleepNet [43] (Fig 2). DeepSleepNet was selected due 
to its state-of-the-art performance on sleep staging tasks, for its frequent use as a basis 
of comparison by other papers [22, 44–46], and for having a much larger, and differ-
ing architecture from our bespoke model. Furthermore, DeepSleepNet uses a combina-
tion of both convolutional and recurrent layers. The convolutional layers extract features 
from one epoch while the recurrent layers take temporal information into account (i.e., 
the score of one epoch is used for determining the score of the subsequent epoch). Most 
state-of-the-art architectures employ a similar paradigm of combining feature-extract-
ing convolutional layers with recurrent layers or transformer mechanisms [45–47, 54–
60], and so DeepSleepNet is representative of state-of-the-art methods. For the bespoke 
model, 4 convolutional layers were used, with each convolutional layer being followed by 
a ReLU, Max Pooling and Batch Normalization layer. The input was the short-time Fou-
rier transform of the EEG. The head of the model was a single dense layer. Dropout was 

Fig. 1  Architecture of base model
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Fig. 2  Architecture of open-source model, DeepSleepNet [43]. Image courtesy of Supratak et al. [43]
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used on the dense layer. Training was done using the Adam optimizer [61]. The dropout 
fraction, L2 regularization and number of filters in each layer were found using Bayesian 
hyperparamter tuning on the SHHS dataset. Training and testing on the clinical datasets 
showed the base model to be capable of performance on par with that of human techni-
cians (Table 13).

DeepSleepNet consists of two branches containing a series of convolutional, batch 
normalization, ReLU, max pooling and dropout layers which then merge before being 
fed into two more separate branches, one containing a fully connected layer and the 
other containing two consecutive bi-directional LSTM layers which are each followed 
by a dropout layer. The two branches are then merged and fed into a softmax layer. The 
input is raw EEG. DeepSleepNet uses two phases of training. In the first phase, the con-
volutional layers without the LSTM layers are trained for 100 epochs on a version of the 
dataset which was class-balanced by randomly duplicating samples from minority sam-
ples. In the second phase, the LSTM and final softmax layers were added and the model 
trained again for 200 more epochs on the original imbalanced dataset in batches of 25 
consecutive epochs. In the original paper, the performance of DeepSleepNet is evalu-
ated on the test set every epoch and the model weights from the epoch which achieved 
the highest accuracy on the test set are used to test the model again on the same subject, 
with the only difference being that the model states are re-set in between each 25-epoch 
batch during training. DeepSleepNet was trained on each source dataset using the most 
of the same code and parameters used in the original DeepSleepNet paper, but transfer 
learning was performed using the most of the same code and parameters as our bespoke 
model. The subjects used for early stopping during re-training are separate from the sub-
jects used for testing. During pre-training, 1% of subjects are separated from the rest 
of the source subjects and used to decide at what training epoch to load the highest-
performing weights from.

Re‑training larger numbers of layers

To test how the choice of layers to re-train effects the performance of each algorithm 
and transferability measure, each algorithm was applied to the convolutional layer 
closest to the output in addition to just the dense layer. For the head re-training algo-
rithm, the dense layer, the nearby convolutional layer and each of their respective batch 
normalization layers were re-trained while the other layers were frozen. For CORAL, 
Per-Class CORAL, and SA, the same layers were frozen and re-trained as with Head Re-
train, but an additional domain adaptation was applied to the output of the frozen layers. 
For DDC, all layers were re-trained, but the MMD loss was applied to input to the max 
pooling layer second closest to the output layer.

Note that only one set of layers was tested for DeepSleepNet. Because DeepSleep-
Net makes use of multiple branches which split and re-join, there is no location 
within the architecture to apply the domain adaptation/loss function which can be 
compared to a similar location within the more linear bespoke CNN except for the 
output layer.
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Appendix
See Table 13.
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ISRUC​	� Institute of Systems and Robotics, University of Coimbra
MASS	� Montreal Archive of Sleep Studies
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ReLU	� Rectified linear unit
MMD	� Maximum mean discrepancy
PCA	� Principal component analysis
LEEP	� Log expected empirical prediction
TDAS	� Target density around source
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