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Background
Spinal fusion surgery is performed to treat fractures, reduce back pain or correct for 
spinal deformities due to scoliosis or degenerative spine conditions [1–3]. The vertebrae 
are typically fixed to each other with the use of metal rods anchored to the bone through 
pedicle screws. Pedicle screws run through the pedicle while their heads provide dedi-
cated attachment points for the rods. However, the relatively soft tissue on the inside of 
the bone, the cancellous bone, is not strong enough for spine fixation. Therefore, pedicle 
screw fixation mainly relies on locations where the screw is in direct contact with the 
surrounding bone layer, the dense cortical bone [4]. Increasing the contact area between 
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screws and cortical bone is thought to result in better fixation of the pedicle screws 
[5–7].

Spinal fusion is commonly carried out in a minimally invasive surgery (MIS) pro-
cedure as this shortens length of hospital stay and recovery [8, 9]. MIS is performed 
through several small incisions, which necessitates guidance techniques for the surgeon 
to compensate for the limited visibility of the surgical site. The close proximity of neu-
ral and vascular structures and the inability to adjust the trajectory of the pedicle screw 
after insertion present an additional challenge to screw placement [10, 11].

One possible approach to maximize the contact area between screws and cortical bone 
is to replace the conventionally used straight screws with a flexible anchoring device that 
runs along the interface of cancellous and cortical bone on a curved trajectory close to 
the outer edge of the vertebra. The need for reliable guidance is evident for such a device. 
Hence, it is crucial to determine reliable distinguishing criteria for cancellous and corti-
cal bone that help to identify the correct trajectory. Burström et al. [12] have suggested 
lipid content as such a criterion and shown its potential to predict impending breaches 
in pedicle screw placement.

Lipids in the human body are commonly quantified using MRI. Several research 
groups have used this medical imaging technique to non-invasively measure fat fraction 
in the vertebral body to evaluate various clinical conditions such as osteoporosis [13, 
14], cancer [15], and metabolic disorders such as obesity and diabetes [16, 17]. However, 
few studies focusing on the distribution of fat fraction within the vertebrae for distinc-
tion of cancellous and cortical bone are available so far [18].

This study, therefore, aims to investigate the fat fraction distribution throughout the 
spinal column of human cadavers and to identify a possible relationship between the 
distance from the cortical bone boundary and lipid content. The transition area between 
cancellous and cortical bone is of particular interest, given that a flexible anchoring 
device would be located in this area.

Results
Extracted PDFF data

For the cortical bone and the three PCZs, between 300 and 3 500 individual PDFF values 
per vertebra and cadaver were extracted, respectively, depending on the vertebra size. 
The ROI of cancellous bone contained up to 20 000 data points for the largest vertebrae.

Figure  1 displays the PDFF distributions obtained for the individual ROIs over all 
vertebral levels. The mean PDFF is displayed as a solid line. To each side, one stand-
ard deviation is highlighted in the corresponding color. The mean PDFFs and standard 
deviations over the whole spine are displayed to the right of each plot for the ROIs of the 
corresponding cadaver.

Figure  1 shows similar PDFF distributions for all cadavers, with the exception of 
Cadaver 5, which shows very low overall PDFF in comparison to the other cadavers.

The PDFF distributions show that natural variation among the individual vertebrae 
exists. This variation becomes especially apparent in Cadaver 3 (Fig. 1c). For the other 
cadavers, however, large deviations from the whole spine mean PDFF are rare and only 
occur for singular vertebrae (marked in Fig. 1 with downward pointing arrows).
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All cadavers but Cadaver 5 exhibit a mean cortical bone PDFF of around 15–20%. The 
curve of the cortical bone PDFF distribution is distinct from the distribution curves of 
the other ROIs. Mean PCZ1 PDFF lies between 30 and 50%. For each of the cadavers, the 
PCZ1 PDFF distribution curve is partly below the distribution curves of the remaining 
ROIs. PCZ2, PCZ3, and cancellous bone exhibit elevated mean PDFF values, and their 
PDFF distribution curves overlap to a large extent.

In Cadaver 5, the mean cortical bone PDFF is around 10%. The PDFF distribution 
curves for PCZ1, PCZ2, PCZ3 and cancellous bone overlap and exhibit mean values 
below 20%.

Results of the statistical analysis

The box plots in Fig. 2 display the distribution of the mean differences in the PDFF for 
adjacent ROIs observed for the individual vertebrae of each cadaver. The plots show that 
mean differences behave similarly in all cadavers, with the exception of Cadaver 5.

All cadavers but Cadaver 5 exhibit mean PDFF differences for PCZ3 vs. cancellous 
bone and for PCZ2 vs. PCZ3 whose plots are around or contain the value zero. The plots 
for PCZ1 vs. PCZ2 are below zero and display median values between −7.59 percent-
age points (pp) (Cadaver 1) and −4.39 pp (Cadaver 6). The plots for cortical bone vs. 
PCZ1 are also below zero and display median values between −27.09 pp (Cadaver 1) and 
−18.96 pp (Cadaver 3).

When used for guidance in spinal fusion surgery, fat fraction detection should enable 
the surgeon to detect the bone boundary and prevent breaching it. Assuming the sur-
geon to approach the outer layer (PCZ and cortical bone) from the inside of the bone, 

Fig. 1 PDFF distributions over all vertebral levels and whole spine mean PDFFs and standard deviations
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the first observed mean difference is at the interface of cancellous bone and PCZ3. After 
excluding the outliers, this difference is between −11.64 pp (Cadaver 4) and +6.66 pp 
(Cadaver 1) for the examined samples. For the transition from PCZ3 towards PCZ2, the 
mean PDFF difference varies from −6.48 pp (Cadaver 6) to +3.02 pp (Cadaver 1).

A difference in the mean PDFF of between −12.48 pp (Cadaver 1) and −1.53 pp 
(Cadaver 6) is found from PCZ2 towards PCZ1. The mean PDFF in the cortical bone 
changes by between −46.19 pp (Cadaver 6) and −14.34 pp (Cadaver 4) as compared to 
PCZ1.

For Cadaver 5, the plots of the mean PDFF differences for PCZ3 vs. cancellous bone, 
for PCZ2 vs. PCZ3 and for PCZ1 vs. PCZ2 all contain the value zero. The plot for corti-
cal bone vs. PCZ1 is below zero and displays a median value of −6.25 pp.

Discussion
In this study, we have investigated the distribution of PDFF in human cadaver verte-
brae, with a particular focus on the transition zone between the cancellous and cortical 
regions of the bone (PCZ). As a flexible anchoring device would be affixed in the PCZ 
along the outer edge of the vertebra, the area around the spinal cord was considered 
irrelevant for the given application and was thus not part of the analysis.

Fig. 2 Mean PDFF differences for all vertebrae
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The cadavers included in this study had a mean age of 77.8 years and belonged to the 
patient cohort of older adults, which is the most common cohort for spinal fusion sur-
gery. Patients in this cohort may suffer from back pain due to various clinical condi-
tions including degenerative disk disease and spinal stenosis [2]. Measurements of PDFF 
in the cancellous bone from this ex-vivo study are in line with the results of previous 
in vivo research on similar patient cohorts [13, 19, 20].

Similar PDFF distributions and mean PDFFs were observed for all cadavers, except 
for Cadaver 5. The study results show lower PDFF for Cadaver 5 compared to the rest 
of the cadavers studied. This subject was found to suffer from malignant neoplasm of 
the esophagus, which may be the cause of the low PDFF found across all spinal levels. 
Patients with active malignancy have a higher chance of perioperative complications 
and are less likely to be considered for spinal fusion surgery [21, 22]. The PDFF meas-
urements for Cadaver 5 can therefore be assumed to be non-representative of vertebral 
body fat fraction in spinal surgery patients. The mean PDFF difference between cortical 
bone and PCZ1 found for this cadaver suggests that guidance based on fat fraction may 
still be possible for patients with active malignancies, but parameters would have to be 
assessed separately for these patients.

For the other cadavers, the observed PDFF distributions suggest that cortical bone can 
be distinguished from the remaining ROIs. Fat fraction seems to increase gradually from 
cortical bone through PCZ1 up to the three innermost ROIs (PCZ2, PCZ3, and cancel-
lous bone). As the PDFF distributions of these three ROIs overlap, no distinction based 
on PDFF measurements seems possible here.

Statistical analysis confirms these findings: when examining the mean PDFF difference 
of PCZ3 vs. cancellous bone, no significance is found, as both positive and negative val-
ues are observed. Equally, for the mean PDFF difference of PCZ2 vs. PCZ3, the observed 
values do not consistently have the same sign, hence these zones are not considered sig-
nificantly different.

When advancing from PCZ2 towards PCZ1, a first significant drop in the mean PDFF 
can be observed. For the examined samples, the average difference was between −7.59 
pp (Fig. 2a) and −4.39 pp (Fig. 2f ). Although consistently negative, the absolute values of 
the observed differences are small for some vertebrae, and it needs to be verified whether 
they can reliably serve for guidance in spinal fusion surgery.

When further advancing from PCZ1 towards cortical bone, another significant 
decrease in the mean PDFF is found. For the examined samples, the average difference 
was between −27.09 pp (Fig. 2a) and −18.96 pp (Fig. 2c). This decrease is in the same 
order of magnitude as the total mean cortical bone PDFF, and can, therefore, very likely 
be detected intra-operatively, and thus prevent the surgeon from traversing the cortical 
bone boundary.

For singular vertebrae, the PDFF curves reveal unusually large deviations from the 
whole spine mean. These vertebrae also show an altered anatomy on the PDFF MR 
images. Modic changes that come along with degenerative edema can lead to elevated 
grayscale values, which are associated with a high PDFF [23]. Another cause for large 
deviations from the whole spine mean are sclerotic lesions, which can, for instance, 
manifest as bone islands—intramedullary condensations of cortical bone which appear 
as areas with low signal intensity.
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In Cadaver 3, which reveals a particularly high variation in PDFF (Fig. 1c), several 
vertebrae exhibit dark spots. Possible explanations are an underlying malignancy with 
metastases that have destroyed the bone partially, or posterior vertebral scalloping 
that is a possible result of a variety of pathologies such as degenerative spine condi-
tions, dural ectasia, and intraspinal tumors deforming the vertebra [24]. The influence 
of such anomalies on lipid content in the vertebrae needs to be researched, although 
the mean differences acquired in this study do not reveal substantial discrepancies for 
vertebrae with an altered anatomy.

Furthermore, it has been shown previously that the PDFF changes over the course 
of a lifetime [25]. This study focused on the most common patient cohort of older 
adults, and none of the examined cadavers belonged to the other patient cohort of 
adolescents suffering from spinal deformities [1]. A further study investigating fat 
fraction distribution in the vertebrae of this patient cohort is encouraged.

It could be argued that the vertebral fat content of cadavers may not represent the 
in  vivo fat content due to postmortem changes. However, a study by Lamoureux 
et al.  [26] showed that bovine and equine percentage of fat in bone marrow does not 
change within 30–60 days after necropsy, regardless of the storage condition. In an 
in vivo human study by de Boer et al. [27] fat content was assessed on tissue samples 
both before and after resection. Comparison of the measurements did not yield any 
significant differences.

Limitations

The model used for water–fat separation assumes that objects are scanned at body 
temperature. Although this model is relatively stable to variations in temperature, 
the calculated PDFF values might be slightly biased, as the cadavers examined in this 
study were not scanned at body temperature but at room temperature.

Selection of the vertebra contours was done by manually detecting high grayscale 
values on the MR image. Although the process was kept consistent for the entire data-
set, it is prone to bias. Using CT images as ground truth for vertebra contour detec-
tion is recommended for future studies. Another possible approach to mitigate the 
bias is to increase the magnetic field strength from 1.5 T to 3 T for better separation 
of fat and water, thereby creating a higher contrast between cortical and cancellous 
bone on the MR images [28]. Image acquisition with an increased in-plane resolution 
could decrease the pixel size and thus increase the number of data points for each 
ROI.

The cortical bone ROI was grown automatically based on the detected vertebra con-
tour and the assumption of a uniform cortical thickness of 1 mm. Swamy et  al.[29] 
have shown cortical bone thickness to vary between 1 and 3 mm. However, cortical 
bone at a distance of more than −1 mm from the vertebra contour is expected to 
show an equal or lower PDFF compared to the cortical bone ROI as defined in this 
study, creating an even larger mean difference between cortical bone and PCZ1.

Lastly, investigating PDFF distributions across additional slices and other 3D planes 
could provide further insights, especially concerning the PDFF distribution in the 
pedicle area, a crucial region for screw placement.
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Conclusion
This study investigated the fat fraction distribution, quantified through MRI, through-
out the spinal column of six human cadavers. Lipid content was found to be related to 
the distance from the cortical bone boundary, and significant mean PDFF differences 
between cortical bone and the PCZ were found. Hence, in this study, fat fraction is 
found to be a valid criterion for distinction between the different bone tissues in ver-
tebrae and has the potential to provide guidance in spinal fusion surgery.

Methods
In this research, six human cadavers (four females, two males) with an age range 
of 53–92 years (mean = 77.8 years) were studied. One of the subjects examined 
(Cadaver 5) was known to have suffered from malignant neoplasm of the esophagus. 
All cadavers were donated for scientific research. Informed consent had been signed 
before death by the donors or after death by relatives, according to local guidelines 
and U.S. regulations. The study was conducted in compliance with ethical guidelines 
for human cadaver studies.

Image acquisition

MRI

The cadavers’ entire spines were scanned on a 1.5 Tesla (T) whole-body scanner 
(Ingenia, Philips Healthcare, Best, The Netherlands) in the prone position. The tem-
perature of the cadavers was maintained at room temperature prior to scanning.

A three-dimensional (3D) six-echo spoiled gradient-echo sequence was used for 
chemical shift-encoding-based water–fat separation. The typical imaging parameters 
used in this study were: AP field of view = 220–310 mm; FH field of view = 240–350 
mm; slice thickness = 3 mm; in-plane resolution = 1.2 × 1.2 mm2 ; flip angle = 5◦ ; TR 
= 9.9–15.87 ms; TE1 = 1.41–1.43 ms; �TE = 1.2 ms. Reconstruction with a voxel size 
of (0.45-0.67) × (0.45-0.67) × 1.5 mm3 yielded 45–65 sagittal slices per sequence.

To obtain whole spine coverage, the MR exam consisted of three 3D spoiled gradi-
ent-echo sequences placed on the cervical, thoracic and lumbar spine, respectively. 
Total scan time per cadaver was approximately 5–10 min.

Determination of PDFF

The scanner image reconstruction was used to separate the signals of water and fat 
using Philips DICOM viewer R3.0-SP04 (Philips Healthcare, Best, The Netherlands). 
The water–fat separation was based on a seven-peak water–fat spectral model [30].

Based on fat signal (F) and water signal (W), proton density fat fraction (PDFF) was 
calculated as:

PDFF [%] =
F

F +W
· 100
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Figure 3 shows the visual representation of a PDFF MR image of the mid-sagittal slice of 
the whole spine.

Image analysis

For each cadaver, the three mid-sagittal slices (cervical, thoracic, lumbar) plus three 
respective adjacent slices on each side were retained for the analysis. The image analysis 
procedure was performed for vertebrae C3 through L5.

ROI selection

For each slice, regions of interest (ROIs) were selected on the MR image using the FIJI 
distribution of ImageJ [31]. The contours of the single vertebrae were found based on 
grayscale value of the PDFF MR image and estimated vertebra shape, as shown in Fig. 4a. 
Anterior, inferior and superior walls were included in the analysis.

Burström et  al.[12] have introduced the concept of a 3-mm-thick transition zone 
between cancellous and cortical bone, the so-called pre-cortical zone (PCZ). This idea 
was adopted in this work: pixels within a 3-mm distance from the vertebra contour 
were assigned to one of three adjacent pre-cortical ROIs of 1 mm thickness each (PCZ1, 
PCZ2, PCZ3). An ROI within the vertebra at a distance of more than 3 mm to the con-
tour was considered to contain the cancellous bone. An ROI of cortical bone was defined 
as the first mm (−1 mm to 0 mm) outside the detected contour. The selected ROIs are 
shown in Fig. 4b. An overview of the ROIs can be found in Table 1.

Data extraction

Fat fraction distributions were calculated for the ROIs listed in Table 1 by calculating 
the PDFFs for all pixels included in the respective ROI using MATLAB R2019b (The 

Fig. 3 Mid‑sagittal PDFF MR image of the whole spine (Cadaver 6)
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MathWorks Inc., Natick (MA), USA). For each vertebra within each cadaver, the data 
points gathered from the different slices were merged to yield one dataset per ROI.

Statistical analysis

To provide guidance in the context of spinal fusion surgery, individual variation in fat 
fraction is considered most important, so the data were analyzed separately for every 
vertebra in each of the cadavers.

Mean differences of the measured PDFFs were computed for the respective adjacent 
ROIs (cortical bone vs. PCZ1; PCZ1 vs. PCZ2; PCZ2 vs. PCZ3; PCZ3 vs. cancellous 
bone) as the difference of the outer ROI’s mean PDFF value to the inner ROI’s mean 
PDFF value. As reliable guidance is crucial for spinal surgery, a pair of adjacent ROIs 
was only considered significantly different if, after the exclusion of potential outliers, the 
mean differences observed for this pair consistently had the same sign for all vertebrae.

Abbreviations
3D: Three‑dimensional; MIS: Minimally invasive surgery; PCZ: Pre‑cortical zone; PDFF: Proton density fat fraction; pp: 
Percentage points; ROI: Region of interest.
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Table 1 Overview of the defined ROIs

Bone type Distance from contour
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ROI3 PCZ3 2 mm to 3 mm

ROI4 Cancellous bone ≥ 3 mm
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