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Abstract 

Background:  The amount of propofol needed to induce loss of responsiveness varied 
widely among patients, and they usually required less than the initial dose recom-
mended by the drug package inserts. Identifying precisely the moment of loss of 
responsiveness will determine the amount of propofol each patient needs. Currently, 
methods to decide the exact moment of loss of responsiveness are based on subjec-
tive analysis, and the monitors that use objective methods fail in precision. Based on 
previous studies, we believe that the blink reflex can be useful to characterize, more 
objectively, the transition from responsiveness to unresponsiveness. The purpose of 
this study is to investigate the relation between the electrically evoked blink reflex 
and the level of sedation/anesthesia measured with an adapted version of the Rich-
mond Agitation–Sedation Scale, during the induction phase of general anesthesia 
with propofol and remifentanil. Adding the blink reflex to other variables may allow a 
more objective assessment of the exact moment of loss of responsiveness and a more 
personalized approach to anesthesia induction.

Results:  The electromyographic-derived features proved to be good predictors to 
estimate the different levels of sedation/anesthesia. The results of the multinomial 
analysis showed a reasonable performance of the model, explaining almost 70% of the 
adapted Richmond Agitation–Sedation Scale variance. The overall predictive accuracy 
for the model was 73.6%, suggesting that it is useful to predict loss of responsiveness.

Conclusions:  Our developed model was based on the information of the electromy-
ographic-derived features from the blink reflex responses. It was able to predict the 
drug effect in patients undergoing general anesthesia, which can be helpful for the 
anesthesiologists to reduce the overwhelming variability observed between patients 
and avoid many cases of overdosing and associated risks. Despite this, future research 
is needed to account for variabilities in the clinical response of the patients and with 
the interactions between propofol and remifentanil. Nevertheless, a method that could 
allow for an automatic prediction/detection of loss of responsiveness is a step forward 
for personalized medicine.
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Background
In clinical practice, anesthesiologists use a variety of anesthetic drugs during surgery 
to render the patient unconscious/unresponsive, including the most widely used, 
intravenous drug propofol. In a previously published work [1,2], we found that the 
amount of propofol needed to induce loss of responsiveness (LORP) varied widely 
among patients (~ 300%) and that more than two-thirds of the patients required less 
than the initial dose recommended by the drug package inserts.

Identifying precisely the moment of LORP during the induction phase of general 
anesthesia is of extreme importance for the determination of the amount of propofol 
each patient needs. Using that information will help to guide the drug infusion rate 
required to maintain an adequate level of anesthesia throughout the surgery [3–5].

Currently, methods to decide the exact moment of LORP are based on subjective 
analysis [6]. Objectively, there are depth of anesthesia monitors, such as the Bispec-
tral Index (BIS) (Aspect Medical System, Newton, MA, USA), which allow the main-
tenance of a steady-state during surgery, but do not enable the determination of the 
instant at LORP, which remains an open issue. BIS evaluation is characterized by a 
delay following the acquisition of a new dataset, which may even exceed one minute 
[7]. To prevent complications, such as awareness [8, 9] or excessive anesthesia, the 
anesthesiologists should be aware of the conditions that cause incorrect BIS readings.

In a previous study, Mourisse et  al. [10] found that the components of the blink 
reflex are attenuated and abolished with increasing concentrations of propofol. Mour-
isse et al. [11] showed, in another study that the blink reflex was more sensitive than 
BIS. Their results suggested that the differential sensitivity of the blink reflex compo-
nents could be useful to monitor the depth of sedation/anesthesia, and thus, to detect 
when LORP occurs. However, their method used a 10-min stepwise increment in 
propofol, which is not compatible with anesthesia induction in a surgical setup.

We hypothesize that the blink reflex can be useful to characterize, more objec-
tively, the transition from responsiveness to unresponsiveness during the induction 
of anesthesia with propofol and remifentanil. The administration of propofol may be 
stopped at this transition, personalizing the amount of propofol each patient requires 
and reducing the events of over and underdosing. Then, this can be used to titrate 
the infusion rate of propofol and to maintain an adequate level of sedation/anesthe-
sia. In the current study, and based on a constant infusion of propofol at a slow rate, 
we intend to investigate the relationship between the electrically evoked blink reflex 
and the level of sedation/anesthesia. For this purpose, we extracted different electro-
myogram (EMG) features, and we compared the ability of these features to distin-
guish between different levels of sedation/anesthesia. The comparison was carried out 
using prediction probability analysis and multinomial logistic modeling. Adding the 
blink reflex to other variables already recorded during general anesthesia may allow 
a more objective assessment of the exact moment of LORP and a more personalized 
approach to anesthesia induction.
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Results
Twenty-five patients (16 female and 9 male), aged 61 ± 13, weighing 72 ± 11  kg, 
heighten 162 ± 9 cm, 1 ASA I, 18 ASA II, 6 ASA III were enrolled. The supraorbital 
nerve was stimulated with 25.7 ± 8 mA. All patients reached the end of the depth of 
sedation/anesthesia scale. No patient had hemodynamic or respiratory problems.

Visual inspection of the raw electromyogram and analysis of the signal quality was 
performed before extracting the features to eventually discard poor-quality electro-
myogram. No signal was discarded.

The raw data from the study are presented in Fig. 1; each patient’s observed adapted 
Richmond Agitation–Sedation Scale (aRASS) scores are plotted against the corre-
sponding predicted propofol effect-site concentrations.

Concerning the raw electromyographic findings, after the propofol infusion was 
started, R1 and R2 decreased gradually. Ce concentrations, aRASS values, and times at 
which LOR2, LOR1 and LORP occurred are presented in Table 1. R2 was the first com-
ponent to be abolished, followed by the R1 component. aRASS median [minimum, 
maximum] for LOR2 was 0 [0, − 2] and for LOR1 was − 2 [0, − 4]. All patients were 
responsive (aRASS < −  5) when the R2 and R1 responses were last seen. There was 
a statistically significant difference between the propofol Ce concentration at LORP 
and LOR1 (p < 0.05). The times for endpoints LOR2, LOR1 and LORP are all statisti-
cally different from each other (p < 0.001).

Fig. 1  The predicted propofol effect-site concentration vs adapted Richmond Agitation–Sedation Scale 
(aRASS)
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The time between LORP and LOR1 was 35.68 ± 23.41 s. The amount of propofol given 
between LOR1 and LORP was 1.23 ± 0.82 μg/mL.

Results of the features extracted from the EMG signals in the time and frequency 
domain are presented in Table 2.

Prediction probability and Spearman correlation coefficient

The capacity of all extracted features to adequately assess the clinical sedation/anesthetic 
depth was evaluated by Pk analyses. The user interface is shown in Fig. 2. The calculated 
Pk values and correlation coefficients of the electromyography (EMG) extracted features 
are shown in Table 3. Pk values were higher (Pk > 0.700) in the period T1 for Vmean, Vdiff, 
fmean, fmedian, Pbandwidth, and spectral entropy; and in the period T2 for fmean, and spec-
tral entropy. Results indicated that during the period T1 there was a significant nega-
tive association, defined by a correlation coefficient R higher than − 0.500 and a p < 0.05, 
between aRASS and fmean, fmedian, and spectral entropy. During the period T1 there was 
a significant negative association between propofol Ce concentration and the following 
features: fmean, fmedian, and spectral entropy. There was no significant correlation between 
aRASS and the extracted features, and no significant association between the Ce con-
centration of propofol and the extracted features.

The correlation between aRASS and the propofol Ce concentration was given by 
Pk = 0.886, SE = 0.007 and by R = 0.751, p < 0.01. The clinical scale of the depth of seda-
tion/anesthesia increased monotonically and positively with increasing propofol Ce con-
centration until LORP, revealing an increasing deepening of sedation/anesthesia.

Multinomial logistic analysis

Regarding MLR, we choose the features which were better correlated with the Ce con-
centration of propofol and with aRASS, and features which we believe were useful (with 
a Pk > 0.700). The predictor features corresponding to these criteria were propofol Ce, 
and Vmean, Vdiff, fmean, fmedian, Pbandwidth and spectral entropy, during the period T1, and 
fmean and spectral entropy during the period T2.

We tried to explore the effects of these variables by building the MLR model and then 
examined the results. To achieve this goal, we used SPSS software version 26, and calcu-
lated the MLR model with response variable and all explanatory variables to make the 
primary model.

Table 1  Estimated effect-site concentration of  propofol, adapted Richmond Agitation–
Sedation Scale values, and  times  at which LOR2, LOR1 and  LORP occurred. Results are 
mean ± standard deviation or median [minimum, maximum]

LOR2  loss of R2 component, LOR1 loss of R1 component, LORP loss of responsiveness, aRASS adapted Richmond Agitation–
Sedation Scale, Ce effect-site concentration

LOR2 LOR1 LORP

Time since propofol started (s) 64.70 ± 23.72 112.16 ± 30.82 147.84 ± 27.36

Estimated propofol Ce concentration 
(µg/mL)

1.45 ± 0.85 2.99 ± 1.19 4.22 ± 1.24

aRASS score 0 [0, − 2] − 2 [0, − 4] − 5
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The overall effectiveness of the model was assessed using Chi-squared statistics. The Chi-
square value of 696.430 and its respective p value < 0.001 indicated a significant relationship 
between the depth of sedation/anesthesia scale and the set of features in the final model. 
Model performance (Nagelkerke R2) of the MLR for the combined features predicting 
aRASS level of sedation/anesthesia groups was 0.697. The overall predictive accuracy for 
the present model was 73.6%.

The likelihood ratio test shows the contribution of each feature to the model (Table 4).
Propofol Ce, fmean (T1), spectral entropy (T1), and spectral entropy (T2) had a significant 

contribution (p < 0.05) to the model that predicts the aRASS’s level of sedation/anesthesia, 
but not Vmean (T1), fmedian (T1), Pbandwidth (T1) or fmean (T2). Figure 3 illustrates the relation 
between the aRASS score and the mean of the significant aforementioned features.

Table 2  Values from the extracted features during two different time windows: P1—from 
10 to 25 ms, in which it is expected R1 to be analyzed; P2—from 25 to 200 ms, in which R2 
is expected to be analyzed

Vmean mean amplitude, Vdiff  difference between maximum and mean amplitude, Pmean mean power, Pmax maximum 
power, fmean mean frequency, Pmeanfrequency power at mean frequency, fmedian  median frequency, Pband power band, Ptotal 
total integrated of the spectrum, Ptotal/fmedian ratio between total power and median frequency, SNR signal-to-noise ratio, 
Pbandwidth power bandwidth

Parameter Minimum Maximum Mean Standard deviation Median

Vmean 0.190 0.721 0.443 0.126 0.445

Vdiff 0.280 0.840 0.556 0.126 0.555

Pmean (dB) 0.166 15.162 2.660 2.879 1.555

Pmax (V) 3.770 436.561 68.613 78.169 37.462

fmean (Hz) 103.648 203.160 123.763 18.525 116.347

Pfmean (V) 2.793 314.897 50.984 57.029 28.624

fmedian (Hz) 89.179 168.352 105.909 16.692 98.161

Pband (dB) 596.219 62,514.798 10,151.828 11,349.090 5730.088

Ptotal (dB) 836.969 76,399.833 13,403.153 14,506.321 7834.622

Ptotal/fmean 7.190 845.757 132.339 151.067 71.768

SNR − 11.314 34.838 − 6.980 2.886 − 7.847

Pbandwidth (dB) 157.941 310.036 188.047 33.105 172.167

Spectral entropy 0.412 0.546 0.445 0.026 0.436

Vmean 0.130 0.575 0.320 0.088 0.310

Vdiff 0.425 0.870 0.680 0.088 0.690

Pmean (dB) 0.007 14.787 0.509 1.035 0.184

Pmax (V) 0.363 868.099 24.534 52.506 9.724

fmean (Hz) 23.459 181.467 58.488 30.876 48.865

Pfmean (V) 0.169 868.099 21.972 50.663 8.263

fmedian (Hz) 22.419 167.057 46.844 26.412 38.396

Pband (dB) 32.975 73,225.083 2337.29 4792.514 875.481

Ptotal (dB) 35.038 74,511.906 25,660.961 5216.244 926.853

Ptotal/fmean 0.859 2736.873 63.886 156.724 23.885

SNR − 8.038 44.143 8.691 11.550 4.456

Pbandwidth (dB) 37.304 250.824 66.134 33.175 53.062

Spectral entropy 0.180 0.496 0.299 0.072 0.278
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The fitted logistic model was

 where P is the estimated probability of unresponsiveness (i.e., aRASS = − 5).

Discussion
In the present study, a standard electrical stimulus to evoke a blink reflex was used dur-
ing the induction phase of general anesthesia with propofol and remifentanil to assess 
the relation between the recorded electromyogram and the level of sedation/anesthesia. 
The level of sedation was assessed every 6 s using an adapted version of the Richmond 
Agitation–Sedation Scale, entitled aRASS.

The electromyographic-derived features were extracted during 2 specific subsets of 
samples: T1, from 10 to 25 ms, in which it was expected the first response of the blink 
reflex, R1, to be analyzed, and T2, from 25 to 200 ms, in which the second response of the 
blink reflex, R2, was expected to be analyzed. The electromyographic-derived features in 
the time domain included the mean amplitude (Vmean), and the difference between the 
maximum and the mean amplitude (Vdiff). Because R2 and R1 responses were abolished 
before LORP and, consequently, there was an insufficient number of data points, a fre-
quency-domain analysis was also performed. The electromyographic-derived features in 
the frequency domain included the mean power (Pmean), maximum power (Pmax), mean 
frequency (fmean), power at mean frequency (Pmeanfreq), median frequency (fmedian), band 
power (Pband), total power (Ptotal), ratio between Ptotal and fmedian (Ptotal/fmedian), signal-
to-noise (SNR), power bandwidth (Pbandwidth) and spectral entropy. These variables were 

(1)

ln

(

P

1− P

)

=− 339.206+ 2.476× Propofol Ce − 0.281× Vmean(T1)− 5.422

× fmean(T1)+ 3.234 × fmedian(T1)+ 0.116× Pbandwith(T1)

+ 1441.537× Spectral entropy (T1)+ 0.074 × fmean(T2)

− 38.100× Spectral entropy (T2),

Fig. 2  User interface of the program “Pk Tool” for computing prediction probability (Pk). Left panel refers to 
the data reading function. In the middle panel, above, is the class and indicators/features selection such 
as settings for computation and below, is the calculation and result output unit. Right panel indicates the 
receiver operating characteristic curve (ROC) only used for dichotomous classes (which is not the case). 
Results are saved as data sheets
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Table 3  Prediction probability (Pk) values calculated between  the  adapted Richmond 
Agitation–Sedation Scale (aRASS) and  the  electromyography (EMG) extracted feature. 
Correlation coefficient R with  aRASS and  with  propofol effect-site (Ce) concentration. T1 
and T2 are time windows from 10 to 25 ms, and from 25 to 200 ms, respectively

Prediction probability (Pk) values calculated with pooled data from all patients (n = 25). The standard error (SE) is also shown. 
Rank correlation coefficient from pooled data of all patients (n = 25) is shown. *Significant at the 0.05 level. **Significant 
at the 0.001 level. Vmean mean amplitude, Vdiff difference between maximum and mean amplitude, Pmean mean power, Pmax 
maximum power, fmean mean frequency, Pmeanfrequency power at mean frequency, fmedian median frequency, Pband power band, 
Ptotal total integrated of the spectrum, Ptotal/fmedian ratio between total power and median frequency, SNR  signal-to-noise 
ratio, Pbandwidth power bandwidth

Parameter aRASS Correlation coefficient 
R with aRASS

Correlation coefficient 
R with propofol Ce 
concentrationPk SE

T1 Vmean 0.712 0.015 0.420** 0.471**

Vdiff 0.712 0.015 − 0.420** − 0.471**

Pmean 0.512 0.014 0.025 − 0.064**

Pmax 0.537 0.020 0.073 − 0.010

fmean 0.765 0.014 − 0.522** − 0.522**

Pfmean 0.531 0.019 0.062 − 0.022

fmedian 0.758 0.014 − 0.507** − 0.504**

Pband 0.529 0.019 0.058 − 0.027

Ptotal 0.512 0.014 0.025 − 0.064

Ptotal/fmedian 0.538 0.020 0.075* − 0.007

SNR 0.643 0.071 − 0.114** − 0.052

Pbandwidth 0.748 0.014 − 0.487** − 0.482**

Spectral entropy 0.771 0.013 − 0.534** − 0.535**

T2 Vmean 0.619 0.018 0.236** 0.201**

Vdiff 0.619 0.018 − 0.236** − 0.201**

Pmean 0.610 0.019 − 0.216** − 0.430**

Pmax 0.578 0.019 − 0.153** − 0.369**

fmean 0.721 0.015 − 0.437** − 0.415**

Pfmean 0.538 0.019 − 0.064 − 0.280**

fmedian 0.677 0.016 − 0.353** − 0.334**

Pband 0.599 0.018 − 0.194** − 0.416**

Ptotal 0.610 0.018 − 0.216** − 0.438**

Ptotal/fmedian 0.557 0.019 − 0.111** − 0.325**

SNR 0.679 0.020 − 0.387** − 0.452**

Pbandwidth 0.605 0.017 − 0.211** − 0.163**

Spectral entropy 0.745 0.014 − 0.485** − 0.464**

Table 4  Likelihood ratio tests

Vmean mean amplitude, fmean   mean frequency, fmedian median frequency, Pbandwidth power bandwidth; Ce  effect-site 
concentration

− Log likelihood Chi-square df p value

Intercept 1000.646 16.418 5 0.006

Propofol Ce 1313.757 329.529 5  < 0.001

T1 Vmean 993.034 8.806 5 0.117

fmedian 1002.125 17.897 5 0.003

fmedian 994.237 10.010 5 0.075

Pbandwidth 992.996 8.768 5 0.119

Spectral entropy 1000.786 16.558 5 0.005

T2 fmean 994.827 10.599 5 0.060

Spectral entropy 1001.268 17.040 5 0.004
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selected as they are the most useful and popular frequency-domain features for electro-
myography analysis both in clinical and engineering applications.

The ability of the electromyographic-derived features to distinguish different levels 
of aRASS was assessed using prediction probability analysis. Spectral entropy, fmean, 
fmedian and Pbandwidth during the T1 time window period showed the best performance 
in detecting different levels of aRASS, as reflected by its higher Pk value, followed by 
spectral entropy and fmean during the T2 time window period. A statistically significant 
correlation (R > 0.500) between aRASS (or propofol Ce concentration) and fmean (T1), 
fmedian (T1) and spectral entropy (T1) period was also found. At low anesthetic concen-
tration, the EMG frequency was high, and it slowed down as the drugs concentrations 
increased. Spectral entropy considers both the overall signal variability characteris-
tics, which are naturally related to the spectral content, and the signal’s complexity or 
irregularity [12]. For this reason, spectral entropy is known to be an excellent index to 
distinguish between consciousness and unconsciousness states during propofol anes-
thesia, even in the presence of burst suppression [13]. fmean and fmedian are frequently 
used as the gold standard tool to detect force in the target muscles using EMG signals 
[14, 15]. Pbandwidth is supposed to be a good indicator of changes in the EMG signal 
when certain frequencies are lost, as is the case of the R1 and R2 component of the 
blink reflex, which have a particular signature. The effectiveness of spectral entropy, 
fmean, fmedian and Pbandwidth to distinguish the different levels of aRASS, resulted by the 
inhibition of EMG activity by muscle relaxation, is presented and confirmed in this 
study.

Another finding was that aRASS scale was strongly correlated with estimated propo-
fol Ce concentrations, indicating that the clinical scale aRASS increased monotonically 
and positively with increasing estimated propofol Ce concentrations until LORP. This 
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revealed an increasing deepening of anesthesia. This finding is in line with those pub-
lished by Mourisse and colleagues [10, 11] who have done a similar study using a dif-
ferent sedation scale and a different anesthetic protocol. In the work of Mourisse and 
colleagues, the group of patients received propofol in a stepwise deepening of anesthesia 
with different targets and only 2 min after reaching target effect-site concentrations, the 
blink reflexes, and depth of anesthesia scores were recorded. In our study, remifentanil 
infusion started with a Ce concentration target 2.5 μg/mL, and then patients received 
propofol at an infusion rate of 3.3 mL/kg/h, slowly and continuously, until LORP. Start-
ing before the propofol infusion, the stimulation of the supraorbital nerve was recorded 
every 6 s in our study and, for this reason, our method had more data to precisely iden-
tify the amount of propofol in the endpoints of interest.

Only the features that were both useful for predicting the aRASS scale (Pk > 0.700) and 
correlated significantly (R > 0.500) with the propofol Ce concentration were used for the 
multinomial logistic regression model to predict LORP (defined as −  5 in the aRASS 
scale). The results of the multinomial analysis showed a reasonable performance of the 
model, explaining almost 70% of the aRASS variance. The effects and contributions of 
each feature were not the same: propofol Ce concentration, fmedian (T1), spectral entropy 
during T1, and spectral entropy during T2 had a significant overall effect (p < 0.05) on the 
aRASS score, while Vmean (T1), fmedian (T1) and fmean (T2) did not. The overall predictive 
accuracy for the model was 73.6%, suggesting that it is useful to predict LORP. The avail-
ability of accurate models for predicting the drug effect in patients undergoing general 
anesthesia is an important factor in producing a personalized drug infusion [16]. Our 
developed model can be employed in model predictive control strategies for closed-loop 
anesthesia. This will help the anesthesiologists with the optimization of drug titration 
without overshoot and controlling the physiological functions. This automated system 
could also result in a reduction of the workload of the anesthesiologists.

A major drawback of this our blink reflex method is that it is dependent on a normal 
neuromuscular transmission. The degree of relaxation can be estimated by stimulating 
the facial nerve and assessing the evoked response of that part of the orbicularis oculi 
muscle. The effect of muscle relaxants on the inferior part of the orbicularis oculi is still 
not known. Also, the blink reflex method, while promising, may imply that the anesthe-
siologists are stimulating the patient while simultaneously attempting to induce uncon-
sciousness, even though it is a much smaller stimulation than taping (the standard in 
clinical practice).

The multinomial regression model was applied to a small sample size of the uncon-
sciousness states in this study. In particular, the small number of unconsciousness states 
could be the cause of a not so high performance in detecting LORP. Even so, the perfor-
mance of our model is relatively good and therefore, we intend to implement our model 
for online estimation. However, preliminary studies should be conducted specially 
because of the computerization times the model can result.

Conclusions
By analyzing the electrically evoked blink reflex during the induction of general anesthe-
sia with propofol and remifentanil, we determined that there is enough relevant informa-
tion to predict the state of unresponsiveness during the transition from consciousness 
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to unconsciousness with a multinomial logistic model. A method that could allow for 
an automatic prediction/detection of LORP is a step forward for personalized medicine. 
With an accuracy of 73.6%, this model can help to greatly reduce the overwhelming vari-
ability observed between patients and avoid many cases of overdosing and associated 
risks. To our best knowledge, no studies have been conducted on LORP prediction using 
our approach.

Despite our results, it would be accurate if we had a larger sample size for applying 
the multinomial regression model or any other prediction model to analyze the relation 
between the aRASS and the EMG effect reflected in extracted features. Further research 
should investigate the impact of remifentanil on such a technique.

Nevertheless, our method of electromyographic recording of the electrically evoked 
blink reflex in patients submitted to general anesthesia and in the continuum to uncon-
sciousness showed to be a possible method to continuously monitor the EMG, in awake, 
sedated or unconsciousness patients, during the onset to unconsciousness, and in a 
real scenario in which clinical anesthesia takes place every day. Patients also found the 
stimuli to be easily tolerable. Devices using this technique could turn this method into a 
clinical routine way of monitoring the transition to unconsciousness.

In the future, we intend to add other variables to feed the model, such as heart rate, 
blood pressure, and electroencephalogram. We plan to use those variables to build an 
adaptive model that deals simultaneously with the variabilities in the clinical response of 
the patients and with the drug interactions. Additionally, we plan to use different EMG 
equipment for more robustness.

Methods
Patients

Twenty-five patients, aged over 18 years (ASA I, II or III), scheduled for neurosurgical 
procedures participated in this study. They had no hemodynamic, respiratory or oph-
thalmic problems, and did not use analgesics, psychotropic or excessive alcohol con-
sumptions. The Hospital Ethical Committee approved the study and all subjects gave 
informed written consent. No premedication was given. The study took place in a quiet, 
warm anesthetic induction room. Before the start of the study, the patients were pre-
pared as usual for anesthesia (intravenous access, continuous electrocardiogram, pulse 
oximetry, and non-invasive blood pressure).

Anesthetic protocol

Our standard practice for neurosurgical procedures consists of opioid-propofol anes-
thesia using a Target Controlled Infusion (TCI) system. In the operating room, after 
placement of standard monitor and an intravenous line in the dorsum of the hand, an 
infusion of a balanced electrolytic solution was started at 6 mL.kg−1.h−1. The anesthe-
siologist would then use a Fresenius Base Primea docking station (Fresenius-Kabi, Bad 
Homburg, Germany) to start a TCI of remifentanil (Minto PKPD model) [12, 13], at an 
effect-site concentration (Ce) target of 2.5 ng.mL−1. A bolus of 10 mg of lidocaine was 
administered locally to reduce the pain associated with propofol administration. One 
minute after the remifentanil pseudo-equilibration was achieved, baseline blinks were 
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recorded and, then, an infusion of 1% propofol (Schnider PKPD model) [14] was started 
using a TCI enabled infusion system, in the TCI-View mode, at 3.3 mL.Kg−1.h−1 until 
LORP, determined by the anesthesiologist. This slow velocity of infusion during induc-
tion enabled a careful titration of the minimum amount of propofol required for loss of 
responsiveness. Once LORP was reached, the propofol infusion was stopped, the esti-
mated propofol Ce concentration was noted and the TCI system was switched to effect-
site TCI mode with a Ce of 75% of that at LORP. At this point, no additional analgesic/
opioid medication was given during induction.

Propofol infusion was subsequently titrated to maintain BIS (BIS Vista™ monitor—
Medtronic, Ireland) between 40 and 60. The study was terminated just before tracheal 
intubation.

Data acquisition

Using the VikingQuest™ neurophysiological system (VikingQuest, Nicolet, WI, USA) 
the electromyographic stimulations and recordings were performed at a total sweep 
time of 200 ms with a sample rate of 10 kHz. A high-pass filter was applied with a cutoff 
frequency of 20 Hz. Before the induction of anesthesia and prior electrode application, 
all the patient’s head skin surfaces were cleaned with an exfoliant agent. Surface elec-
trodes (1.4 cm2) coated with alcohol and conductive paste (electrode impedance < 8 kΩ) 
were applied to stimulate and record the electromyogram from the right orbicularis 
oculi muscle. The right supraorbital nerve was transcutaneously stimulated using a bipo-
lar electrode with the cathode placed beneath the eyebrow over the supraorbital notch 
and the anode placed above the eyebrow (interelectrode distance 2 cm). The supraorbital 
nerve was electrically stimulated with a duration of 0.1 ms at 0.16 Hz. With regard to 
the electrode, the recording electrode was placed in the middle of the inferior rim of the 
orbit; the reference halfway on the eye–ear line and the ground electrode was placed on 
the cheek or on the shoulder of the patient (Fig. 4). The signals were stored in the Viking-
Quest™ software provided by the manufacturer. The raw data was exported to a personal 
computer to be treated and analyzed in MATLAB® 2019b (MathWorks, USA).

Fig. 4  Electrode placement for blink reflex monitoring. Electrodes (a) (cathode) and (b) (anode) are 
electrodes used for electrical stimulation. Electrodes (c) (active) and (d) (reference) are silver disc recording 
electrodes. Electrode (e) is a ground electrode
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Assessment of levels of responsiveness

The level of sedation was assessed every six seconds using an adapted version of the 
Richmond Agitation–Sedation Scale (RASS) score [17], entitled aRASS. This scale is a 
modification of the RASS scale [17], with the addition of the corneal reflex endpoint, 
yielding an adapted Richmond Agitation–Sedation Scale (aRASS). A score of 0 corre-
sponds to a fully awake and alert behavior, − 1 with a not fully alert behavior, but a sus-
tained awakening to voice (eye-opening and eye contact), −  2 with a brief awakening 
to voice (eye-opening and eye contact, − 3 no response to voice, but movement or eye-
opening to shaking and shouting, −  4 is no response after shaking and shouting, but 
still have the corneal reflex and − 5 is no corneal reflex. Loss of responsiveness (LORP), 
defined as −  5 in aRASS scale was evaluated using a drop of sterile water to the cor-
nea, after aRASS reached a score of − 4. Hereafter, this evaluation was intercalated with 
electrical stimulations at 6 s intervals. If the eyes blinked concomitantly, the reflex was 
intact. If only one eye blinked, the reflex was impaired, and if neither eye blinked, the 
reflex was absent.

Baseline blink reflexes and evaluation of the aRASS scale were recorded several times 
before propofol was administered. Patients then received propofol, and at the same time 
four successive blink reflexes were elicited and recorded. A further four successive blink 
reflex stimuli were elicited after a 6-s interval and recorded continuously until LORP 
was reached.

Blink reflex parameters

The blink reflex neurophysiology and anatomy are reasonably well known [18]. The elec-
tromyography records of an electrically evoked blink reflex showed at least two compo-
nents (R1 and R2 components). The first or early response (R1) is brief and occurs after 
a latency of approximately 10 ms on the side of stimulation [19]. The second response 
(R2) has a latency of approximately 30 ms, is bilateral, and more prolonged in time [19]. 
The R2 response causes the actual contraction of the orbicularis oculi muscle [19]. The 
optimal stimulus intensity was sought by gradually increasing the current until visual 
observation of the EMG showed that, in the presence of a visible R1 component, the R2 
component reach its maximum amplitude [20].

Figure 5, uppermost panels, illustrates the two components of a normal blink reflex. 
The averaged electromyographic records of the blink reflex were obtained from the four 
consecutive electrical stimulation of the supraorbital nerve (interstimulus interval 5 ms). 
The first rows showed baselines. Vertical lines marked the beginning and end of the indi-
vidual components (R1 and R2), marked by an expert neurophysiologist at the end of the 
session, using the marker tool of the VikingQuest™ neurophysiological device. The right 
margins showed estimated propofol concentrations (µg/mL), clinical endpoints (loss of 
R1, loss of R2 and LORP), depth of sedation/anesthesia level (aRASS score), and the time 
since propofol started.
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Data analysis

Before proceeding with data analysis, we removed the DC component by subtracting the 
mean amplitude from the EMG signals. We then removed the best straight-fit line (in 
the least-squares sense) from the EMG signals with the detrend function of MATLAB®.

For each pre-processed EMG signal, we selected two specific subsets of samples: T1, 
from 10 to 25 ms, in which it is expected R1 to be analyzed, and T2, from 25 to 200 ms, in 
which R2 is expected to be analyzed.

Data from each subset was analyzed in both time and frequency domain. In the time 
domain, after rectifying and normalizing each subset of data, the following features were 
extracted: mean amplitude (Vmean), and the difference between the maximum (equal to 
1) and the mean amplitudes (Vdiff).

Because R2 and R1 responses were abolished before LORP and, consequently, there 
was an insufficient number of data points, a frequency-domain analysis was also 
performed. A non-parametric Fast Fourier Transform (FFT) using Welch’s modified 
periodogram was used to extract functions from the frequency domain. EMG was 
windowed with a Hamming window and the modified periodogram was calculated 
for each time period. The Power Spectrum Density (PSD) was estimated by averaging 
over all resulting periodograms. For this purpose, MATLAB® was used. The following 
features from the frequency domain were extracted:

Fig. 5  Examples of electromyographic records of the average from four consecutive blink reflex responses 
of a Patient #1: a male patient (60 years, 65 kg), and b Patient #2: a female patient (47 years, 64 kg) who 
participated in this study. Each row shows the effects of the increasing administration of propofol. In Patient 
#1, after 117 s of propofol infusion, the R2 component disappeared. R1 component was last seen after 
126 s, loss of responsiveness (aRASS = − 5) occurred after 135 s after propofol infusion, at an effect-site 
concentration of 3.93 µ/mL. In Patient #2, after 98 s of propofol infusion, the R2 component disappeared. R1 
component was last seen after 113 s, loss of responsiveness (aRASS = -5) occurred after 134 s after propofol 
infusion, at an effect-site concentration of 3.00 µ/mL
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•	 Mean power (Pmean [dB]): the arithmetic mean value of the PSD estimate;
•	 Maximum power (Pmax [dB]): the maximum value of the PSD estimate;
•	 Mean frequency (fmean [Hz]): the average frequency which is calculated as the sum 

of product of the power spectrum of the PSD estimate and the frequency divided 
by the total sum of the power spectrum [21].

•	 Power at fmean (Pmeanfreq [dB]): the value of the PSD estimate corresponding to the 
fmean.

•	 Median frequency (fmedian [Hz]): the frequency at which the power spectrum of 
the PSD estimate is divided into two regions with equal areas;

•	 Band power (Pband [dB]): the sum of the PSD estimate values within the frequency 
range 30–120 Hz;

•	 Total power (Ptotal [dB]): the sum of all the PSD estimate values;
•	 Ratio between Ptotal and fmedian (Ptotal/fmedian [dB/Hz]);
•	 Signal-to-noise ratio (SNR [dB]): the ratio of the PSD of the signal (meaningful 

information) with respect to the power of the background noise;
•	 Power bandwidth (Pbandwidth [dB]): the 3-dB (half-power) bandwidth of the PSD 

estimate;
•	 Spectral entropy: The Shannon entropy of the PSD estimate, i.e., the evaluation of the 

shape of the PSD estimate [22].

Prediction probability analysis

The capacity of the extracted features to detect the different sedation/anesthetic levels 
reflected in the numerical scale of anesthesia, aRASS was evaluated using prediction 
probability (Pk) statistics by correlating the parameter values during the two different 
study periods with the numerical scale.

To calculate Pk, we used a user-friendly program, the Pk Tool version 3.0, which 
included a context help, and colleagues [23] kindly provided the software and developed 
the algorithm according to the original [24]. A value of Pk = 0.5 means that the indicator/
feature correctly predicts the sedation/anesthetic states only 50% of the time, i.e., no bet-
ter than a 50:50 chance. A value of Pk = 1 means that the indicator/feature predicts the 
aRASS correctly 100% of the time. Pk was calculated using pooled data from all patients.

Multinomial logistic analysis

The relation between the aRASS level of sedation/anesthesia and the EMG effect 
reflected in each extracted feature was modeled with a multinomial logistic regression 
(MLR) using a multiple predictor features defined by:

(2)ln
P

1− P
= β0 +

n
∑

k=1

βkXk ,



Page 15 of 16Ferreira et al. BioMed Eng OnLine           (2020) 19:84 	

 where P represents an outcome (or dependent variable) as a probability, β0…βn repre-
sent the constant of the coefficients of the regression model, and Χ1…Χn represent the 
predictor (or independent) variables [25].

Statistics

The Kolmogorov–Smirnov test was used to test for normal distribution. Paired samples 
t-test or Wilcoxon signed-rank test was used to compare the means of related data. Cor-
relation analysis was performed using the Pearson R test for normally distributed data or 
the Spearman rank R when data were not normally distributed. Data were presented as 
mean along with standard deviation (SD) and 95% confidence interval (CI), unless stated 
otherwise, in our logistic regression analysis.

In the same experimental session of each subject, we evaluated our regression mod-
els using mean values, otherwise, the variance of each predictor variable would be com-
puted as much lower. P value < 0.05 was considered to be statistically significant.
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