
Brain CT registration using hybrid supervised 
convolutional neural network
Hongmei Yuan1,2, Minglei Yang1,2*, Shan Qian1,2, Wenxin Wang2, Xiaotian Jia3 and Feng Huang2 

Abstract 

Background: Image registration is an essential step in the automated interpretation 
of the brain computed tomography (CT) images of patients with acute cerebrovascu-
lar disease (ACVD). However, performing brain CT registration accurately and rapidly 
remains greatly challenging due to the large intersubject anatomical variations, low 
resolution of soft tissues, and heavy computation costs. To this end, the HSCN-Net, a 
hybrid supervised convolutional neural network, was developed for precise and fast 
brain CT registration.

Method: HSCN-Net generated synthetic deformation fields using a simulator as one 
supervision for one reference–moving image pair to address the problem of lack of 
gold standards. Furthermore, the simulator was designed to generate multiscale affine 
and elastic deformation fields to overcome the registration challenge posed by large 
intersubject anatomical deformation. Finally, HSCN-Net adopted a hybrid loss function 
constituted by deformation field and image similarity to improve registration accuracy 
and generalization capability. In this work, 101 CT images of patients were collected 
for model construction (57), evaluation (14), and testing (30). HSCN-Net was compared 
with the classical Demons and VoxelMorph models. Qualitative analysis through the 
visual evaluation of critical brain tissues and quantitative analysis by determining the 
endpoint error (EPE) between the predicted sparse deformation vectors and gold-
standard sparse deformation vectors, image normalized mutual information (NMI), and 
the Dice coefficient of the middle cerebral artery (MCA) blood supply area were carried 
out to assess model performance comprehensively.

Results: HSCN-Net and Demons had a better visual spatial matching performance 
than VoxelMorph, and HSCN-Net was more competent for smooth and large intersub-
ject deformations than Demons. The mean EPE of HSCN-Net (3.29 mm) was less than 
that of Demons (3.47 mm) and VoxelMorph (5.12 mm); the mean Dice of HSCN-Net 
was 0.96, which was higher than that of Demons (0.90) and VoxelMorph (0.87); and the 
mean NMI of HSCN-Net (0.83) was slightly lower than that of Demons (0.84), but higher 
than that of VoxelMorph (0.81). Moreover, the mean registration time of HSCN-Net 
(17.86 s) was shorter than that of VoxelMorph (18.53 s) and Demons (147.21 s).

Conclusion: The proposed HSCN-Net could achieve accurate and rapid intersubject 
brain CT registration.
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Background
Over the past several decades, the incidence and mortality of acute cerebrovascular 
disease (ACVD) in China has steadily increased, among which acute ischemic stroke 
(AIS) has become one of the leading cause of death. Proper treatment at the acute 
stage is of great importance for favorable outcomes [1]. Computed tomography (CT) 
scans have become one of the significant and routine examinations for ACVD because 
of its convenience and quickness [2]. CT images also have considerable advantages in 
terms of hospital deployment and clinical utilization rate [3]. It is routinely adopted 
to evaluate early brain ischemic changes in the clinic, where the Alberta Stroke Pro-
gram Early CT Score (ASPECTS) is commonly recommended. The middle cerebral 
artery (MCA) blood supply area is the main quantitative area of ASPECTS.

The performance of automatic ASPECTS depends heavily on brain CT registration 
between the patient and the atlas. However, automatic and rapid intersubject brain 
CT registration remains a great challenge mainly due to the following reasons: first, 
the human brain morphology is highly complex; second, the soft-tissue resolution of 
the brain CT images is relatively low; third, the structural contrast of gray/white mat-
ter in brain CT images is relatively low; fourth, large anatomical structural variations 
may exist across individuals; finally, three-dimensional (3D) brain CT volume regis-
tration has a heavy computational cost.

Most traditional brain registration algorithms could be summed up as iterative 
optimization problems. High-dimensional optimization might lead to a heavy com-
putational burden and slow convergence speed. The common registration time for 3D 
brain CT images was generally as high as tens of minutes [4–10]. For example, when 
using B-spline as the elastic deformation model of a registration method, the image 
should be gridded first, and then, B-spline could be used to control grid changes to fit 
the whole image transformation [11]. These methods could accurately simulate local 
deformations [12], but the running speeds were very slowly and thus could not easily 
meet the clinical interpretation needs for acute brain CT images. Demons-based reg-
istration methods are another type of nonrigid algorithms that can be used for brain 
image registration. They use an optical flow field to model image elastic deformation 
and iteratively optimize the deformation field. These algorithms are based on gray 
information and thus can avoid manual interference in feature extraction. However, 
they are suitable only for small deformations and are sensitive to image gray varia-
tions [13].

Recently, deep learning-based registration methods have been proposed for accurate 
and fast medical image registration [14–16]. VoxelMorph [17], a deep learning frame-
work for brain magnetic resonance (MR) proposed by Dalca et al., applies convolutional 
neural networks (CNNs) for unsupervised image registration. A full CNN method for 
brain MRI registration [18] proposed by Fan et al. utilizes the double supervised train-
ing method. Han et al. proposed a deformable MR–CT brain registration method [19] 
that first synthesizes a CT image from MR and then registers the synthetic CT to the 
intraoperative CT with an inverse-consistent registration network. Current brain regis-
tration networks are often used for monomodal MR image registration and multimodal 
image registration (MR and CT), whereas intersubject brain CT–CT image registration 
has rarely been reported [20].
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Previous studies have shown that deep learning-based registration algorithms have 
improved registration speeds, but provide slightly worse registration results than tradi-
tional algorithms. Furthermore, overcoming the challenge of large intersubject anatomi-
cal deformation remains difficult [21, 22]. Moreover, although supervised learning-based 
neural networks can theoretically improve registration accuracy, the difficulty of obtain-
ing high-quality registration gold standards is the most challenging problem that limits 
the practical applications of supervised learning-based neural networks [23].

To solve the above problems, a fully automatic registration method based on a hybrid 
supervised CNN (HSCN-Net) was proposed for accurate and fast intersubject brain CT 
registration to improve the interpretation of images from patients with ACVD. The main 
contributions of this study are summarized as follows:

1. The lack of gold standards is the major challenge encountered in medical image reg-
istration with supervised deep learning. Currently, there exist two ways to obtain the 
gold standards: annotation by neuroradiologists and generation by traditional regis-
tration algorithms. However, accurately annotating the displacements of correspond-
ing pixel points in images is difficult. Meanwhile, the accuracy of the gold standards 
is limited by the traditional registration method used. HSCN-Net applies a simulator 
to generate synthetic deformation fields and images during training as gold stand-
ards, which could improve the model’s registration accuracy, to solve the above prob-
lems. We applied the multiple deformation fields generated by the simulator on all 
the images in the database and asked senior neuroradiologists to check whether the 
organizational structures in the deformed images conform to the actual changes in 
brain tissues to verify the reasonableness of the simulations.

2. The existing networks easily fall into the local minimum values and are prone to 
acquiring inaccurate deformations. In particular, the prediction accuracy is obviously 
reduced when the intersubject anatomical deformation is large [24]. Large deforma-
tions with appropriate proportions are added to the deformation fields generated by 
the simulator to mitigate this problem. In addition, the simulated deformation fields 
include a variety of transformations, such as affine and elasticity. Through continu-
ous iterative learning, HSCN-Net provides prediction results that are consistent with 
the transformation characteristics of real-image pairs, and its capability to handle 
large intersubject deformation is considerably enhanced.

3. HSCN-Net adopts a hybrid supervised loss function that utilizes the alignment accu-
racy of the deformation fields as the supervised target and image similarity as the 
self-supervised target to improve the registration accuracy and generalization capa-
bility of the model. The correlation measure of the deformation fields directly quan-
tifies the alignment accuracy of the simulator-generated deformation fields and the 
predicted deformation fields. This approach could improve the accuracy of the pre-
dicted deformation fields. Image similarity is powerful feedback for the registration 
visualization results and could well ensure the generalization capability of the model.

4. Qualitative and quantitative analyses were performed to assess the performance of 
the proposed method comprehensively. HSCN-Net could achieve accurate and fast 
brain CT image registration, and addresses the scarcity of excellent algorithms for 
brain CT image registration. It was helpful for improving and accelerating the inter-



Page 4 of 13Yuan et al. BioMedical Engineering OnLine          (2021) 20:131 

pretation of CT images from patients with ACVD, thereby assisting clinicians in 
acute diagnosis and treatment decision-making.

Results
Qualitative analysis

It depicted the cross-section visualization of the registration results for a typical 
case in Fig. 1a is the reference image; (b) is the moving image; and (c)–(e) are the 
registration results of HSCN-Net, Demons, and VoxelMorph algorithms, respec-
tively. The main part of the rectangular box is the ventricular structure. The ven-
tricular structures in images (c), (d), and (e) were more consistent spatially with 

Fig. 1 Registration results of a typical brain CT image: a is the reference image; b is the moving image; and 
c–e are the registration results of HSCN-Net, Demons, and VoxelMorph algorithms, respectively; f–h are 
the local enlarged images corresponding to the same parts in c–e. All the three registration methods can 
achieve spatial matching. Compared with the ventricle in e, that in c and d had better spatial matching. 
The deformations in f and h were smoother than those in g and were highly consistent with the smooth 
characteristics of tissue deformation



Page 5 of 13Yuan et al. BioMedical Engineering OnLine          (2021) 20:131  

those in the reference image (a) than those in the moving image (b). This result 
indicated that all the three registration methods could achieve spatial matching. 
Moreover, the size and shape of the ventricles in (c) and (d) were more similar and 
closer to the corresponding region in the reference image (a) than to those of the 
ventricle in (e). This result showed that (c) and (d) had good spatial matching. In 
addition, the deformations between the voxels in image (e) were relatively small. 
(f )–(h) are the local enlarged images corresponding to the same parts in (c)–(e). 
As indicated by the arrow, the deformations in (f ) and (h) were smoother than 
those in (g) and were highly consistent with the smooth characteristics of tissue 
deformation.
Quantitative analysis

The results of endpoint error (EPE) between the predicted sparse deformation vectors 
and gold-standard sparse deformation vectors, image normalized mutual information 
(NMI), Dice, and the running times of the three algorithms are provided in Table 1.

Table  1 shows that the mean EPE values of the three algorithms followed the 
ascending order of HSCN-Net, Demons, and VoxelMorph. This ranking indicated 
that HSCN-Net had the smallest deformation field error among the algorithms. 
Specifically, the EPE mean value of HSCN-Net was 1.83 mm less than that of Vox-
elMorph. This result strongly indicated that the registration accuracy of HSCN-
Net was considerably higher than that of VoxelMorph (p < 0.05). The mean NMI 
of HSCN-Net (0.83) was slightly lower than that of the Demons algorithm (0.84, 
p > 0.05), but was slightly higher than that of the VoxelMorph algorithm (0.81, 
p < 0.05). This result illustrated that the registration results of Demons, followed by 
those of HSCN-Net, had the highest correlation with the reference image among 
those of the three registration methods. Furthermore, the Dice coefficient of the 
MCA blood supply area between the HSCN-Net registration result and the refer-
ence image was 0.96, which was higher than that of the Demons (0.90, p < 0.05) 
and VoxelMorph (0.87, p < 0.05) algorithms. Only the Dice metric of HSCN-Net 
was 0.01 higher than that of Demons, and the metric of HSCN-Net had the low-
est standard deviation among those of the three methods. This result indicated 
that HSCN-Net had high robustness and generalization capability. Finally, Table 1 
shows that Demons took 147.21 ± 27.46 s, VoxelMorph 18.53 ± 0.25 s, and HSCN-
Net 17.86 ± 0.23  s for one case. These results demonstrated that the registration 
speed of HSCN-Net was slightly higher than that of the classic registration network 
VoxelMorph (p > 0.05) and was considerably higher than that of the traditional reg-
istration algorithm Demons (p < 0.05).

Table 1 Registration error and performance quantification table (mean ± standard deviation)

Method EPE (mm) NMI Dice (%) Time (s)

Demons 3.47 ± 1.03 0.84 ± 0.02 0.90 ± 0.03 147.21 ± 27.46

VoxelMorph 5.12 ± 1.72 0.81 ± 0.02 0.87 ± 0.05 18.53 ± 0.25

HSCN-Net 3.29 ± 0.98 0.83 ± 0.01 0.96 ± 0.04 17.86 ± 0.23
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Discussion
HSCN-Net, a nonrigid image registration algorithm based on a hybrid supervised CNN 
for intersubject CT–CT image registration, was proposed in this study. HSCN-Net used 
a simulator to generate multiscale virtual deformation fields during training to over-
come the difficulty in obtaining high-quality deformation fields as the gold standards in 
supervised learning. Large deformations with appropriate proportions were added to 
the generated deformation fields to meet the challenge of large intersubject anatomical 
deformation between the CT images to be registered. Moreover, the proposed HSCN-
Net included a hybrid supervised loss function that combines the multiple informa-
tion of deformation field and image similarity. This function significantly improved the 
accuracy and generalization capability of the network. A total of 101 CT images were 
collected for model construction and model assessment. The results of qualitative and 
quantitative assessments revealed that the proposed method could achieve accurate 
and rapid CT–CT image registration in the presence of large intersubject anatomical 
deformations.

Given that the supervised learning-based registration network could provide the 
deformation fields that corresponded to the registration images, the network could learn 
the information of the prediction deformation fields directly under supervision. In con-
trast to the unsupervised learning-based network, the supervised learning-based regis-
tration network could simplify network training and improve registration accuracy in 
theory. However, the supervised learning method required high-quality golden stand-
ards to supply supervision information, and accurately annotating the displacements 
of the corresponding pixel points in medical images with a large number of pixels was 
burdensome. Completing the tedious and time-consuming annotation is difficult even 
for senior neuroradiologists. An alternative method was to use a traditional method to 
generate deformation fields as the gold standards. However, the accuracy of the gold 
standard was limited by the registration accuracy of the traditional method used. There-
fore, in the practice network training stage, obtaining accurate and large amounts of 
deformation field gold standards was complicated and is the main reason for the non-
ideal registration results of supervised learning-based networks [15–17]. HSCN-Net 
provided an effective, accurate, and convenient way to obtain the deformation field gold 
standards for the supervised learning-based registration network to solve this problem. 
First, we used the simulator to generate a virtual deformation field. Then, we applied the 
produced deformation field on the moving image to generate a virtual deformed image. 
Finally, we obtained the accurate deformation field between the moving image and refer-
ence image for model training. In this way, the accuracy of HSCN-Net was theoretically 
improved. The reduction in the EPE mean of HSCN-Net by 1.83 mm (p < 0.05) relative to 
that of the unsupervised registration network VoxelMorph verified that HSCN-Net had 
significantly improved registration accuracy.

Given that many possible transformations of the moving images yielded close similar-
ity measurement values, the gradient of the similarity measurement was insufficiently 
accurate in the representation of the transformation type and scale in iterative network 
optimization. In addition, optimization without the initialized transformation at the fin-
est resolution was difficult due to the large degrees of freedom of the transformation 
parameters. Therefore, existing networks easily falled into the local minimum values 
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and were prone to obtaining inaccurate deformation [24]. In particular, when the inter-
subject deformation was large, the prediction accuracy was obviously reduced [24]. For 
example, further improving the registration accuracy of VoxelMorph was difficult, and 
performance worsens in the presence of large intersubject deformation. The large-scale 
plausible deformations that are produced by HSCN-Net are used directly in the training 
process to address this challenge. The iterative learning of multiscale deformation made 
HSCN-Net’s prediction of the deformation field between images highly realistic and 
suitable for large intersubject deformation. Moreover, the simulated deformation fields 
included a variety of transformations, such as affine and elasticity transformations. The 
consistency of the diversity of the transformations with the transformation characteris-
tics of real-image pairs increased, such that the physicality of the synthetic deformation 
fields increases. This situation further improved the registration accuracy of HSCN-Net. 
Moreover, the EPE standard deviation of HSCN-Net was 0.74 lower than that of Voxel-
Morph (p < 0.05). This result demonstrated that the generalization capability of HSCN-
Net had been effectively improved compared with that of the VoxelMorph algorithm.

Considering that a neural network optimizes parameters by minimizing the loss func-
tion, the loss function is one of the key factors affecting the performance of neural net-
works. In this work, a new loss function that combined the deformation field EPE and 
image similarity was proposed. The EPE measure directly quantified the alignment accu-
racy of the deformation fields generated by the simulator and the predicted deformation 
fields. Such an approach could improve the accuracy of the predicted deformation fields. 
Image similarity, as a self-supervised training target, reflects the similarity between the 
reference image and the prediction image. It is powerful feedback for the registration 
visualization results and can well ensure the generalization capability of the model. 
Table 1 shows that the NMI mean of the HSCN-Net’s correlation metric had improved 
by 0.02 compared with that of VoxelMorph (p < 0.05), and the overlap degree (Dice coef-
ficient) of the MCA blood supply area between the reference image and the prediction 
image had improved by 0.09 (p < 0.05). Finally, EPE and NMI had the lowest standard 
deviations, indicating that HSCN-Net had higher robustness and generalization capabil-
ity than the other algorithms.

Most traditional registration algorithms suffered from slow convergence speed, 
because they involve high-dimensional iterative optimization [6, 24]. Long running 
time limited the practical application of many excellent registration algorithms, espe-
cially in the diagnosis of some acute diseases, such as ACVD, which required fast CT 
image interpretation for emergency treatment. The prognosis of the patient was affected 
seriously if an excessively long time is spent on the inspection or decision-making stage 
[1]. A previous work [24] proposed a neural network architecture based on Laplacian 
Pyramid for the evaluation of brain MRI images. The average registration time of the 
Laplacian Pyramid networks was approximately 0.3  s, which was significantly lower 
than that of Demons (approximately 190 s). NiftyReg [25] was another commonly used 
traditional medical image registration method. In the previous work [6], NiftyReg and 
VoxelMorph-based network were used simultaneously for the registration of longitudi-
nal abdominopelvic CT images. Compared with that of NiftyReg, the registration speed 
of the VoxelMorph-based network was approximately 300 times faster. Similar conclu-
sions could be found in the present work. Table 1 shows that compared with that of the 
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traditional registration method Demons, the average registration time of HSCN-Net had 
decreased from 147.21 to 17.86  s. This reduction greatly improved registration speed 
(p < 0.05). Moreover, compared with that of the classic neural network VoxelMorph, the 
average registration time of HSCN-Net had decreased by 0.67 s (p < 0.05). The execution 
time of the proposed method was considerably shorter than that of Demons and slightly 
shorter than that of VoxelMorph. These results indicated that HSCN-Net had certain 
advantages in running speed. Therefore, HSCN-Net has great clinical application value 
for ACVD, which requires rapid image registration.

Nevertheless, this study had some limitations. First, all the brain CT images involved 
this work were collected from the one medical center. Currently, CT images could not be 
collected from multiple manufacturers and equipment. In the future, we will pay addi-
tional attention to diverse data sources; continue to collect brain CT data for the optimi-
zation and validation of HSCN-Net; and further improve the accuracy, robustness, and 
generalization capability of HSCN-Net. Second, due to the limited memory resources 
of the GPU, HSCN-Net cannot be very deep, and random pairs were selected from the 
training set with a batch size limited to 1. Besides, we will attempt to apply HSCN-Net 
on CT data from other body parts, such as the heart and liver, for image interpretation.

Conclusion
A nonrigid algorithm based on a hybrid supervised CNN was proposed for intersub-
ject brain CT image registration. It could achieve accurate and fast brain CT registration 
with high generalization capability in the presence of large intersubject deformations. 
This method could help accelerate the evaluation and interpretation of ACVD CT 
images to provide pieces of evidence to neurologists for acute diagnosis and treatment 
decision-making.

Method
Data set and experimental configuration

Given the absence of published standard datasets for brain CT registration, we used 
data that were continuously collected from a hospital. Senior neuroradiologists manu-
ally annotated the MCA blood supply area in all images of the testing set. A total of 101 
nonenhanced CT images were collected as the data set. These images were taken from 
45 women and 56 men. The women were aged 30–86 years (71 ± 12 years old), and the 
men were aged 28–81 years (62 ± 11 years). Of the images, 57 were used for HSCN-Net 
training, 14 were used for validation, and 30 were used for testing. The data size was 
512 × 512 × 64, and the voxel spacing was 0.36 mm × 0.36 mm × 2 mm. All the data were 
preprocessed via skull removal and Z-score normalization. Our experiment was run on 
a Win10 64-bit operating system and GeForce RTX 2080 Ti, and the virtual environment 
was configured in Python 3.6 + TensorFlow 2.0.0.
Network design

We propose a Unet-based [26] neural network structure that mainly consists of two 
parts: the encoding path and decoding path. The encoding path follows the typical 
architecture of a convolutional network. It is mainly composed of repeated convolu-
tion and max pooling operations. The core function of the encoding path is to learn the 
deep semantic features of images. The decoding part fuses the semantic feature layers 
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obtained in the encoding stage, and every step in the decoding path consists of an up-
sampling of the feature map. The network adds dilated convolution inside the encoding 
and decoding module. This approach can expand the receptive field to improve feature 
extraction capability without increasing parameter number. The framework of the pro-
posed network is shown in Fig. 2. Importantly, a deformation field simulator is integrated 
into the network structure. The simulator simulates and generates the gold standards 
of the deformation fields during training, thus alleviating the difficulty encountered in 
obtaining high-quality gold standards in supervised learning. The deformation fields 
are configured intentionally with a certain proportion of large deformations to improve 
the capability of HSCN-Net to process large deformations. The moving image and the 
reference image that are deformed on the basis of the moving image by the simulated 
deformation field are defined as the first set of input images. Next, by leaving the mov-
ing image unchanged, another reference image is randomly selected from the training 
set. These two images are defined as the second set of input images. Then, these two 
sets of images are input into the network for training at the same time. Finally, deforma-
tion field information and image information are obtained simultaneously to optimize 
the network. Sparse deformation fields are preconstructed on the basis of the anatomical 
feature structural points in all images of the validation set and used as the gold standard 
for evaluation in the same way as the testing set discussed in “Method for the evaluation 
of network performance” section to verify the effect of the network in the training stage.

The network adopts supervised learning and self-supervised learning to optimize net-
work parameters. Training images are divided into the supervised group and the self-
supervised group. For the supervised group, the simulator generates the deformation 
field F0

g  to warp the image M into the reference image I0 . The two images in the self-
supervised group, which are denoted as the reference image I1 and the moving image 
M , are randomly selected from the training set. The two sets of images are simultane-
ously input into the network for training. Then, the two predicted deformation fields are 
obtained: F0

p and F1
p . Three sub-loss functions need to be calculated: the similarity meas-

ure LF between the random deformation field F0
g  and the predicted deformation field F0

p , 

Fig. 2 Framework of HSCN-Net. We used a simulator to generate synthetic deformation fields and images 
during training to address the lack of registration gold standards. Large deformations of appropriate 
proportions were added to the synthetic deformation fields to overcome the challenge of large deformation 
fields between the images to be registered. HSCN-Net adopts a hybrid supervised loss function that is 
constituted by the alignment accuracy of the deformation fields and image similarity to improve the 
registration accuracy and generalization capability of the model
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the similarity measure LM0 between the reference image I0 and the predicted image I0p 
in the supervised group, and the similarity measure LM1 between the reference image 
I1 and the predicted image I1p in the self-supervised group. Furthermore, three sub-loss 
functions are multiplied by the corresponding weight coefficients and added together 
to acquire the hybrid supervised loss function. Subsequently, the hybrid supervised loss 
function is fed back into the network backward propagation to optimize the parameters 
until convergence. Specifically, the hybrid loss function is computed as follows:

where I0p represents the predicted registration image generated by the deformation field 
F0
p acting on the moving image M , I1p represents the predicted registration image gener-

ated by the deformation field F1
p acting on the moving image M , and θ is the parameter 

of the neural network. The hybrid supervised loss Lreg
(

F0
p , F

0
g , I

0, I1, I
0

P , I
1
P; θ

)

 combines 

multiple information on the accuracy of the deformation field alignment and image sim-
ilarity, and α , β , γ are the hyperparameters for balancing the three sub-losses

where p is the voxel position in the image coordinate space � . |�| represents the voxel 
number in the registration image. The supervised learning-based loss function LF quan-
tifies the deviation error between the gold-standard deformation field F0

g  and the pre-
dicted deformation field F0

p to improve the alignment accuracy of the two deformation 
fields

where pi is the voxel coordinate in the neighborhood centered on the voxel f (x, y, z) . 
I0(f (x, y, z)) and I0p (f (x, y, z)) are the local means within the window around the voxel 
position f

(

xi, yi, zi
)

 in I0 and I0p , respectively

where pi is the voxel coordinate in the neighborhood centered on the voxel f (x, y, z) . 
I1(f (x, y, z)) and I1p (f (x, y, z)) are the local means within the window around the voxel 
position f

(

xi, yi, zi
)

 in I1 and I1p , respectively.
The experiment showed that when α = 1/13, β = γ = 0.4, the contributions of the three 

sub-loss functions LF
(

F0
p , F

0
g ; θ

)

 , LM0

(

I0, I0p ; θ
)

 , and LM1

(

I1, I1p ; θ
)

 to network parame-

ter optimization were relatively balanced. The similarity loss function LF of the super-
vised learning-based deformation field directly reflects the deviation of the gold-standard 
deformation field and the predicted deformation field. Such a function is beneficial for 
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∑
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I0(pi)− I0(p)
)2

∑
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)(
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∑
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)2

∑
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(
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)2
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improving the accuracy of the network. The self-supervised learning-based image simi-
larity loss functions LM0 and LM1 can reduce the dependence of the registration network 
on the diversity of the training set and help improve the generalization capability of the 
model.

The simulator randomly generates the deformation field F0
g , including affine and elas-

tic, to model various transformations (indicating anatomical variations across indi-
viduals) fully. F0

g  is applied on the moving image M to generate the reference image I0 , 
such that F0

g  can be the gold standard for warping M into I0 . As the gold standard, F0
g  

overcomes the problems of the low accuracy and poor consistency of the training gold 
standard in supervised learning. Furthermore, the random generation of some large 
deformations in the deformation field F0

g  alleviates the incapability of the existing regis-
tration methods to adapt to large deformations.

Many efficient optimization algorithms [27–30] have been proposed. In this work, we 
used Adam [29] with default settings as the optimizer. Two measures were adopted to 
overcome the network overfitting problem. First, the input images of the network were 
randomly added with Gaussian noise for data augmentation. Second, some dropout 
units were added to the registration network to discard some neural network units tem-
porarily in accordance with a certain probability. In addition, the use of the simulator 
can increase the diversity and amount of input features and help eliminate overfitting.

Method for the evaluation of network performance

A comparative experiment was conducted with Demons [31], a traditional deformable 
registration method, and VoxelMorph [17], a typical unsupervised deep learning net-
work, to assess the performance of HSCN-Net in the registration of brain CT images.

First, two images were randomly selected from the testing set and defined as the refer-
ence image and the moving image. Then, the reference–moving image pair was fed into 
the network to obtain the deformed image. Finally, qualitative and quantitative analy-
ses were carried out to evaluate the registration accuracy, robustness, and efficiency of 
HSCN-Net.

Qualitative analysis was performed by visually assessing the registered images. The 
analysis included assessing the consistency of the anatomical structures and smoothness 
of the deformations in the registered images.

Quantitative analysis involved metrics, such as EPE, NMI [32], Dice [33] coefficient, 
and registration time. EPE was used to measure the alignment accuracy between the 
predicted deformation fields and the gold-standard deformation fields. Given that 
obtaining the gold standards of the dense deformation fields in image registration was 
very difficult in practice, this study used anatomical feature point-based sparse defor-
mation vectors to assess EPE differences. First, all of the images in the testing set were 
manually marked with some typical structural points. The structural points included 
the fixed points of ventricular horns, the sulcal intersection, etc. Then, the deformation 
vector for each structural point pair could be computed by transforming the structural 
point from the moving image space to the reference image space. Finally, EPE could be 
measured by comparing the gold standard of sparse deformation vectors and the pre-
dicted sparse deformation vectors. NMI was used to quantify the correlation between 
the predicted image and the reference image (ranged from 0 to 1). Large values reflect 
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strong correlation between the predicted image and the reference image and vice versa. 
The Dice coefficient was utilized to quantify the degree of the overlap between the MCA 
blood supply area in the predicted and reference images. The gold standards of the MCA 
blood supply area were annotated by senior neuroradiologists. Moreover, the running 
time of the three algorithms was statistically analyzed. Paired t test was used to compare 
the registration accuracy and running time of different registration methods, and a p 
value less than 0.05 was considered statistically significant. Refer to Eq. (2) for the defini-
tion of EPE.

Abbreviations
CT: Computed tomography; ACVD: Acute cerebrovascular disease; EPE: Endpoint error; NMI: Normalized mutual informa-
tion; MCA: Middle cerebral artery; AIS: Acute ischemic stroke; ASPECTS: Alberta Stroke Program Early CT Score; 3D: Three-
dimensional; MR: Magnetic resonance; CNNs: Convolutional neural networks; HSCN-Net: Hybrid supervised CNN.

Acknowledgements
This study was funded by Shenyang Science and Technology Plan Fund (Grant Number 20-201-4-10).

Authors’ contributions
YHM conceptualized the study, analyzed data, and wrote the paper. YML conceptualized the study and edited the paper. 
QS, WWX, JXT, and HF edited and reviewed the paper. All authors read and approved the final manuscript.

Funding
This study was funded by Shenyang Science and Technology Plan Fund (grant number 20-201-4-10).

Availability of data and materials
The datasets generated and/or analyzed during the current study are not publicly available due to hospital information 
protection mechanism, but are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards.

Consent for publication
Not applicable.

Informed consent
For this type of study, formal consent was not required.

Competing interests
The authors declare that they have no conflicts of interest.

Author details
1 Neusoft Research of Intelligent Healthcare Technology, Co. Ltd, A1 Building, No.2 Xinxiu Street, Hunnan New District, 
Shenyang 110179, People’s Republic of China. 2 Neusoft Medical System, Co. Ltd, Shenyang 110167, China. 3 Shenyang 
Advanced Medical Equipment Technology Incubation Center, Co. Ltd, Shenyang 110167, China. 

Received: 5 August 2021   Accepted: 20 December 2021

References
 1. Lee SH. Stroke revisited: diagnosis and treatment of ischemic stroke. In: Critical and medical management in acute 

stage of ischemic stroke (Chapter 14). 2017. p. 157–69. https:// doi. org/ 10. 1007/ 978- 981- 10- 1424-6.
 2. Jung SM, Whangbo TK. Estimating aspect score for stroke from brain CT images based-on deep-learning. Adv Sci 

Technol. 2018;150:342–6.
 3. Huo XC, Gao F. Preliminary investigation of endovascular treatment status of acute ischemic stroke in China. Chin J 

Stroke. 2016;11(4).
 4. Mayer A, Zholkover A, Portnoy O, et al. Deformable registration of trans-rectal ultrasound (TRUS) and magnetic 

resonance imaging (MRI) for focal prostate brachytherapy. Int J Comput Assist Radiol Surg. 2016;11(6):1015–23.
 5. Broggi S, Scalco E, Belli ML, et al. A comparative evaluation of 3 different free-form deformable image registration 

and contour propagation methods for head and neck MRI: the case of parotid changes during radiotherapy. Tech-
nol Cancer Res Treat. 2017;16(3):373–81.

https://doi.org/10.1007/978-981-10-1424-6


Page 13 of 13Yuan et al. BioMedical Engineering OnLine          (2021) 20:131  

 6. Reaungamornrat S, Silva TD, Uneri A, et al. MIND demons: symmetric diffeomorphic deformable registration of MR 
and CT for image-guided spine surgery. IEEE Trans Med Imaging. 2016;35(11):2413–24.

 7. Han R, Silva TD, Uneri A, et al. A Momentum-based acceleration of the diffeomorphic demons algorithm for registra-
tion of MRI and CT images of the brain. In: APS March meeting 2018. American Physical Society; 2018.

 8. Krivov E, Pisov M, Belyaev M. MRI augmentation via elastic registration for brain lesions segmentation. In: Interna-
tional MICCAI brainlesion workshop. Cham: Springer; 2017.

 9. Liu X, Xing F, Yang C, et al. Symmetric-constrained irregular structure inpainting for brain MRI registration with tumor 
pathology. 2021.

 10. Uus A, Zhang T, Jackson LH, et al. Deformable slice-to-volume registration for motion correction of fetal body and 
placenta MRI. IEEE Trans Med Imaging. 2020;39(9):2750–9.

 11. Yu W, Tannast M, et al. Non-rigid free-form 2D–3D registration using a B-spline-based statistical deformation model. 
Pattern Recogn. 2017;63:689–99.

 12. Liu C, Zhang L, Wang L, et al. Multi-scale B-spline medical image registration based on pixel reconstruction. Intell 
Comput Appl. 2019;9(1):4.

 13. Wodzinski M, Skalski A, Ciepiela I, et al. Application of demons image registration algorithms in resected breast can-
cer lodge localization. In: 2017 signal processing: algorithms, architectures, arrangements, and applications (SPA). 
IEEE; 2017.

 14. Yang X, Kwitt R, Styner M, et al. Quicksilver: fast predictive image registration—a deep learning approach. Neuroim-
age. 2017;158:378.

 15. Sokooti H, Vos BD, Berendsen F, et al. 3D convolutional neural networks image registration based on efficient super-
vised learning from artificial deformations. 2019.

 16. Eppenhof K, Pluim J. Pulmonary CT registration through supervised learning with convolutional neural networks. 
IEEE Trans Med Imaging. 2019;38(5):1097–105.

 17. Dalca AV, Balakrishnan G, Guttag J, et al. Unsupervised learning for fast probabilistic diffeomorphic registration. 
2018.

 18. Fan J, Cao X, Yap PT, et al. BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med 
Image Anal. 2019;54:193–206.

 19. Han R, Jones CK, Ketcha MD, et al. Deformable MR-CT image registration using an unsupervised end-to-end synthe-
sis and registration network for endoscopic neurosurgery. In: Image-guided procedures, robotic interventions, and 
modeling. 2021.

 20. Haskins G, Kruger U, Yan P. Deep learning in medical image registration: a survey. Machine Vision and Applications. 
2020;31:8. https:// doi. org/ 10. 1007/ s00138- 020- 01060-x.

 21. Kim B, Kim J, Lee J G, et al. Unsupervised deformable image registration using cycle-consistent CNN. 2019.
 22. Zhu W, Myronenko A, Xu Z, et al. NeurReg: neural registration and its application to image segmentation. In: 2020 

IEEE winter conference on applications of computer vision (WACV). IEEE; 2020.
 23. Haskins G, Kruger U, Yan P. Deep learning in medical image registration: a survey. Mach Vis Appl. 2020;31(1–2):1–18.
 24. Mok T, Chung A. Large deformation diffeomorphic image registration with laplacian pyramid networks. 2020.
 25. Clayden J, Dagaothers P. RNiftyReg: image registration using the ’NiftyReg’ library. 2017. R package version 2.5.0. 

https:// CRAN.R- proje ct. org/ packa ge= RNift yReg.
 26. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Cham: 

Springer; 2015.
 27. Abualigah L, Diabat A, Mirjalili S, et al. The Arithmetic Optimization Algorithm. Comput Methods Appl Mech Eng. 

2021;376:113609.
 28. Abualigah L, Yousri D, Elaziz MA, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind 

Eng. 2021;157:107250.
 29. Kingma D, Ba J. Adam: a method for stochastic optimization. 2014;6(12). arXiv: 1412. 6980. arXiv preprint 
 30. Abualigah L, Diabat A, Sumari P, Gandomi AH. A novel evolutionary arithmetic optimization algorithm for multilevel 

thresholding segmentation of covid-19 ct images. Processes. 2021;9(7):1155. https:// doi. org/ 10. 3390/ pr907 1155.
 31. Huang S, Wu K, Meng X, et al. Non-rigid registration method between 3D CT liver data and 2D ultrasonic images 

based on demons model. 2019.
 32. Studholme C, Hill D, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment. Pattern 

Recogn. 1999;32(1):71–86.
 33. Sudre C H, Li W, Vercauteren T, et al. Generalised Dice overlap as a deep learning loss function for highly unbalanced 

segmentations. In: International workshop on deep learning in medical image analysis international workshop on 
multimodal learning for clinical decision support. 2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00138-020-01060-x
https://CRAN.R-project.org/package=RNiftyReg
http://arxiv.org/abs/1412.6980
https://doi.org/10.3390/pr9071155

	Brain CT registration using hybrid supervised convolutional neural network
	Abstract 
	Background: 
	Method: 
	Results: 
	Conclusion: 

	Background
	Results
	Qualitative analysis
	Quantitative analysis

	Discussion
	Conclusion
	Method
	Data set and experimental configuration
	Network design
	Method for the evaluation of network performance

	Acknowledgements
	References




