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Background
The western world spends > 80% of their time indoors often exposed to poor indoor 
environmental conditions, which can be detrimental to health and wellbeing [1]. The use 
of passive sensors for measuring indoor environments and monitoring impact on qual-
ity of life has become prevalent in recent years [2–6]. Of particular importance is the 
need for monitoring systems to track individuals and how they respond to environmen-
tal changes [7]. By localising the measurement of environmental factors and augment-
ing with data from wearable technologies, healthcare researchers can better understand 
health and wellbeing through a more holistic and personalised approach [8].
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There is a trend toward personalised medicine with measurements suited to an indi-
vidual’s ailments or needs. Individualised measurements could better identify health 
biomarkers, while longitudinally assessing habitual behavioural patterns [9]. To conduct 
such assessments, healthcare researchers need to move beyond the laboratory, towards 
free-living assessment. This involves longitudinal assessment of patients in their habitual 
environments, which can produce increased variability of measurements that may pro-
vide better insights to distinguish between physiological conditions [10]. This is because 
habitual environments are unsupervised and expose patients to a range of obstacles and 
tasks of daily living [11]. While healthcare researchers have proposed deploying moni-
toring equipment of the individual at scale, this has largely been unfeasible due to cost 
and complexity [12]. Moreover, there is a requirement to monitor beyond the individual 
by capturing insights about the general environment and how the individual performs 
daily tasks, which may negatively impact underlying pathology [6, 13]. Use of low-cost 
sensor technology could facilitate this methodological shift in patient assessment [8, 12] 
and in particular wearable sensing [11], but in many cases, the technology still requires a 
great deal of researcher intervention [11, 14, 15].

Emergent sensor technology is changing the landscape of how buildings, environ-
ments and individuals are monitored. This is in part due to the increasing affordabil-
ity and accessibility of sensor technology being driven by the Internet of Things (IoT), 
which is regarded as an extension of the internet and is comprised of billions of glob-
ally interconnected devices [16, 17]. As a disruptive technology, IoT has the potential to 
positively impact healthcare, but are subject to limitations such as ongoing rapid tech-
nological changes [18]. Yet, that limitation is driving increased accessibility and afford-
ability of IoT technology. Furthermore, marketing of sensor and associated technology is 
shifting from electronic engineers and computer scientists to other professions (e.g. con-
struction, agriculture, manufacturing and education) and with it, innovative solutions to 
facilitate sensor integration and deployment.

The aim of this paper is to provide a narrative review while surveying current state-of-the-
art of accessible IoT sensor technologies. Here, we specifically examine low-cost technolo-
gies and investigate their use by providing examples for pragmatic insights to biomedical 
engineers. We present an overview of current low-cost devices and technical specifications 
to inform biomedical engineers about the possibilities, workflows and limitations presented 
by these technologies within healthcare applications. By doing this, it is hoped that biomed-
ical engineers can better investigate ideas and develop proof of concepts to work more pro-
ductively with electrical engineers, computer scientists and healthcare professionals when 
outlining and scoping work within modern multi-disciplinary studies. To place the review 
in context of current challenges for biomedical engineers, this paper will investigate by 
means of experimental work approaches for remote environmental and physiological moni-
toring. It is hoped that the findings of this experimental work will showcase low-cost IoT 
approaches with pragmatic considerations for future biomedical investigations.

Low‑cost sensor technology
Sensors are a prevalent driver of IoT technology and they serve a multitude of purposes, 
from measuring people or places to systems or things. Sensors can be used to measure 
air quality or motoric activity, the latter which can help identify symptoms of underlying 
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medical conditions, e.g. Parkinson’s disease (PD) [19]. Those type of sensors have taken 
a variety of form factors, from environmental sensors that use printed conductive plas-
tics that can accurately detect the concentration of carbon dioxide  (CO2) in the air [20] 
to smart clothes that integrate tri-axial accelerometers directly into garments [21]. Key 
to these developments is the increasing technological advancements in microelectrome-
chanical systems (MEMS) [22].

Initial prototyping tools: MEMS sensors and bench testing

MEMS use micro-engineering to integrate circuits and microscopic mechanical compo-
nents into silicone microchips [23]. In doing so, it is possible to create micro-scale sen-
sors with a range of sensing capabilities. Table 1 highlights the versatility and potential 
for MEMS technology within healthcare research. Whilst some research focuses around 
use of MEMS sensors for specific healthcare applications, researchers are exploiting these 
technologies to create accessible sensor fusion ehealth monitoring systems. For example, 
studies [24–28] previously combined a range of low-cost sensors to create monitoring 
systems that were able to remotely measure a variety of health conditions. Alternatively, 
Rienzo et al. [29] adopted a different sensor-fusion approach to combine three sensors 
[electrocardiogram (ECG), photoplethysmogram (PPG) and seismocardiogram (SCG)] to 
simultaneously measure heart rate from 12 sensor nodes (each containing 3 sensors) that 
could be placed on different anatomical locations. In doing so, they were able to take 36 
unique and individualised, high-frequency measurements of heart rate.

One of the most prominent resources available for rapid prototyping electronic cir-
cuits are solderless breadboards, which is a device made of interconnected rows and col-
umns designed to temporarily connect circuits. Typically, there are four rows of sockets 
on a breadboard, which are connected horizontally and are used for supplying power. 
The remaining sockets are connected vertically and are used for connecting compo-
nents. The sockets are designed so that components and wires slot in, without need-
ing to solder a permanent connection. Solderless breadboards are a mature approach for 
prototyping, so component manufacturers typically conform to the width and spacing 
of sockets when designing hardware. Therefore, by convention, many electronic compo-
nents are standardised to have a pin spacing (known as pitch) of 2.54 mm [30]. This often 
makes MEMS sensors alone unsuitable for prototyping as they have a much smaller 
pitch, which vary from sensor to sensor. Sensors (e.g. Table 1) are often integrated onto 
‘breakout boards’, which are small Printed Circuited Boards (PCBs) useful for prototyp-
ing and facilitate access to the pins on a microchip [31] by conforming to the 2.54 mm 
convention, Fig. 1. Many breakout boards can be used with little to no knowledge about 
electronic engineering. This is because much of the additional circuitry required to 
operate a MEMS chip is provided on the breakout board (Fig. 1), often exposing only 
inputs, outputs and voltage control pins. This is the reason why the number of pins on 
the MEMS component differs from the number of pins on the breakout board.

Ensuring fit‑for‑purpose monitoring

Sensor use within healthcare research is becoming more prevalent, but it has often 
been reactive rather than proactive as innovation in this field can be quite fractious 
[32, 33]. With continued uptake of emergent technologies, biomedical engineers 
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must perform robust and vigorous bench testing (e.g. via tools outlined in “Initial 
prototyping tools: MEMS sensors and bench testing” section) to ensure new sensor-
based technologies are valid and fit-for-purpose [32]. There is no absolute standard 
regarding sensor selection, as choosing an appropriate sensor will depend on what 
the researcher needs to measure and the subsequent digital endpoint(s) that is/are 
sensitive to the pathology in question [34]. Once fit-for-purpose sensors have been 
selected, appropriate and equally fit-for-purpose processing units (i.e. what the 

Table 1 Examples of MEMS sensor use for healthcare

a Seismocardiograph measurements were conducted using a MEMS‑based accelerometer/gyroscope
b HoneyWell have a range of 26PC sensors, but the authors have not declared the specific sensor used in their study
c Maxin integrated products
d SparkFun
e STMicroelectronics
f Texas instruments
g Analog devices
h TDK InvenSense
i Seeed studio

Authors Year Healthcare application Sensor ID Sensor type

Alberto et al. [35] 2020 Heart rate MAX30003c Electrocardiogram (ECG)

Bakar et al. [24] 2020 Body temperature
Heart rate

MAX30205c

SEN11574d
Temperature
Electrocardiogram (ECG)

Rienzo et al. [29] 2020 Heart rate
Pulse

MAX30003c

MAX30101c

LSM6DSMe

Electrocardiogram (ECG)
Photoplethysmogram (PPG)
Seismocardiogram (SCG)a

Al-Naggar et al. [25] 2019 Heart rate
Pulse
Body temperature

MAX30003c

AFE4490f

MAX30205c

Electrocardiogram (ECG)
Pulse oximeter
Temperature

Anisimov et al. [36] 2019 Heart rate ADS1292Rf

ADAS1000f

MAX30003c

AD8232g

Electrocardiogram (ECG)

Portaankorva [26] 2018 Heart rate
Activity monitoring

MAX30003c

LASM6DSLe

LIS3MDLe

Electrocardiogram (ECG)
Accelerometer/gyroscope
Magnetometer

Yudhana et al. [37] 2018 Sign language detection MPU6050h Accelerometer/gyroscope

Anik et al. [38] 2017 Activity recognition MPU6050h Accelerometer/gyroscope

Dawson [39] 2017 Medical implant security ADXL362g Accelerometer/gyroscope

Fitriani et al. [40] 2017 Activity recognition MPU6050h Accelerometer/gyroscope

Kardos et al. [41] 2017 Gait analysis MPU6050h Accelerometer/gyroscope

Mohanraj and Keshore [27] 2017 Body temperature
Pulse
Heart rate
Emotion detection

MAX30205c

SEN11574d

AD8232g

101020052i

Temperature
Photoplethysmogram (PPG)
Electrocardiogram (ECG)
Galvanic skin response

Mota et al. [42] 2017 Gait analysis MPU6050h Accelerometer/gyroscope

Shaji et al. [28] 2017 Body temperature
Blood pressure
Pulse
Heart rate
Fall detection

MAX30205c

HoneyWell  26PCb

SEN11574d

AD8232g

ADXL362g

Temperature
Pressure
Photoplethysmogram (PPG)
Electrocardiogram (ECG)
Galvanic skin response

Al-Dahan et al. [43] 2016 Fall detection MPU6050h Accelerometer/gyroscope

Kim et al. [44] 2015 Medical implant security ADXL362g Accelerometer/gyroscope

Lei et al. [45] 2015 Fall detection MPU6050h Accelerometer/gyroscope

Wang et al. [46] 2015 Gait analysis MPU6050h Accelerometer/gyroscope
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sensors are integrated into) must also be selected, to send control signals to the sen-
sors as well as read and process sensor data.

Communication and control: hardware
There are a variety of ways to communicate and control sensor technology, which 
can vary depending on the stage of production, requirements of the hardware or 
accessibility.

FPGA/ASIC

For applications that require a great deal of power efficiency, whilst executing control 
algorithms in parallel and at high speeds, an Application-Specific Integrated Circuit 
(ASIC) may be required [47]. ASICs are microchips that contain an integrated circuit 
that is designed for a single application and cannot be reprogrammed [48]. This makes 
them suited to production level devices that do not need to change throughout the 
device’s lifecycle. Alternatively, Field Programmable Gate Arrays (FPGA) are reprogram-
mable. FPGAs are similar to ASICs as they contain integrated hardware circuits and 
once programmed can perform any logical function [49]. However, FPGA architecture 
differs from an ASIC and is comprised of an array of inputs and outputs (I/Os), logic 
blocks, interconnects and connection lanes. These interconnects can be programmed so 
that the connection lanes bridge a connection between I/Os and a series of logic blocks 
to form a circuit of components that are suited to a specific application [50].

Since FPGAs and ASICs require the configuration of hardware circuits, they have a 
steep learning curve and may lack general accessibility to those without circuit design 
experience. However, it is also possible to interface with sensors using a programma-
ble Central Processing Unit (CPU), which is used for controlling hardware and software 
[51]. Within IoT applications, CPUs are typically integrated into a Microprocessor unit 
(MPU) or into a Microcontroller unit (MCU) which combines CPU with memory. That 
enables CPUs programming to execute processes whilst being able to read and write 
data during an execution [52]. The key distinction between MPUs and MCUs, is the lat-
ter combines the CPU and memory onto a single microchip making it act as a single-
chip-computer, capable of executing programmed instructions [53].

Fig. 1 Scale of MEMS sensor breakout board, compared to a 555 timer chip with 2.54 mm pitch
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CPU

In contrast to FPGAs or ASICs, CPUs process algorithms in series, meaning they 
are not capable of running concurrent tasks. This can be overcome using multi-core 
CPUs, which combine multiple CPUs cores into a single processing unit, where each 
core can concurrently execute commands in series [54]. Another key distinction 
between CPUs and FPGAs is that whilst both architectures can be programmed, the 
program used in an FPGA is used to define how the hardware is configured, whereas 
the CPU executes the code as a series of instructions [50]. Since processing on an 
FPGA is done using hardware this means they are capable of handling analogue or 
digital signals, whereas a CPU is only capable of processing digital information. While 
this may seem like a major limitation for healthcare applications, one of the benefits 
of MCUs is that they typically contain a bus of general purpose input/output (GPIO) 
pins, which allow the device to send or receive both analogue and digital information 
from peripheral devices such as sensors [55].

Since the underlying CPU is capable of processing digital information only, ana-
logue signals must first be converted to a digital signal or vice-versa. This is done 
using either analogue-to-digital convertors (ADC) or digital-to-analogue convertors 
(DAC) depending on the direction of the signal. When considering MCUs for health-
care applications and analogue signal measurement, it is important to consider the 
performance of the ADC to ensure that the device has sufficient resolution to be fit-
for-purpose. This largely comprises of a trade-off between the sample rate, measured 
in samples per second (sps) and the bit resolution of the ADC, which refers to the 
number of discrete digital values an analogue signal can be mapped to. The more the 
bit resolution of the converted signal is lowered, the more the degradation of infor-
mation is increased. Moreover, as the sample rate is increased, the ADC needs to con-
vert a greater amount of information, which further reduces the bit resolution of the 
conversion [56]. Therefore, if biomedical engineers intend to take measurements from 
analogue sensors, at a high sample rate, it is important that they choose an MCU with 
an ADC that has a high bit resolution when operating at the desired sample rate. This 
is to ensure the quality of the digital signal that is converted from the analogue stream 
is of a high standard for accurate data capture and robust patient assessment.

MCU

A key benefit of MCUs is their low-cost and accessibility, largely driven by open-
source-based Arduinos—a range of inexpensive MCUs that are typically built onto 
development boards for rapid prototyping [57]. In software development, open-
source code is typically distributed with a license that enables other developers to 
view, modify and share derivative works legally [58]. In much the same way, open-
source hardware licenses allow the technology to be modified and distributed legally. 
This means that manufacturers and developers are free to clone, build, enhance and 
distribute hardware that builds upon the original infrastructure. Since derivative 
boards are based on the Arduino architecture, the way in which these microcon-
trollers are programmed has become standardised. The widespread adoption of these 
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boards has not only incited rapid advancements in the capability of Arduinos, but it 
has also drastically reduced the costs of associated components.

Since their conception, Arduinos have taken a variety of forms and purposes. These 
include controllers for smart clothes that use inductive thread to control sensors to 
compact networked boards that are designed to interface with the IoT. For a full list 
of options and specifications, readers are directed to Arduinos product range,1 which 
outline the technical specifications of each board and categorises the boards according 
accessibility. Additionally, Nayyar and Puri [59] present a review of Arduino hardware, 
outlining the technical intricacies of each board. However, the Arduino product range 
is continuously evolving and many of the boards in that review have subsequently been 
discontinued, as is the nature of disruptive technology [18]. Whilst the details presented 
in Arduino’s product range provide detailed technical specifications, they lack aggre-
gated information on the ADC/DAC capabilities of each device. To address this gap, 
Table 2 is provided to further guide biomedical engineers when choosing boards to suit 
the needs of their research projects.

Boards in Table 2 convert analogue signals to digital with at least a 10-bit resolution. 
Moreover, the sample rates of modern Arduinos enable them to be applicable for a range 
of healthcare applications as they exceed requirements for measuring high-frequency 
analogue signals, e.g. electrocardiographs [60]. As the technology continues to disrupt, 
modern Arduinos push the boundaries with new processors and higher resolution ADC 
capabilities. Furthermore, IoT is an increasing driver of technological development and 
Arduino’s own IoT range now come equipped with e.g. a range of wireless capabilities to 
suit a variety of remote measurement projects via Cloud services or MCU boards with 
built-in FPGA for additional programmable functionality. However, these come at an 
increased cost, inhibiting accessibility.

Derivative boards and inexpensive clone boards are an alternative, providing equal 
functionality much lower cost. For example, an official Arduino Uno R3 costs approx. 
$23 but a clone built to equal sizes and specifications is as little as $3.00. Although not 
supported by Arduino, clone boards will function the same as Arduino counterparts and 
will likely be compatible with Arduino software, as the latter supports third party manu-
facturers. However, biomedical engineers using clone boards should be aware that they 
would be unlikely to receive official support from Arduino for any clones.

The open-source nature of Arduino products means that derivative boards can also 
be created. Instead of aiming to create clones that offer equal functionality, derivative 
boards aim to extend the functionality of Arduinos by on-boarding features such as LCD 
screens, wireless communication and more powerful processors, which can be useful 
for providing real-time feedback from sensor readings. One example which is gaining 
popularity [61] is the ESP32.2 The latter cannot be directly compared to an Arduino 
development board as it is regarded as a system on chip (SoC), meaning that it is an 
entire system on a single microchip. These chips are considered a market leader as they 
integrate WiFi, Bluetooth Low Energy (BLE), dual-core processing and sensors onto a 
single chip [62]. Moreover, these chips are now being integrated onto a wide range of 

1 Arduino product range https ://www.ardui no.cc/en/main/produ cts.
2 Espressif systems https ://www.espre ssif.com/.

https://www.arduino.cc/en/main/products
https://www.espressif.com/
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Table 2 Arduino’s product range, highlighting architectures and ADC/DAC capabilities

All information has been sourced from Arduino’s product range and the subsequent datasheets provided there
a Prices (as recorded on 10 July 2020) are rounded up to the nearest USD (ex. VAT)
b Pulse width modulation (PWM) is an emulated analogue signal created with high‑frequency digital pulses
c ADC sample rates specified are in kilo‑samples per second (ksps) and are achieved at the highest bit resolution of the ADC, 
lower bit resolutions can achieve sample rates greater than those specified above
d MKR Vidor 4000 has an on‑board Intel®  Cyclone® 10CL016 FPGA to supplement the SAMD21 MCU

Board Pricea Processor Digital/
PWMb

ADC bit 
resolution

ADC CHLs ADC 
sample 
 ratec (ksps)

DAC bit 
resolution

DAC CHLs

Entry level

 UNO R3 $23 ATmeg 
a328P  
(8-bit)

14/6 10-bit 6 15 – 0

 Nano $21 ATmeg 
a328P  
(8-bit)

22/6 10-bit 8 15 – 0

 Leonardo $21 ATmeg 
a32U4 
(8-bit)

20/7 10-bit 12 15 – 0

 Micro $21 ATmeg 
a32U4  
(8-bit)

20/7 10-bit 12 15 – 0

 Nano 
every

$11 ATMeg 
a4809  
(8-bit)

22/5 10-bit 8 115 – 0

Enhanced

 MKR zero $26 SAMD2 1 
(32-bit)

22/12 8/10/12-bit 7 350 10-bit 1

 Zero $43 SAMD2 1 
(32-bit)

20/10 12-bit 6 350 10-bit 1

 Due $41 AT91S 
AM3X8 E 
(32-bit)

54/12 12-bit 16 1000 12-bit 2

 Mega 
2560 
Rev3

$41 ATmeg 
a2560  
(8-bit)

54/15 10-bit 16 15 – 0

IoT

 Nano 33 
IOT

$19 SAMD2 1 
(32-bit)

14/11 8/10/12-bit 8 350 10-bit 1

 Nano 33 
BLE

$21 nRF52 840 
(32-bit)

14/14 12-bit 8 200 – 0

 Nano 33 
BLE 
sense

$32 nRF52 840 
(32-bit)

14/14 12-bit 8 200 – 0

 MKR WAN 
1300

$41 SAMD2 1 
(32-bit)

8/12 8/10/12-bit 7 350 10-bit 1

 MKR GSM 
1400

$69 SAMD2 1 
(32-bit)

8/13 8/10/12-bit 7 350 10-bit 1

 MKR WiFi 
1010

$33 SAMD2 1 
(32-bit)

8/13 8/10/12-bit 7 350 10-bit 1

 MKR NB 
1500

$77 SAMD2 1 
(32-bit)

8/13 8/10/12-bit 7 350 10-bit 1

 MKR Vidor 
 4000d

$72 SAMD2 1 
(32-bit)

8/13 8/10/12-bit 7 350 10-bit 1

 MKR 1000 $37 SAMD2 1 
(32-bit)

8/12 8/10/12-bit 7 350 10-bit 1

 UNO WiFi 
Rev2

$45 ATMeg 
a4809  
(8-bit)

14/5 10-bit 6 115 – 0

https://content.arduino.cc/assets/Arduino-Vidor_c10lp-51001.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
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development boards that offer similar accessibility as Arduino development boards but 
with increased functionality and lower costs. One reason why SoCs (and the develop-
ment boards built upon them) have been so successful within IoT development is that 
the entire chip can be reconfigured at run time to operate at extremely low power, 
making them suitable controllers for battery-powered IoT devices [63]. Furthermore, 
the ESP32 chip has 18 multi-resolution ADC channels capable of running 200 ksps at 
12-bit resolution and two 8-bit DAC channels, which makes the chip comparable to the 
Arduino Due—one of Arduino’s largest form-factor development boards. Of note, while 
the ESP32 has an 18 channel ADC, two of those channels are occupied by integrated 
temperature and hall-effect sensors that detect magnetic fields and the temperature of 
its chip [63]. This means that for applications that do not make use of these sensors, the 
ESP32 has only 16 usable ADC channels, though this is comparable to the Arduino’s Due 
and Mega 2560 boards.

Unlike FPGAs and ASICs, Arduinos and their derivative microcontrollers were 
designed to be accessible to beginners yet flexible to accommodate skilled developers 
[57]. This makes them ideal for those that may not possess the prerequisite knowledge 
of an e.g. electrical engineer but wish to gain insights into IoT hardware development or 
become more knowledgeable about possibilities and limitations of the hardware.

Software

The scale of data across the healthcare sector has been increasing and is expected to 
continue increasing exponentially as healthcare professionals adopt IoT solutions [64]. 
As more information is stored into healthcare models, challenges around transmission 
and storage of those models increases in tandem. IoT adds further complexity to the 
issues of data scale as devices typically send a telemetry stream, which is continuous data 
ranging in frequencies from seconds to weeks. Therefore, frequency of data transmission 
has a direct impact on the level of storage and the type of system that is needed to man-
age the stream.

Devices like Arduino processors must be programmed with a specific set of com-
mands telling it which pins to read and write to and what to do with the data. Hardware 
manufacturers (e.g. Arduino, Adafruit, SparkFun) provide searchable databases of open-
source code libraries (often accompanied with setup tutorials) that can be accessed from 
a web browser or their proprietary software.3 Thus, biomedical engineers can be more 
informed about the steps involved and understand the possibilities and challenges the 
hardware presents through the support of those tutorials and documentation.

Cloud connectivity
IoT workflows extend beyond the development of sensor technology by developing 
software that collects, stores and analyses data streams. Open-source IoT software plat-
forms are also becoming a driving force of accessibility and innovation. These platforms 
are typically centred on providing a web-based dashboard and a database to collect and 

3 Readers are directed to the Arduino Code Library List [95], which is an automatically generated database of libraries. 
This list contains approx. 3000 libraries, which provide detailed license, author and version information as well as links 
to download source code.
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display data from IoT devices. Biomedical engineers should be aware there are more than 
600 known IoT platforms [65] and, whilst the sector is largely dominated by large corpo-
rations such as Amazon, Google and Microsoft [66], IoT cloud platforms are continuing 
to expand and fragment with niche platforms designed for specific use cases [65]. These 
platforms are typically centred on providing a web-based dashboard and a database to 
collect and display data. Many of these platforms are complex and feature-rich, with a 
range of integration protocols that can directly interface with MCUs [67–69]. However, 
many of these cloud platforms operate on a quota or a pay-as-you-go model, where users 
pay for services, storage or bandwidth they consume [70]. For IoT applications such as 
smart homes, this can be an affordable option as the frequency of events (when an IoT 
device uses some of the quota) can be sporadic or low-frequency; e.g. when a light turns 
on or off. In healthcare research, the frequency of data transmission may often need to 
be much greater, in the region of hundreds or thousands of samples/second. This cur-
rently creates multiple technical obstacles that make cloud-based remote monitoring of 
patients challenging.

Rate limiting and transactional cost

When transmitting high-frequency sensor data to the cloud, a large volume of data can 
be accumulated in a short space of time. This will require large amounts of cloud storage 
and may require a great deal of bandwidth. Before adopting a cloud solution, biomedical 
engineers must be aware of how a user is charged for data, with regards to both storage 
and bandwidth. Given the number of available cloud solutions, a complete breakdown 
of costs involved with each service is beyond the scope of this paper. Instead, we pre-
sent indicative costs associated with different subscription models from the key provid-
ers, Microsoft Azure, Amazon’ Web Services (AWS) and Google’s cloud platform (GCP) 
[66].

To demonstrate the speed in which message quotas would be consumed using cloud 
platforms, we extracted several ten second samples of raw tri-axial data from a low-cost 
commercial MEMS-based wearable accelerometer (AX3, Axivity, Newcastle, UK) in 
CSV format with timestamp information included. The sample rate was set at 100 sps 
(100 Hz) and so each sample contained 1000 rows (100 Hz × 10 s) of values. The average 
file size of the CSV data was approximately 33 kilobytes (KB). This file size was then used 
to compare the pricing for the three major cloud IoT platforms.

Microsoft Azure IoT Hub

Microsoft Azure’s IoT Hub has a range of pricing options and quotas (Table 3). Users of 
the service are billed monthly and charged according to the number of messages/day. For 
device-to-cloud messaging, the maximum of a single message equals 256 KB [71], mean-
ing no single device can send more than that at any one time. However, that message size 
is far greater than the meter size for each tier, which is capped at a maximum of 4 KB for 
paid tiers and 0.5 KB for the free tier, Table 3. Therefore, while a single 256 KB message 
can be sent from an IoT device to the cloud, this message is segmented into 0.5 KB/4 KB 
segments and charged accordingly. Thus, a 256  KB message will expend 64 messages 
from the daily quota on paid tiers and 512 messages from the daily quota on the free tier. 
For high-frequency data, this quota can be quickly consumed. Using the example set out 
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in “Rate limiting and transactional cost” section, a 67.1 KB message would consume 9 
messages from paid tier subscriptions and 66 messages from free tier subscripts. At that 
rate, to monitor tri-axial data, values at around 100sps (100 Hz) for 24-h, approximately 
71,280 messages would be consumed on a paid tier subscription. This would mean either 
the S1 or the B1 tier would be applicable. However, the daily message quota on free tier 
subscription would be completely consumed in around 20 min.

Amazon Web Services (AWS)

Similar to Azure, AWS IoT Core service involves chunking large messages and charging 
according with a maximum message size of 128 KB and a 5 KB meter size. Yet, unlike 
Azure, AWS tiers decrease in price as more messages are transmitted. If 10 s of tri-axial 
accelerometer recordings creates 33 KB of data, AWS would bill for 57,204 messages in 
24-h. This equates to 1,710,720 messages over a 30-day period, where each million mes-
sages will be billed at $0.80—equalling $1.37 per month. Additionally, AWS also charge 
$0.08 per million minutes of connection, but for a single device, the price change is neg-
ligible as a device connected continuously for 30 days would cost $0.003456.

Google cloud platform (GCP)

GCP adopts a different quota system to Azure and AWS, instead charging according to 
the total amount of data transmitted rather than the total number of messages (Table 3). 
Additionally, instead of charging in data segments according to a meter size, GCP 
adopt a minimum charge approach when billing for transactions. Consequently, GCP 

Table 3 Example of IoT hub pricing tiers

Data relating to tiers, pricing and message quotas was obtained from the pricing pages of Microsoft Azure [72], Amazon 
Web Services [73] and Google cloud platform [74] on 17 July 2020
a Per million messages
b Per million minutes

Tier Monthly cost Messages/day Meter size (KB)

Azure Free tier $0 8000 0.5

Basic tier 1 (B1) $10 400,000 4

Basic tier 2 (B2) $50 6,000,000 4

Basic tier 3 (B3) $500 300,000,000 4

Standard tier 1 (S1) $25 400,000 4

Standard tier 2 (S2) $250 6,000,000 4

Standard tier 3 (S3) $2500 300,000,000 4

Monthly messages Pricea Meter size (KB) Connection 
 costb

AWS < 1 billion $1 5 $0.08

1–5 billion $0.80 5 $0.08

More than 5 billion $0.70 5 $0.08

Data usage Price/MB Minimum charge 
(bytes)

GCP Up to 250 MB $0.00 1024

250 MB to 250 GB $0.0045 1024

250 GB to 5 TB $0.0020 1024

5 TB and above $0.00045 1024
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encourage users to send fewer large messages rather than many small messages (unlike 
Azure and AWS). If 33  KB of tri-axial accelerometer data were sent from a device to 
GCP, instead of it being segmented and metered, prices would be calculated per mega-
byte (MB). In this instance, continuous data for 30 days would equate to 8.55 Gigabytes 
(GB) of data, costing $0.0045/MB. Therefore, total cost (including first 250 MB free) for 
30 days would be $37.37. It is important to note that this cost only considers data being 
sent from the sensor, as GCP also have costs associated to the communication protocols 
used to send data. It is important for biomedical engineers to understand which proto-
cols are available on a chosen platform as they can significantly impact the cost of data 
transmission.

Communication protocols

Many cloud platforms accept a range of communication protocols, with two of the most 
popular protocols used within IoT platforms are Hyper Text Transfer Protocol (HTTP) 
and Message Queuing Telemetry Transport (MQTT). HTTP is a mature protocol for 
requesting and received data over the internet [75]. Within IoT, devices can send data 
over HTTP by attaching the data (known as payload) to the HTTP request being sent 
to a server. When the server receives the request, it returns a response to indicate the 
success or failure of the request/response lifecycle [76]. However, each request requires 
authentication and once the request/response lifecycle is completed the connection to 
the server is then closed [77]. This uses a lot of bandwidth and creates overheads for IoT 
devices that need to send high-frequency data to the Cloud. Contrastingly, instead of 
using a request/response lifecycle, MQTT protocol uses a publish/subscribe approach, 
where data are published to a server (message broker) and made available for subscrip-
tion [76]. For example, an IoT device can publish a sensor reading to the broker and an 
IoT application (subscribed to the broker) can receive that data. A key benefit of MQTT 
over HTTP, for IoT applications, is that a persistent connection can be made to a broker, 
which allows devices to send multiple data payloads with a single authentication [75].

The fundamental differences between HTTP and MQTT have a substantial impact on 
cost within GCP. This is because GCP charges for each connection. For MQTT, monthly 
costs depend on how long the connection from a device is kept active. For example, if 
each device refreshes the connection every 15  min, 96 daily requests will be made to 
broker. Yet, whilst each request will be extremely small, GCP’s minimum charge means 
that every request is charged at 1024 bytes (1  KB), which equates to approx. 3  MB/
month. Alternatively, HTTP makes a request and response every time data is sent. If 
33  KB of data were transmitted every 10  s, 8640 messages would be sent daily. Since 
GCP would apply the minimum charge of 1 KB to each response, the HTTP responses 
alone would use the entirety of the 250 MB free quota. For this reason, in contrast to 
AWS and Azure, it would be important to send considerably larger amounts of data and 
to transmit less often when using GCP.

Serial processing
Whichever cloud platform is adopted for an IoT solution, technological inadequacies of 
processing units can be a limitation when attempting to collect, store and transmit high-
frequency data. As discussed previously, MCUs process data in series, meaning they 
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execute each command one after another. Therefore, single core processors are unable 
to initiate the next command until the previous one is complete. On a single-core MCU, 
data transmission must, therefore, interrupt the data collection and the MCU will be 
unable to read sensor data until the data has been transmitted. This could also involve 
waiting for a response if transmitting over HTTP. Since it would be problematic to trans-
mit every reading from a sensor running at a frequency of 100 Hz (100 sps), the MCU 
must read data from the sensor, perform analogue-to-digital conversion (if required), 
and store that data in memory. This whole process must also be executed within 10 ms 
(ms) to maintain a sample rate of 100  sps. When enough data has been collected in 
memory, the MCU must then send the data to the cloud. However, this instruction 
must also be executed within one of the 10  ms windows allocated to data collection, 
otherwise, the sample rate will drop. This problem could be mitigated using multi-core 
MCUs such as the ESP32, or devices that combine FPGAs with MCUs such as the MKR 
Vidor 4000. These devices would allow an uninterrupted data stream to be collected and 
stored, while simultaneously transmitting the data to the Cloud.

Experimental case study: towards holistic IoT‑based remote monitoring
From the plethora of IoT technologies that have been covered within our investigations, 
we conduct experimental work to investigate how current approaches could be under-
taken by biomedical engineers for remote environmental and physiological monitoring. 
Here, we investigate a low-cost IoT approach for where an individual could be holis-
tically monitored in their home with a focus on gait/walking assessment. The latter is 
commonly referred to the sixth vital sign [78] and has grown in considerable interest 
due to its ability to provide pragmatic insights to neurological conditions e.g. PD [79]. 
In brief, a conceptual model of gait suggests that numerous spatial and temporal char-
acteristics (e.g. step length, step time variability) have clinical utility to examine onset 
and progression of PD [80]. This is important as a gait examination conducted under 
observation in the clinic can be used to diagnose, treat and manage those with PD. Tra-
ditionally, gait assessment in the clinic has proven useful but remains limited as the 
environment may not reflect daily life (e.g. good lighting, no obstacles) and those being 
assessed will perform the test optimally due to being observed [10]. Advances in wear-
able technology have created a methodological shift to quantify spatial and temporal gait 
characteristics beyond the clinic. It is hypothesised that these free-living characteristics 
can provide more insight due to the habitual manner in which they are generated. To 
date, evidence shows that there are differences in habitual gait compared to the clinic 
[11] with notable insights to fall risk assessment during prolonged assessment of those 
with PD [81].

Current state-of-the-art in longitudinal remote gait assessment predominantly aligns 
to placing an inertial-based wearable (typically tri-axial accelerometer) on the lower 
back for extended periods (up to 7-days when also considering ambulatory behaviours). 
Upon completion of recording, the wearable is collected in person or returned to the 
researcher by post. This is extremely inefficient, costly and may often result in damage 
(or loss) of wearables (and data). Furthermore, recent impact of the 2020 COVID pan-
demic brought clinical and research studies in this field to a halt due to isolating require-
ments for those with health conditions. Thus, there is a need to investigate how future 
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habitual gait assessment could be best facilitated and maintained through the use of IoT 
technologies. Moreover, the addition of environmental information could augment gait 
assessment data, by providing healthcare professionals with greater insight into an indi-
vidual’s living conditions (e.g. light quality of room) and how that may impact gait per-
formance [12].

Physiological measurement of gait: current state‑of‑the‑art

Given fabrication of modern inertial-based wearables due to MEMS technology, they 
can generally be worn on any anatomical location but placement on the lower back con-
forms to harmonisation of two principal algorithms for gait quantification [82, 83] to 
generate 14 spatial and temporal characteristics [84] of clinical utility [85]. In brief, use 
of the continuous wavelet transform helps identify timings of the initial (heel strike) and 
final contact (toe off) for each step from the vertical acceleration of MEMS-based wear-
ables, such as the AX3. The AX3 has been widely used for validated gait analysis studies 
in various clinical cohorts [86–89]. Those contact times coupled with the inverted pen-
dulum model [90], which estimates change in height of the wearable due to attachment 
near the wearers’ centre of mass, provide pragmatic gait characteristics. Furthermore, 
identifying periods of gait (bouts of walking) from longitudinal assessment is feasible 
from a heuristic approach of (i) wearable location (accelerometer orientation) and (ii) 
recognising periods of interest from combined tri-axial inertial signals to define when 
the wearer is upright (mean accelerometer output) and moving (threshold to standard 
deviation). Once those periods of interest are located, they are analysed for initial and 
final contacts to deduce that the wearer is walking [91].

Previously, it was shown that accessible IoT-based technology (smartphone, inertial 
wearable and Raspberry Pi) could be used beyond the clinic to gather robust gait data 
under observation when compared to routine procedures of analysing, via manual data 
download and processing through Matlab® based gait algorithms [92]. Although the 
latter platform is being used less by data scientists, it remains popular due to its exten-
sive toolboxes and formally arranged documentation and so may be perceived as the 
standard reference for processing sensor data. Nevertheless, more popular approaches 
involving use of Python or Octave have been shown to be comparable to Matlab® for 
gait characteristic analysis [14, 92].

Exploring IoT approaches to remote assessment

When experimenting with the IoT and algorithm deployment, biomedical engineers 
may seek methods that are a continuum of existing and validated approaches. Thing-
Speak™ is an open-source cloud platform built upon Matlab® meaning it can run its 
code in the Cloud to perform real-time analysis and visualisations on incoming data 
streams from IoT devices.

Like many cloud platforms, ThingSpeak™ imposes rate limits and quotas and these 
could be a major limitation for longitudinal assessment and multi-patient monitoring. 
When transmitting data to ThingSpeak™, data can be sent as individual messages where 
one message could comprise a reading from up to eight sensors. Alternatively, those data 
can be batched and sent collectively (i.e. in bulk) but regardless of transmission method 
the rate cannot be greater than one every 15  s. Nonetheless, ThingSpeak™ limits the 
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amount of readings that can be transmitted in a bulk update message, with free users 
being limited to 960 rows and paid subscriptions being limited to 14,400 [93]. Given 
a sample rate of 100 Hz, each 15 s period would consume 1500 messages, equating to 
8,640,000 messages/day. ThingSpeak™ charges in units where each unit includes a quota 
of data channels and messages. For academic subscriptions, costing $250/unit, a sin-
gle unit has a message quota of 33 million messages. Therefore, a single unit would last 
just under 4 days if data were continuously transmitted. For longitudinal and/or multi-
patient monitoring, these costs could grow exponentially. However, if the platform were 
used to analyse snapshots of data, biomedical engineers could fine tune their algorithms 
throughout a study and monitor the progress without waiting until the end of the sam-
pling period. For environmental monitoring, high-frequency transmission is not always 
necessary, so these limits are not a factor.

Experimental setup and equipment

To test the feasibility of ThingSpeak™, we conducted an experimental investigation to 
compare Matlab® and ThingSpeak™, within the context of gait analysis. For the pur-
poses of our experimental investigation, we present AX3 data from a single user in their 
habitual setting. The participant wore a single AX3 (100  Hz, ± 8  g) on the lower back 
for 1-h during which time they were free to perform their normal activities. Ethical 
consent was granted by the Northumbria University Research Ethics Committee (REF: 
16,335/335) and the participant gave informed written consent before participating in 
this study.

Since the AX3 lacks wireless connectivity, the device was plugged into a desktop 
computer and the data were extracted and exported to CSV format. These data were 
then analysed in Matlab® using a usual approach and validated algorithm [91]. Sub-
sequently, a Matlab® analysis application was created on ThingSpeak™ that contained 
the same code as on the desktop. The CSV file was then imported into ThingSpeak™ and 
analysis of these data was performed in the Cloud.

Whilst the ability to run Matlab® code in the Cloud is one of the primary benefits of 
ThingSpeak™, the platform also provides supported integration and code libraries for 
Arduino-based devices. Therefore, to test the potential of using the platform as a way of 
augmenting wearable sensor data with environmental data, we used a low-cost MEMS-
based light-intensity sensor (BH1750) to collect and transmit data to ThingSpeak™ every 
5 min using a Heltec ESP32 Wi-Fi 32 development board (Fig. 2). The frequency of data 
transmission was set to match a reference device, the HOBO MX1101 light-intensity 
data logger, which was simultaneously logging data on local storage to validate data from 
the BH1750. Data were captured from both devices consecutively for 5 days.

Findings

The official Arduino support from ThingSpeak™ made connecting the BH1750 to the 
cloud a seamless process. Data were transmitted directly from the Heltec development 
board which was connected to the internet via Wi-Fi. Each time data were sent to Thing-
Speak™, live graphs were updated allowing data from the IoT device to be quickly visu-
alised. During data collection, it was also feasible to download ad hoc as a CSV file and 
analysed directly in the Cloud. Data transmission frequency meant there was no need to 
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consider any rate limits imposed by ThingSpeak™ and the ESP32 was more than capable 
of transmitting the data at such a low frequency.

Regarding the data validation, the BH1750 was found to be highly correlative to the 
HOBO MX1101 sensor, with a Pearson correlation of 0.799. Moreover, Fig. 3 shows that 
whilst the accuracy of the BH1750 is slightly lower than the MX1101, the BH1750 is 
more responsive to changes in light intensity. The results of this experiment highlight 
the potential low-cost MEMS light sensors have in measuring ambient light intensity. 
They also highlight the potential of cloud platforms such as ThingSpeak™ for remote 
monitoring of an individual’s environment, given the longitudinal deployment of light-
intensity sensors could be used to augment data from MEMS-based inertial wearables.

Gait: high‑frequency data

Individualised gait data were successful gathered and download via the usual desktop 
approach. The algorithm successfully segmented and identified gait events (Fig. 4, each 

Fig. 2 MX1101 light-intensity data logger and BH1750 ambient light sensor connected to ESP32 
development board

Fig. 3 Data captured from HOBO MX1101 and BH1750
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bout was examined for initial and final contact times) and generated spatial and tem-
poral outcomes (Table 4), presented previously [11, 81, 91]. In contrast, we found that 
while ThingSpeak™ could collect, store, visualise and analyse data from low-frequency 
environmental sensors, its ability to be used for existing gait assessment approaches 
within the IoT highlighted some major limitations. Although the rate limits imposed 
allow up to 14,400 readings to be sent every 15 s, it would appear that the platform is 
capable of processing high-frequency data akin to similar approaches via a desktop. 
However, during a bulk update, ThingSpeak™ checks no duplicate rows exist by compar-
ing the timestamp of each reading. While this validation process accepts milliseconds 
and microseconds resolution timestamps, ThingSpeak™ rounds these to the nearest sec-
ond, making it unsuitable for high-frequency data. Given the 1 Hz frequency limitation, 
to test how the Cloud-based Matlab® Analysis compared with desktop approach, we 
circumvented the timestamp checks by changing timestamps to epochs in (seconds). 
This allowed high-frequency gait data upload for analysis.

Gait: analysis via IoT

Reading data via a ThingSpeak™ channel instead of from a CSV file stored on a desk-
top uncovered further limitations. First, ThingSpeak™ limits readable data to 8000 rows, 
which meant that analysis had to be batched into 80 s sample windows. Once complete, 
a further error was encountered as the code utilised (e.g. filtering) functions from Mat-
lab® toolboxes that were not present in ThingSpeak™. Despite the removal of filtering 
processes, further errors were encountered, which highlighted fundamental differences 
between the two computation engines. While attempts were made to evaluate the IoT 
approach to gait assessment, in its current state, ThingSpeak™ is currently unsuitable for 
collecting high-frequency biomedical research data.

Fig. 4 Free-living tri-axial accelerometer data (AX3). The vertical green and red indicate possible start/stop 
gait bouts

Table 4 Individualised gait outcomes from all free‑living data

Gait characteristics Mean values 
across many 
bouts (s)

Step time 0.541

Stance time 0.711

Swing time 0.489

Step length 0.689

Step velocity 1.276
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Discussion
This paper presented a narrative review and survey of current state-of-the-art for acces-
sible and low-cost IoT sensor technology. In doing so, we presented pragmatic insights 
of current technologies and the technical specifications that could present opportunities 
or limitations to biomedical engineers. One of the key benefits to these technologies is 
their low cost, meaning it is feasible to create scalable sensor fusion devices that incor-
porate a range of sensors for monitoring patients. Moreover, such sensor fusion devices 
could enable biomedical engineers to augment wearable biomedical sensing devices with 
environmental sensors to provide more context to e.g. gait outcomes, which would help 
them move their research beyond the laboratory and into free-living conditions.

IoT hardware

Advancements in MEMS technologies allow a range of sensing capabilities that can aid 
biomedical engineers. However, many of these devices deal with high-frequency ana-
logue signals, which present a new set of challenges, which biomedical engineers must 
consider when specifying both the sensors and the processing units that will collect 
data from the sensor. For many healthcare applications, such as ECGs and electroen-
cephalogram (EEGs), high-frequency sampling is a requirement [94]. For this reason, 
it may be necessary to exploit the technological capabilities of ASICs or FPGAs, which 
can capture multiple high-frequency analogue signals simultaneously. However, open-
source microcontrollers such as Arduino have driven the industry to develop boards that 
are demonstrably capable within this field. Whilst microcontrollers were traditionally 
limited by being unable to execute tasks concurrently, multi-core microcontrollers are 
now becoming more prevalent. Moreover, whilst MCUs cannot process analogue sig-
nals directly, due to the limitations of the internal CPU, this paper has demonstrated 
how advancements in ADC/DAC technologies are enabling MCUs to perform continu-
ally higher resolution conversions of analogue signals at high frequencies. Yet, for these 
devices to be considered IoT devices, there is a need to connect these devices to the 
internet. Networked MCU development boards are becoming more prevalent, boasting 
a range of wireless connection options that enable these devices to not only collect and 
process sensor data, but also transmit these data to the cloud IoT platforms.

Cloud computing

From the three major platforms, AWS was found to be the cheapest platform overall, 
especially when using many devices. Contrastingly, GCP was found to be significantly 
more expensive. Nevertheless, the unique pricing model adopted by Google, means 
that the platform is better suited for transmitting large amounts of data infrequently, as 
opposed to Azure and AWS, which favour regular small amounts. Whilst it would not be 
possible to evaluate all of the cloud platforms here, we identified ThingSpeak™, an open-
source Cloud IoT platform built on Matlab®. It could be reasoned that ThingSpeak™ 
may be a logical next step for biomedical engineers who are well versed in Matlab® 
and wishing to explore Cloud IoT platforms. However, it is important for biomedical 
engineers to perform more rigorous bench testing of emergent technologies to ensure 
they are fit-for-purpose. For this reason, we conducted an experimental case study, to 
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explore the suitability of MEMS technologies, MCUs and the ThingSpeak™ platform, 
to ensure they met our expectations. We found that low-cost infrequent data collection 
is feasible using the ThingSpeak™, which make the platform suitable for environmental 
data collection. Currently, there are limitations that make the platform unsuitable for 
physiological monitoring, namely rate limiting that curtails data logging to 1 Hz which is 
unsuitable for e.g. spatio-temporal gait analysis. Given the current limitations of Thing-
Speak™, biomedical engineers invested in Matlab® will likely need to explore sending 
data from IoT sensors to a cloud storage platform with connections to Matlab® soft-
ware on a desktop. For those not invested in Matlab®, it seems more appropriate to 
explore Python for analysis, given that it is comparable to Matlab® and available on all 
three major Cloud IoT platforms.

Experimental work

We focused the experiment on gait analysis and the augmentation of environmental 
data, due to emergence of the former as a pragmatic patient monitoring outcome. Our 
evaluations found that current limitations with the ThingSpeak™ platform make the 
platform suitable for biomedical researchers, due to the inability to process high-fre-
quency data. Moreover, whilst the platform claims to run Matlab® code in the Cloud, 
the two computation engines result in differences in how the code runs, making it unus-
able for complex analyses. This is exacerbated by the fact that ThingSpeak™ has a limited 
toolbox in comparison to desktop-based Matlab®.

Our experiment did not focus on one of the fundamental issues of the current state-
of-the-art in gait monitoring, which is the need to wait until the end of the sampling 
period before collecting data. However, this process could be streamlined by utilising 
smartphone interactions with Cloud computing that could facilitate optimal remote gait 
data capture. Biomedical engineers could then use Matlab® to collect data from the 
Cloud and access the data published by the mobile device. However, such experimenta-
tion would be beyond the scope of the experimental work presented here.

Whilst ThingSpeak™ was identified as currently being unsuitable for gait assessment, 
it could be a useful and inexpensive way for biomedical engineers to augment environ-
mental data with healthcare data to provide more context during habitual assessment. 
Our experiment highlighted that low-cost MEMS technology can provide valid data 
which can be suitably collected, analysed and visualised via ThingSpeak™.

Future research

The technologies explored here could be used to improve the current workflows within 
gait analysis. If low-cost, open-source devices like the AX3 could be controlled by a 
networked device, such as an ESP32, biomedical engineers could send a message to the 
device and request a snapshot of data at a given time, whilst the device simultaneously 
collects and stores the longitudinal data locally. Since these sensors are inexpensive, it 
would be possible to create a sensor fusion device that incorporates accelerometers (and 
gyroscopes) with an e.g. Global Positioning System (GPS) to provide location and eleva-
tion data when patients leave their homes. Moreover, these devices could communicate 
with smart home devices, such as smart lights, cameras, or environmental sensors, to 
augment and provide context to free-living gait assessment.
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Conclusion
Given the pervasiveness of IoT technologies, healthcare will become more reliant on 
multi-disciplinary research teams to break-ground with these disruptive technologies. 
For this reason, it is important that biomedical engineers become familiarised with the 
core concepts of IoT technologies so that they can be better informed of the technologi-
cal capabilities and the challenges these technologies present. In doing so, biomedical 
engineers will be better positioned to not only lead investigations, but also monitor the 
progress throughout.
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