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Background
Healthy aging is associated with a transformation of muscle composition [1]. This age-related 
change in muscle quality, namely the proportion of contractile over non-contractile tissue, 

Abstract 

Background: Age-related changes in muscle properties affect daily functioning, therefore 
a reliable assessment of such properties is required. We examined the effects of age on reli-
ability, muscle quality and interrelation among muscle architecture (MA) parameters of the 
gastrocnemius medialis (GM), tibialis anterior (TA), and vastus lateralis (VL) muscles.

Methods: Three raters scored ultrasound (US) scans of 12 healthy younger and 
older adults, on fascicle length (FL), pennation angle (PA) and muscle thickness (MT). 
Intra- and inter-rater reliability of MA measures in rest and contraction was assessed 
by intraclass correlation coefficients (ICC) and standard error of measurements (SEM, 
SEM%). The relationship between MA parameters was examined using Pearson correla-
tion coefficients. Muscle quality (MQ) was examined using mean pixel intensity.

Results: Reliability was moderate to excellent for TA in both groups (ICCs: 0.64–0.99, 
SEM% = 1.6–14.8%), and for VL in the younger group (ICCs: 0.67–0.98, SEM% = 2.0–
18.3%). VL reliability was poor to excellent in older adults (ICCs: 0.22–0.99, SEM% = 2.7–
36.0%). For GM, ICCs were good to excellent (ICCs: 0.76–0.99) in both groups, but GM 
SEM% were higher in older adults (SEM%Younger = 1.5–10.7%, SEM%Older = 1.6–28.1%). 
Muscle quality was on average 19.0% lower in older vs. younger adults. In both groups, 
moderate to strong correlations were found for VL FL and MT (r ≥ 0.54), and TA PA and 
MT (r ≥ 0.72), while TA FL correlated with MT (r ≥ 0.67) in younger adults only.

Conclusions: In conclusion, age- and muscle-specificities were present in the rela-
tionships between MT and PA, and MT and FL at rest. Furthermore, the reliability of 
MA parameters assessed with 2D panoramic US is acceptable. However, the level of 
reliability varies with age, muscle and MA measure. In older adults notably, the lowest 
reliability was observed in the VL muscle. Among the MA parameters, MT appears to be 
the simplest and most easily reproducible parameter in all muscles and age groups.
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results in an impaired force-generating capacity and increased intramuscular fat [1], which 
eventually impact skeletal muscle function [2]. Additionally, muscle quality alterations are 
related to muscle thickness and the arrangement of muscles fibers, i.e., muscle architecture 
(MA) [3], which are strong determinants of muscle mass and muscle strength, respectively 
[4–6]. Therefore, the use of muscle quality and MA as biomarkers of skeletal muscle func-
tion, as well as for diagnostic and evaluation of exercise interventions, is important but relies 
on good reliability of the measurement procedure.

MA is quantified by fascicle length (FL), pennation angle (PA) and muscle thickness 
(MT), which are all affected by age [7–12]. For example, MT of the gastrocnemius medi-
alis and vastus lateralis muscles is negatively correlated (r = − 0.4) with age [12], and 
both FL and PA of the gastrocnemius medialis muscle decline by ~ 10% by age 81 years 
[8]. Muscle status is often assessed by brightness-mode (B-mode) ultrasound (US) when 
priority is given to low-cost, rapid and non-invasive assessment [13–15]. Aggregate evi-
dence suggests that US MA reliability estimates are highly variable and inconsistent in 
a variety of muscles and across studies [16–19]. One source of inconsistency is the use 
of incorrect types of intraclass correlation coefficients, which could inflate reliability or 
mask unreliability of MA parameters [16, 17, 19]. A second source of inconsistency is the 
use of reliability estimates of MA parameters that are not comparable between studies 
[16, 17, 19]. It is also often the case that due to a large number of images, two or more 
raters determine MA, however the reliability between raters analyzing the same image 
is scarcely reported [20]. Furthermore, reliability of US estimates of MA has only been 
scarcely examined in the older population. Therefore, the potential effects of aging on 
reliability, which results from the age-related alterations in muscle quality and architec-
ture, remain unclear.

In fact, the age-related changes in muscle quality vary per individual, depend on co-
existing pathologies and are reflected in sonographic changes, of which some of  the 
most reoccurring ones are changes in echogenicity and loss of heterogeneity [21]. These 
changes concern, respectively, the ability of the tissue to reflect echo waves and the 
changes in the proportion of contractile and non-contractile tissue. Both these proper-
ties are quantifiable by ultrasound measures of muscle quality, in particular echo inten-
sity (EI) [22]. Therefore, if both the MA reliability of lower limb muscles in aging and the 
effects of muscle quality on MA reliability remain unclear, the potential value of ultra-
sound for diagnostic and prognosis is also debatable. Additionally, since MA is a strong 
determinant of muscle strength [4–6], the conclusions on age-related loss of strength 
and low physical performance based on US measurements are less impactful, and so is 
the relationship between these metrics and muscle loss, or sarcopenia, which is associ-
ated with mobility-disability and mortality [23–26].

Although the use of US in clinical settings is promising [27], on the basis of the evi-
dence presented, a clarification of the reliability of MA features for lower extremity mus-
cles in older adults would increase the clinical value of MA and would allow clinicians to 
make more informed treatment decisions. Therefore, the purpose of this study is to pro-
vide a comprehensive analysis of relative and absolute intra-rater and inter-rater reliabil-
ity of muscle architecture, namely FL, PA, and MT using panoramic two-dimensional 
(2D) US of three lower extremity muscles at rest and during contraction in healthy 
younger and older adults. The tibialis anterior, vastus lateralis and gastrocnemius medius 
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muscles were targeted since their MA is affected by aging and because of the important 
role they play during balance control while standing [28, 29] and power production dur-
ing walking [30, 31]

The second aim is to elucidate the effect of age on MA reliability and measures of mus-
cle quality. Accordingly, the association between different MA parameters, will also be 
examined. This process would ultimately help reveal not only the structure of interde-
pendence among MA parameters, but also facilitate the selection of those parameters 
that are reliable while being highly correlated to other MA parameters. We expect to 
find that reliability of MA parameters would vary by muscle. Furthermore, we expect 
significant positive correlations between FL and MT and FT and PA [32, 33]. As age 
affects muscles, connective tissue volume and intramuscular fat in the lower extremity 
muscles differently [34], which in turn affect muscle quality [35], we expect that reliabil-
ity of MA would be lower in older compared with younger adults.

Results
Reliability of MA parameters

Table 1 shows the demographics and muscle property data.

Intra‑rater reliability

Table 2 shows the ICCs for each rater and ICC averaged over the three raters for PA, FL, and 
MT in the three muscles at rest and during contraction in the two age groups. All ICCs were 
significant. For the GM, average intra-rater ICCs were good to excellent (ICCs = 0.78–0.99) in 
the two age groups. Table 3 shows the corresponding absolute SEM and relative SEM values. 
Averaged intra-rater SEM values for the GM muscle were ≤ 1.84° for PA, ≤ 0.46 cm for FL 
and ≤ 0.05 cm for MT in both groups. For the TA, relative intra-rater reliability was moder-
ate to excellent (ICCs = 0.70–0.98) in both age groups, and absolute SEM values were ≤ 1.24° 
for PA, ≤ 0.61 cm for FL and ≤ 0.04 cm for MT. For the VL, relative intra-rater reliability was 
moderate to excellent (ICCs = 0.59–0.98) in the two age groups. Corresponding absolute SEM 
values were ≤ 1.29° for PA in both groups. For FL, SEMs were ≤ 1.01 cm in the old group and 
≤ 0.75 cm in the younger group. For MT, SEM values were ≤ 0.13 cm in the two age groups.

Inter‑rater reliability

Table 4 shows the ICCs and SEMs for the inter-rater reliability for PA, FL, and MT in 
the three muscles at rest and during contraction in the two age groups. For the MA 
of the  GM muscle, inter-rater reliability was good to excellent (ICCs = 0.76–0.99, 
all P < 0.05) in the two age groups. Absolute PA SEM values were  below 1.83° in the 
younger group and ranged between 1.80° to 3.63°in the older group. FL SEMs were 
≤ 0.55  cm in the younger group, and ranged between 1.03 and 1.84  cm in the older 
group. Absolute MT SEM values were ≤ 0.06 cm in the two age groups. Inter-rater reli-
ability for TA MA was moderate to excellent (ICCs = 0.64–0.99, all P < 0.05) in the two 
age groups. SEM values for the PA, FL and MT of the TA were, respectively, ≤ 2.89°, 
≤ 0.93 cm, and ≤ 0.05 cm. Inter-rater reliability for VL MA was moderate to excellent 
(ICCs = 0.67–0.98, all P < 0.05) in the younger group and poor to excellent in the older 
group (ICCs = 0.22–0.99). More specifically, in the older group, ICCs varied from 0.44 to 
0.55 for PA, between 0.22 and 0.37 for FL, and between 0.94 and 0.99 for MT. However, 
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the ICCs values for PA and FL in the older group were not significant. PA SEM values 
were ≤ 2.60° in the two age groups. FL SEM values were ≤ 4.05 cm in the older group 
and ≤ 2.04  cm in the younger group. SEM MT values were ≤ 0.17  cm in the younger 
group and ≤ 0.09 cm in the older group.

Echo intensity and correlations among MA parameters

Figure 1 shows the echo intensity values at rest and during contraction in the three mus-
cles and the two age groups. Mean and SD values of the echo intensity values are pre-
sented in Additional file 1: Table S1.

For the GM, EI in older adults was higher by 21.4% (Cohens’ d = 1.35) and 17.2% 
(Cohen’s d = 1.14) at rest and during contraction respectively, compared to younger 
adults. In older adults, TA EI was higher by 19.7% at rest (Cohens’ d = 1.14) and 28.0% 

Table 1 Demographic data and muscle properties in the two age groups

Data are expressed as mean (SD)

EI echo intensity, PA pennation angle, FL fascicle length, MT muscle thickness, MVF maximum voluntary force

Variable Young (N = 12) Old (N = 12)

Demographic data

 Age (years) 23.33 (3.75) 67.92 (2.11)

 Gender (male/female) 5/7 6/6

 Length (m) 1.76 (0.11) 1.70 (0.05)

 Mass (kg) 70.83 (11.46) 70.08 (13.47)

Muscle architecture and echo intensity data

 Gastrocnemius medialis

  PA rest (°) 18.71 (3.12) 16.16 (2.91)

  PA contraction (°) 21.77 (3.45) 19.07 (5.17)

  FL rest (cm) 5.12 (0.75) 6.53 (2.91)

  FL contraction (cm) 4.51 (1.03) 5.34 (1.89)

  MT rest (cm) 1.63 (0.28) 1.61 (0.29)

  MT contraction (cm) 1.72 (0.42) 1.64 (0.30)

 Tibialis anterior

  PA rest (°) 9.82 (2.23) 11.81 (2.51)

  PA contraction (°) 13.10 (3.55) 14.88 (3.28)

  FL rest (cm) 6.26 (0.83) 6.51 (1.14)

  FL contraction (cm) 5.44 (0.90) 5.66 (0.91)

  MT rest (cm) 1.04 (0.21) 1.16 (0.17)

  MT contraction (cm) 1.17 (0.27) 1.28 (0.18)

 Vastus lateralis

  PA rest (°) 13.30 (1.92) 10.60 (2.79)

  PA contraction (°) 12.72 (3.30) 9.87 (2.52)

  FL rest (cm) 12.14 (2.12) 10.96 (3.81)

  FL contraction (cm) 11.18 (2.53) 11.90 (3.75)

  MT rest (cm) 2.71 (0.40) 1.98 (0.34)

  MT contraction (cm) 2.57 (0.34) 2.09 (0.23)

MVF data (N)

 Gastrocnemius medialis 538.18 (259.73) 421.33 (153.97)

  Tibialis anterior 163.83 (66.59) 170.17 (54.98)

  Vastus lateralis 441.55 (152.80) 309.83 (102.03)
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(Cohens’ d = 1.47) during contraction, compared to younger adults. For the VL at rest, EI 
was 17.2% (Cohens’ d = 0.63) higher in older compared to younger adults, whereas dur-
ing contraction it was 10.2% (Cohens’ d = 0.63) lower in younger adults. Large effects are 
reported in all muscles and conditions, except for the VL in contraction which showed a 
medium effect. Differences in EI between younger and older adults were only significant 
for GM in rest, TA in contraction and VL in rest (P < 0.05).

Figure 2 shows the correlations between MA parameters at rest and during contrac-
tion in the three muscles and two age groups. In the younger group, GM, MT, and PA 
correlated moderately (r = 0.68, P < 0.05) at rest , but not during contraction (r = 0.22). In 
the older group, no correlations between MT and PA were found in the GM (rrest = 0.01; 
rcon = 0.11). MT and PA correlated moderate  to strong  at rest and during contraction 
in TA in both groups (Young: rrest = 0.83, rcon = 0.70; Old: rrest = 0.78, rcon = 0.72, all 
P < 0.05). In VL, no correlation was found in the younger group at rest (r = 0.13), but a 
moderate correlation was found during contraction (r = 0.54, P < 0.05). MT and PA did 
not correlate in both conditions in older group (rrest = 0.01, rcon = 0.11, respectively).

MT and FL in GM correlated similarly at rest in the younger (r = 0.55) and older group 
(r = 0.50), but different during contraction (young: r = 0.72, P < 0.05; old: r = 0.58). MT 
and FL in TA at rest and in contraction correlated in young (rrest = 0.87, rcon = 0.67, 
both P < 0.05), but not in older adults (rrest = 0.15, rcon = 0.19). MT and FL in VL at rest 
and during contraction correlated moderately to strongly in both age groups (young: 
rrest = 0.77; rcon = 0.54; old: rrest = 0.75; rcon = 0.70, all P < 0.05).

Fig. 1 Echo intensity (EI) values in the three muscles and the two age groups. Significant (P < 0.05) EI 
differences between younger and older adults are highlighted with an *. con contraction, GM gastrocnemius 
medius, TA tibialis anterior, VL vastus lateralis



Page 9 of 19Hagoort et al. BioMedical Engineering OnLine           (2022) 21:15  

Fi
g.

 2
 C

or
re

la
tio

ns
 b

et
w

ee
n 

m
us

cl
e 

ar
ch

ite
ct

ur
e 

(M
A

) p
ar

am
et

er
s. 

A
 T

he
 c

or
re

la
tio

ns
 b

et
w

ee
n 

pe
nn

at
io

n 
an

gl
e 

an
d 

m
us

cl
e 

th
ic

kn
es

s 
in

 th
re

e 
m

us
cl

es
 in

 re
st

 a
nd

 c
on

tr
ac

tio
n 

an
d 

tw
o 

ag
e 

gr
ou

ps
. 

B 
Th

e 
co

rr
el

at
io

ns
 b

et
w

ee
n 

fa
sc

ic
le

 le
ng

th
 a

nd
 m

us
cl

e 
th

ic
kn

es
s 

in
 th

e 
th

re
e 

m
us

cl
es

 a
t r

es
t a

nd
 c

on
tr

ac
tio

n 
an

d 
in

 th
e 

tw
o 

ag
e 

gr
ou

ps
. S

ig
ni

fic
an

t c
or

re
la

tio
ns

 a
re

 h
ig

hl
ig

ht
ed

 w
ith

 a
n 

*



Page 10 of 19Hagoort et al. BioMedical Engineering OnLine           (2022) 21:15 

Discussion
Age-related changes in MA parameters impact daily function. Reliable estimates of such 
measures are important for diagnostics and treatment of muscle-related disorders such 
as sarcopenia. A comprehensive reliability assessment of MA parameters in lower leg 
muscles has been lacking so far, especially in older adults. In the present study, we aimed 
to determine the relative and absolute intra-rater and inter-rater reliability of MA meas-
ured using 2D panoramic US in GM, TA, and VL at rest and during contraction. Fur-
thermore, we wanted to elucidate the effects of age on both MA reliability and muscle 
quality, as well as on the interdependence of different MA parameters. As hypothesized, 
we found age- and muscle-specificity in the interdependence of MA parameters and in 
the reliability of MA parameters. Furthermore, as expected, muscle quality, expressed 
by EI, decreased with age, which could underlie the age-sensitivity of MA reliability 
estimates.

Overall, the values for FL, PA, and MT in the three muscles (Table 1) were within 
the limits of those reported previously [7, 8, 36]. Intra- and inter-rater reliability 
of the MA parameters was good to excellent in GM (ICCs: 0.76–0.99) and moder-
ate to excellent in TA (ICCs: 0.64–0.99) in each age group (Tables 2, 4). In contrast, 
intra- and inter-rater reliability of MA parameters in VL was age-dependent, as it 
was moderate to excellent (ICCs: 0.67–0.98) in younger and poor to excellent (ICCs: 
0.22–0.99) in older adults. These results are in line with the aggregate data reviewed 
previously [16–18]. However, when comparing our data with the data  presented in 
these reviews, several points should be considered. First, the studies reviewed focused 
on test–retest, between scan or inter-operator ICCs. Second, different types or even 
incorrect reliability estimates were used and/or the type and model of the ICC were 
not reported. This may have inflated reliability or masked unreliability [16, 17, 19]. A 
study with a comparable methodology reported higher reliability (ICCs: 0.99–1.00) 
for MA parameters in GM [20]. These higher ICCs are probably the result of a longer 
probe being used which captured the entire length of the GM (100 mm [20] vs. 39 mm 
in the present study). Because panoramic US is sensitive to changes in position of the 
probe [37], our probe movement could have reduced the reliability. Furthermore, it is 
important to notice that in the current study ICCs were calculated based on absolute 
agreement, which could lower reliability compared to consistency measures. In the 
current study, SEM% values ranged from 2.1 to 12.9% for intra-rater reliability of PA, 
FL, and MT in the three muscles. For inter-rater reliability of the MA parameters, 
SEM% values ranged between 3.5–26.0% in the older group, and between 3.5–22.1% 
in the younger group.

Comparison of reliability among MT, FL and PA

In all muscles, MT had the highest absolute and relative intra- and inter-rater reli-
ability (ICCs > 0.87and SEM% < 7.2%) compared to PA (ICCs: 0.44–0.99; SEM%: 4.4–
17.5%) and FL (ICCs: 0.22–0.99; SEM%: 2.7–14.0%). Additionally, MT confidence 
intervals were smaller than those of FL and PA, and did not overlap in most cases 
with the intervals of FL and PA, implying significant higher reliability for MT. As fas-
cicles have variable lengths and arrangements within a muscle, the associated PA and 



Page 11 of 19Hagoort et al. BioMedical Engineering OnLine           (2022) 21:15  

FL may differ from fascicle to fascicle [4, 38], which may explain the lower reliability 
found for these two parameters.

Comparison of reliability between rest and contraction

A previous study found improvements in image contrast and measurement accuracy for 
MA outcomes derived during contraction [39]. In the current study, we observed higher 
ICC estimates during muscle contraction compared with rest (~ 62%). However, when 
reliability of MA parameters was poor, as was the case for the FL and PA of the VL in 
older adults, reliability of MA parameters did not improve with contraction. Confidence 
intervals between rest and contraction were overlapping in most cases. Therefore, con-
traction does not seem to affect reliability of MA parameters.

Comparison of reliability between the two age groups

Although ICC intervals are wide and overlap between both age groups, we observed that 
MA parameters were more variable in older compared to younger adults, in particular 
the PA and FL in VL, but not in GM and TA (Table 4). This sensitivity is reflected in the 
lower muscle quality in the older group (Fig. 2), possibly as a result of decreased muscle 
volume and increased fat infiltration [1, 35]. Furthermore, the larger volume of VL vs. 
GM and TA could have reduced probe stability during scanning [40], which influences 
image quality, since panoramic US is sensitive to probe re-positioning [37]. As older 
adults exhibit greater relative force fluctuations during isometric contractions [41, 42] 
and the large volume of VL lengthens scanning time, these force fluctuations could fur-
ther compromise probe stability, image quality and ultimately the reliability of the VL 
MA. Our data also draw attention to using both ICC and SEM to assess reliability. While 
GM FL at rest had good reliability in both age groups (ICCs ≥ 0.76), SEM% were sensi-
tive to age (young: 10.8%, old: 28.1%, Table 4), underlining the importance of assessing 
both absolute and relative reliability, especially when examining participants prone to 
muscle atrophy [16, 19].

Muscle quality changes and correlations between MA parameters

As hypothesized, we observed that muscle quality, quantified using EI, was 
lower (P < 0.05) in older compared to younger adults [35]. The lower muscle quality in 
VL is consistent with the quadriceps’s lower quality in older adults reported in the litera-
ture [43, 44]. The lower muscle quality could have affected the ability to reliably identify 
the MA parameters, as it appears to be reflected in the larger range of the ICCs found 
in the older population. Therefore, the current results also highlight the relevance of a 
MA reliability analysis in an older population, including those having a specific disability 
that compromises muscle quality. Moreover, the MA data collected in three muscles and 
two age groups allowed us to examine the age- and muscle-specificity of the relation-
ship among MT, PA, and FL. Such analyses could help us better understand the struc-
tural and functional mechanisms underlying senile sarcopenia and muscles’ responses 
to mechanical loading. This process also helps reveal the interdependence among MA 
parameters, and facilitates the selection of those parameters that have higher reliabil-
ity while being highly correlated to other MA parameters. We observed, in agreement 
with our hypothesis and supported by prior data [32, 33], a muscle-specificity in the 
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relationships between MT and PA, as there was such an association in GM (r = 0.68) 
and TA (r = 0.83) in younger adults, but not in the VL (r = 0.13) (Fig. 2). The MT–PA 
relationship was affected by age, as such association was only present in TA (r = 0.72, 
P < 0.05) in older adults, but not in GM (r = 0.01) and VL (r = 0.07). How age and spe-
cific muscles might affect the MT–FL relationship is important for understanding if 
muscle changes occur uniformly cross-sectionally (MT) and longitudinally (FL) [45]. We 
observed age- and muscle-specificity in the MT–FL relationship, so that such relation-
ship occurred in both age groups in VL (Fig. 2. Younger: r = 0.75, P < 0.05, older: r = 0.70, 
P < 0.05), in neither group in GM (younger: r = 0.55; older: r = 0.50) and for the TA only 
in the younger adults (younger: r = 0.87, P < 0.05; older: r = 0.15). The data seem to sug-
gest that old age affects the interdependence among measures of MA at rest. We note 
that muscle contraction did affect these associations between PA–MT and FL–MT for 
the younger (rrest = 0.68; rcon = 0.22), but not for older adults. An explanation for this 
finding could be that we observed higher MVCs with more variation in the younger 
group for the GM and VL compared to the older group (Table  1). This indicates that 
there is also more variability in the absolute force level at which the muscles were con-
tracted at 20–30% MVC. The selection of a MA measure that is highly correlated with 
other MA parameters while also being highly reliable may thus remain age- and muscle-
dependent. However, on the basis of our analysis, we found that MT appears the sim-
plest and most easily reproducible MA parameter (ICCs > 0.87, SEM% < 7.47%) in the 
older adults and it supports the use of MT in clinical settings, as done previously in the 
context of muscle strength research [46].

A greater sample size could have narrowed the 95% confidence intervals of the ICC 
in particular for the PA and FL of all muscles. Wider confidence intervals in the current 
study for PA and FL, and not for MT, have also been reported previously [47], when 
determining test–retest reliability of VL and GM muscles in 21 older adults. In the pre-
sent study, FL was determined with a custom-made MATLAB tool, on 2D images, ignor-
ing the curvature of the muscle which could have influenced reliability [48].

Conclusions
The current study examined intra-rater and inter-rater reliability of muscle architecture 
in three lower limb muscles in healthy younger and healthy older individuals. Addition-
ally, we clarified the effect of age on MA reliability and measures of muscle quality. In 
conclusion, we observed the presence of age- and muscle-specificity in the relationships 
between MT and PA and MT and FL at rest. Furthermore, we conclude that MA param-
eters can be reliably assessed with 2D panoramic US, but the level of reliability is likely 
influenced by muscle quality and varies with age, muscle, and MA measure. Among 
the MA parameters, MT appears to be the simplest and most easily reproducible MA 
parameter in older adults.

Methods
Participants

Healthy younger (N = 12, 5M, mean age: 23.3 SD: ± 3.8 years) and healthy older inde-
pendently living volunteers (N = 12, 6M, age 67.9 ± 2.1  years) participated in the 
study. Exclusion criteria were: neurological disorders and orthopedic disabilities that 
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limited mobility function, a hip or knee replacement in the last 3 years, inability to 
walk for 5 min without a walking aid, and a history of falls in the last year. The Local 
Ethical Committee approved the study protocol, which was executed in accordance 
with the declaration of Helsinki. Participants gave written informed consent prior to 
the start of the study.

Muscle architecture measurements

In vivo MA of the GM, TA and VL muscles was examined by 2D B-mode US (Ech-
oblaster, Telemed, Vilnius, Lithuania) with a 128-element linear-array probe (trans-
ducer field of view = 39  mm). The PanoView (Echowave II, Telemed, Lithuania) 
software was used to create panoramic images of the muscles. US settings were opti-
mized to ensure the best contrast between muscle fascicles and background. The set-
tings, including gain (70%), depth (50 mm for VL, 40 mm TA and GM) and frequency 
(8 MHz), were set prior to testing and held constant between participants and across 
trials. US scans were performed on the right leg.

To ensure the thickest part of the muscle was captured within the time limit for 
scanning, the proximal and distal ends of the most medial part of the muscle were 
identified, and the panoramic scan was made between ~ 20–80% of the total mus-
cle length. The probe was moved along the longitudinal axis of the muscle oriented 
parallel to the muscle fascicles and perpendicular to the skin. Minimal pressure 
was applied with the probe on the skin to avoid muscle compression during scan-
ning. Water-soluble transmission gel was applied to the skin to aid acoustic coupling. 
Directly after each trial the US scan was inspected and repeated if a movement arte-
fact contaminated the image. For all three muscles, US scans were recorded both at 
rest and during 20–30% of maximal voluntary (MVC) contraction.

Procedure

For all muscles, US scans were first made at rest. For the VL, US scans were made 
while the participant was seated on a custom-made chair [49] with the right leg 
strapped to a lever arm mounted on the chair with the knee and hip 90° flexed. For the 
analysis of the TA, participants sat on the seat of the dynamometer (KinCom AP125; 
Chattecx Inc., Chattanooga, TN., USA) with the back supported and the  knee fully 
extended. The subject’s right foot was strapped to the foot plate attachment of the 
dynamometer. Two crossover upper-body belts and a thigh strap were used to mini-
mize extraneous movements. The GM muscle was examined in a prone position on an 
examination table. Two straps were secured around the upper and lower leg to mini-
mize extraneous movements. The subject’s right foot was secured to the foot plate 
attachment of the KinCom with the knee fully extended and the ankle at 90°. After 
a scan at rest, participants produced a weak and medium effort contraction of the 
muscle followed by an MVC with 30 s of rest between trials. To determine the MVC, 
participants contracted the quadriceps, plantar flexors and dorsiflexors, respectively, 
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as rapidly and forcefully for 5  s. Afterwards the muscles were US-scanned during 
20–30% of the participants’ MVC with the force target displayed on a monitor.

A total of 144 scans were collected (24 participants, 3 muscles, rest, contraction) by 
the same experimenter.

Ultrasound data analysis

Using a custom-made graphical user interface in MATLAB (version r2019a; The Math-
Works Inc., Natick, MA) PA, FL and MT were determined (Fig. 3). PA was defined as the 
angle between a clearly visible fascicle and the deep aponeurosis, FL as the length of the 
fascicular path between the deep and superficial aponeuroses [50] and MT as the per-
pendicular distance between the superficial and deep aponeuroses at the widest distance 
[46, 51]. FL and MT were converted from pixels to centimeters using the graduated scale 
on the original US scan.

To determine the absolute and relative reliability of the US scans, three raters with 
6-month to 3-year experience on interpreting US scan images, analyzed the scans. All 
scans were presented three times [52] to each rater in random order. Due to a technical 
problem, data of one younger participant were missing for the VL at rest and for the GM 
during contraction. This led to a total of 630 ratings in the younger group and 648 rat-
ings in the older group that were used for further statistical analyses.

To assess whether the reliability of ultrasound is influenced by muscle quality, for each 
scan the EI was calculated. As non-contractile and contractile elements have different 
pixel intensities, where skeletal muscles appear black and intramuscular adipose and 
fibrous tissues appear white [53], EI can be used to examine muscle composition. For 
each ultrasound image, a region of muscle tissue of interest was selected with the exclu-
sion of subcutaneous and fibrous tissue [22]. EI was than calculated as the mean pixel 
intensity of that region [22]. Figure 4 shows an ultrasound scan of the m. tibialis anterior 
during contraction of a younger (left) and older participant (right), with the regions of 
interest annotated in yellow and the mean EI values displayed at the top of the figure. EI 
values range between 0 and 255, with low values being indicative of good muscle quality 
[54].

Statistical analysis

Statistical software (R version 3.6.1, R core team, 2019), including the IRR package 
(v0.84.1, Gamer, 2012) was used for all calculations. Intraclass correlation coefficients 
(ICC) with 95% confidence intervals were calculated as a measure of relative reliability, 
and the standard error of measurements (SEM) and its percentage (SEM%) were calcu-
lated as a measure of absolute reliability.

Reliability of MA parameters

Intra-rater reliability was determined by comparing the three ratings of the same image 
for each rater. Inter-rater reliability was determined by comparing the mean scores of 
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the three ratings of each US scan among the three observers. For the intra-rater reliabil-
ity, the ICC and SEM were based on a single-rating, absolute agreement, 2-way mixed-
effects model with the following equation (for all reliability equations see [55]):

Example scan of the m.tibialis anterior of the right leg

upper aponeurosis
1 cm

Fig. 3 Representative ultrasound scan of the m. tibialis anterior at rest for a younger participant. The muscle 
architecture is color-annotated as follows, light blue/grey: upper and deeper aponeurosis; red: fascicle length; 
blue: pennation angle; green: muscle thickness

Fig. 4 Example ultrasound scan of the m. tibialis anterior in contraction of a younger (left) and older adult 
(right). The yellow rectangles demonstrate the regions of interest selected for the echo intensity analysis. The 
mean pixel intensity of the regions of interested are displayed on the image
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with  MSR = mean square for rows,  MSE = mean square for error;  MSC = mean square for 
columns; n = number of subjects; k = number of measurements.

For the inter-rater reliability, the ICC and SEM were based on a mean-rating (k = 3), 
absolute agreement, 2-way random model with the following equation:

Reliability was classified as poor (ICC < 0.5), moderate (0.5 ≤ ICC ≤ 0.75), good 
(0.75 < ICC ≤ 0.9) or excellent (ICC > 0.9) [55]. To examine differences between ICCs 
of the different architectural parameters, younger and older adults, and rest and con-
traction, confidence intervals were compared [56]. The SEM for both models was cal-
culated using the following equation [57]:

where  MSE is the mean square error. A low SEM implies high reliability, though no gen-
erally accepted scales exist to interpret these values.

Additionally, SEM% was computed as follows [58]:

Echo intensity and correlations among MA parameters

To examine whether measures of EI significantly differ between younger and older 
adults, independent t-tests were performed. To examine the relationship among the 
three MA parameters, MA parameters were first averaged across raters and trials and 
Pearson correlations coefficients were computed between the averaged MA values. 
Correlations were classified as weak (≤ 0.35), moderate (0.36–0.67), or strong (0.68–
0.89) or very strong (≥ 0.90) [59]. For all analyses, statistical significance was set to 
P < 0.05.
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