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Background
Atrial fibrillation (AF) is the most common sustained arrhythmia, which is characterized 
by an irregular sequence of beat intervals with loss of physiological pacemaker function 
of the sinus node. AF is a major cause of ischemic stroke due to the intracardiac throm-
bus formation through blood stagnation in the atrium without effective contraction [1]. 
AF often causes embolization in the main trunk of the cerebral arteries, leading to large 
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areas of infarction with generally poor prognosis [2]. Patients with AF can prevent seri-
ous stroke by taking oral anticoagulants suppressing thrombus formation [3]. Thus, early 
detection of AF could be highly beneficial for improving the prognosis. AF is classified 
into continuous AF (CAF) that appears persistently or permanently, and paroxysmal AF 
(PAF) that appears transiently [4]. Although the anticoagulant therapy is required for 
both CAF and PAF [3], PAF is currently under-diagnosed since it can be asymptomatic. 
Long-term ECG monitoring is used to diagnose PAF and, theoretically, the longer the 
monitoring, the higher the probability of detecting PAF and the accuracy to estimate 
stroke risk [5]. Therefore, it is desirable to develop an automatic AF detection system 
based on signals obtained from wearable devices that can be used in daily life.

Several automatic AF detection algorithms have been reported, and they are mostly 
based on features extracted from the R–R interval time-series [6–12]. Such algorithms 
are more robust to ambulatory noise than p-wave-based algorithms [13] and they may 
also be applicable to pulse interval time-series obtained from the widespread wearable 
pulse wave sensors. As a method to distinguish AF from other non-AF rhythms with 
heartbeat interval data, Lorenz plot (LP) imaging [14] has been proposed [15–18]. LP 
images are generated on the X–Y plane by plotting all the heartbeats in the observation 
segment window with the preceding interval as the x value and the subsequent interval 
as the y value [15, 17]. In sinus rhythm, since the difference between adjacent heartbeat 
intervals is small, LP shows a rod-shaped to narrow fan-shaped morphology on the diag-
onal line (Fig. 1). In AF, on the other hand, the plot shows a broad fan shape morphology, 
as the heartbeat intervals fluctuate semi-randomly without depending on the preced-
ing interval. However, the LP-based AF detection has at least two challenges. The first 
is the difficulty of distinguishing AF from other arrhythmias that may exhibit irregular 
heartbeat intervals and when AF shows no or less irregular heartbeats such as in cases 
of the implanted pacemaker. In the clinical setting, these may not be a critical draw-
back, as detailed ECG waveform analysis is required for a definite diagnosis of arrhyth-
mias detected by beat interval methods and of pacemaker functions. The second is the 
PAF detection temporal resolution, which is determined by the segment window length. 
Temporal resolution is important because it can affect the detection performance of 
short PAF and the estimation accuracy of AF burden [5]. The longer the data segment 
for LP, the more accurate the distinction between AF and non-AF (Fig. 2), but the lower 
the temporal resolution. Since no study to date has reported the optimal segment win-
dow length of LP for PAF detection, we examined the effect of segment window length 
of LP image on the PAF detection performance.

Recently, machine learning has become popular in medical fields [19]. For LP-based 
AF detection, we used a convolutional neural network (CNN) suitable for image discrim-
ination. For different segment window lengths between 10 and 500 beats, we generated a 
CNN model to discriminate the LP images of AF from those of non-AF. We dared to use 
asymmetric datasets for training and test data; the training data were consisting of CAF 
and pure sinus rhythm (SR) with minimal premature beats, while the test data were con-
sisting of PAF and non-AF including premature beats. If PAF data were used for training, 
LP images with a mix of AF and non-AF beats (mixed LP images) could be produced. 
Then we need to annotate such mixed LP images using certain operational criteria (for 
example, LP including > 50% of AF beats is annotated as AF, the other is annotated as 
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non-AF). The CNN models generated by this method, however, may only fit the used 
operational criteria, and so may the obtained optimal segment window length. To avoid 
this, we used only CAF and pure SR for the training data so that only pure LP images 
consisting of pure AF and those of pure SR are produced. Then, we observed the behav-
ior of the discriminant models thus generated against the test data composed of mixed 
LP images containing AF beats at various ratios between 0 and 100%. In this study, we 
used the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) database 
of 24-h ambulatory ECG [20, 21] for the training and test data and used the PhysioNet 
database [22] for another test data for comparisons with earlier studies.

Results
Characteristics of data

The characteristics of the subjects contributed to the training and test data in the ALL-
STAR database are shown in Table  1. CAF cases used for the training data was older 
and had more frequent ventricular premature beats than PAF cases used for the test 
data. In PAF cases, the median frequency (IQR) of PAF episode was 4 (1-14)/24  h 
(range, 1-959/24  h), the median length (IOR) of individual PAF episode was 7 (4–23) 

Fig. 1  Trend graph of R–R interval time series showing a transition from non-atrial fibrillation (non-AF) to 
atrial fibrillation (AF) in a patient with paroxysmal AF (a). b, c show Lorenz plots (LP) during non-AF and AF, 
respectively
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beat (range, 1–115,789 beats), and the median (IQR) duration (burden) of PAF was 139.9 
(10.3–579.3) min/24 h.

Table 2 shows the number of LP images in the training and test data from the ALL-
STAR database. Of the LP images in the training data, 51% and 49% of images were 
annotated as non-AF and AF, respectively. The LP images in the test data were annotated 
by the strict criteria (annotating LP images as AF if they contained at least one AF beat, 

Fig. 2  LPs of AF (a, b) and non-AF (c, d) segments with window lengths of 50 (a, c) and 500 (b, d) beats

Table 1  Characteristics of  subjects selected for  the  training and  test data 
from the ALLSTAR database

Data are frequency (%), median (IQR), or mean ± SD

AF atrial fibrillation, CAF chronic AF, PAF paroxysmal AF, RRI R–R interval, SR sinus rhythm, APC atrial premature contraction, 
VPC ventricular premature contraction

Training data Test data

Non-AF CAF Non-AF PAF

n 58 52 52 53

Male, % 36.2 61.5 42.3 62.3

Age, years 61.4 ± 12.5 78.0 ± 8.4 65.7 ± 11.8 68.2 ± 9.5

PAF frequency/24 h – – – 4 (1–14)

Individual PAF length, beat – – – 7 (4–23)

Total PAF duration, min/24 h – – 0 139.9 (10.3–579.3)

Total PAF beat/24 h – – 0 12,666 (1263–51,983)

APC/24 h 31 (10–61) – 54 (11–150) 316 (88–1849)

VPC/24 h 5 (1–39) 48 (9–196) 10 (1–24) 6 (1–28)

24-h mean RRI, ms 844 ± 105 789 ± 141 873 ± 135 801 ± 119

24-h SD of RRI, ms 138 ± 36 217 ± 57 134 ± 43 185 ± 57
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and non-AF otherwise) and 84–86% of them were annotated as non-AF, while the rest 
were annotated as AF. The proportion of mixed LP images increased with the segment 
window length.

Of the LP images obtained from the PhysioNet database, 19% of images were anno-
tated as AF by the non-strict criteria (annotating LP images as AF if they contained AF 
beats > 1/2 of the total beats in the segment, and non-AF otherwise).

Machine learning with training data

The machine learning of the training data took the maximum epoch of 204 on the train-
ing of the 500-beat LP images and the minimum epoch of 96 on the 50-beat LP images. 
The shorter the segment window length, the longer the training time; it took 13,342 s 
(3.71 h) for LP images with a length of 10 beats. The cross-validation scores were 0.995 
and 0.999 for 10 and 20-beat LP images, respectively, and > 0.999 for 50 to 500-beat 
images. The confusion matrix in the training data for each segment window length is 
shown in Table 3.

Classification performance of test data from ALLSTAR database

Table  3 also shows the confusion matrix of the test data for each segment window 
length. The AUC was high for all segment window lengths and the ROC curves were 
mostly overlapped. Figure  3a, b shows the relationships between classification perfor-
mance metrics and segment window length. A maximum accuracy of 0.988 and a mini-
mum accuracy of 0.970 were obtained at 100 and 10 beats, respectively. Sensitivity, 
negative-predictive value, and AUC of ROC curve declined monotonously with increas-
ing segment window length, whereas specificity, positive-predictive value, and accuracy 
showed a convex parabolic relationship with log segment window length, with a peak 
at a segment window length of 100 beats (common log value of 2.0). At this point, sen-
sitivity and specificity were 0.968 and 0.991, respectively. Positive likelihood ratio also 
showed a convex parabolic relationship with log segment window length with a peak 
value of 111 at a segment window length of 100 beats (Fig. 3c), whereas negative likeli-
hood ratio increased monotonously with increasing segment window length (Fig. 3d).  It 
showed 0.032 at a segment window length of 100 beats.

Table 2  Number LP images of training and test data from ALLSTAR database

LP Lorenz plot
a  LP images were annotated with the strict criteria (LP images were annotated as AF if they contained at least one AF beat, 
and non-AF otherwise)
b  LP images consisting of only AF beats (including premature beats)
c  LP images composed of both SR and AF beats (including premature beats)

Segment window 
length, beat

LP images of training data, n (%) LP images of test data, n (%)a

Non-AF AF Non-AF AF (pure)b AF (mixed)c

10 590,602 (50.7) 574,014 (49.3) 934,803 (85.5) 156,295 (14.3) 2543 (0.2)

20 295,284 (50.7) 286,996 (49.3) 467,009 (85.4) 77,426 (14.2) 2365 (0.4)

50 118,099 (50.7) 114,781 (49.3) 186,432 (85.2) 30,265 (13.8) 2000 (0.9)

100 59,035 (50.7) 57,373 (49.3) 92,967 (85.0) 14,684 (13.4) 1677 (1.5)

200 29,506 (50.7) 28,670 (49.3) 46,268 (84.7) 7033 (12.9) 1331 (2.4)

500 11,783 (50.7) 11,453 (49.3) 18,314 (83.9) 2633 (12.1) 877 (4.0)
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Table 3  Confusion matrix for each segment window length of the test data from ALLSTAR 
database

AF atrial fibrillation, LP Lorenz plot
a  LP images obtained from pure (> 99%) SR cases
b  LP images obtained from pure (> 99%) CAF cases
c  Annotations of LP images with the strict criteria

Segment window 
length, beats

Classification Ground truth

Training data Test data

Non-AFa AFb Accuracy Non-AFc AFc Accuracy

10 Non-AF 588,036 3341 0.99493 903,219 930 0.970

AF 2566 570,673 31,584 158,073

20 Non-AF 294,986 329 0.99892 458,259 692 0.983

AF 298 286,667 8750 79,173

50 Non-AF 118,089 11 0.99991 184,063 671 0.986

AF 10 114,770 2369 31,620

100 Non-AF 59,032 2 0.99,996 92,160 527 0.988

AF 3 57,371 807 15,838

200 Non-AF 29,505 0 0.99998 45,759 423 0.983

AF 1 28,670 509 7944

500 Non-AF 11,783 0 1.00000 18,006 281 0.973

AF 0 11,453 308 3230

Fig. 3  Relationships between classification performance metrics and LP segment window length in the 
test data from the ALLSTAR database. The LP images were annotated with the strict criteria. Panels a and b 
show sensitivity, specificity, positive and negative predictive values (PPV and NPV), accuracy, and area under 
the curve (AUC). Panels c and d show positive and negative likely hood ratios, respectively. The x-axis in b–d 
is the common log values of segment window length in beat. Dotted lines represent regression lines with 
parabolic functions



Page 7 of 18Kisohara et al. BioMed Eng OnLine           (2020) 19:49 	

To examine the behavior of the generated CNN models against mixed LP images 
containing AF beats in varying proportions, the number (and proportion) of AF beats 
required to detect AF was analyzed in the test data from the ALLSTAR database 
(Table 4). The required proportions of AF beats were lower for segment window lengths 
of 10 and 500 beats than for 20–100 beats.

We also examined the model behavior against LP image containing premature beats. 
Table 5 shows the impact of the proportion of premature beat in LP images on the clas-
sification accuracy in the test data. For all levels of premature beat proportion, the accu-
racy was highest when the segment window length was 100 beats.

Additionally, we examined if the model shows different behavior between CAF and 
PAF when LP images containing solely AF beats. We produced LP from consecutive AF 
beats during CAF in the training data and during PAF episodes in the test data. The sen-
sitivity for detecting AF did not differ between CAF and PAF, showing almost 100% sen-
sitivities for both at any segment window lengths (Table 6).

Detailed search for optimal segment window length near 100 beats

Since the overall AF detection performance of LP image CNN model peaked at a seg-
ment window length of 100 beats, we searched for the peak performance at finer steps 
in length. We searched between 50 and 130 beats in 10-beat steps, especially between 
80 and 95 beats in 1-beat steps. As shown in Fig.  4, the positive-predictive value and 

Table 4  Number of AF beats in LP required to detect AF in the test data from the ALLSTAR 
database

Probability of detecting AF images among all AF images annotated with the strict criteria

Segment window length, beat Number of AF beats (%) in LP required to detect AF 
with given probabilities (P)

P = 0.50* P = 0.75* P = 0.95*

10 2 (20%) 3 (30%) 6 (60%)

20 7 (35%) 11 (55%) 14 (70%)

50 27 (54%) 31 (62%) 39 (79%)

100 46 (46%) 54 (54%) 65 (65%)

200 68 (34%) 95 (48%) 133 (67%)

500 90 (18%) 134 (27%) 165 (33%)

Table 5  Effects of  premature beats on  classification accuracy between  AF and  non-AF LP 
images

Data are classification accuracy between AF and non-AF images annotated with the strict criteria

Segment 
window length, 
beat

Ratio of premature beats in LP image

0% 0–5% 5–10% 10–15% 15–20% 20–25% 25–30% ≥ 30%

10 0.988 – 0.869 – 0.674 – 0.495 0.388

20 0.994 0.955 0.926 0.886 0.809 0.725 0.704 0.694

50 0.996 0.972 0.936 0.900 0.861 0.791 0.748 0.822

100 0.997 0.975 0.936 0.926 0.896 0.840 0.809 0.836

200 0.997 0.974 0.919 0.919 0.806 0.688 0.773 0.768

500 0.997 0.969 0.912 0.819 0.668 0.485 0.648 0.703
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positive likelihood ratio showed variations near the peak. Regression analyses using a 
parabolic function estimated that the peak was at a segment window length of 85 beats.

Estimation of AF burden

Figure  5 shows the relationships between AF burden and the ratio of LP detected as 
AF in 53 cases of the test data from the ALLSTAR database. The correlation coefficient 
reached a peak value of 0.99 when the segment window length was 85 beats. The agree-
ment assessed by Bland and Altman method showed a mean difference of 0.01 and 
upper and lower limits of agreement of 0.03 and -0.02, respectively.

Classification performance of test data from PhysioNet database

Table  7 shows the classification performance of the generated CNN models for LP 
images produced from the PhysioNet database. In these analyses, LP images was anno-
tated by the non-strict criteria. Consistent with the results for the test data from the 
ALLSTAR database, a peak positive likelihood ratio was observed at the segment win-
dow length of 85 beats, where the classification accuracy was 0.979 and the AUC of ROC 
curve was 0.987. Table 7 also shows the performance of AF detection reported by earlier 
studies that used the PhysioNet database [9, 11, 13]. The classification performance of 
the CNN models developed in the present study was comparable to or slightly better 
than those of the earlier studies.

Table 6  AF detection sensitivity for  LP images consisting of > 99% AF beats during  CAF 
and PAF episodes

Segment window length, beats CAF PAF episode

10 0.994 0.996

20 0.999 0.998

50 > 0.999 0.999

100 > 0.999 > 0.999

200 > 0.999 0.999

500 > 0.999 0.999

Fig. 4  Relationships between classification performance metrics and LP segment window length with fine 
steps in the test data from the ALLSTAR database. The LP images were annotated with the strict criteria. NPV 
negative-predictive value, PPV positive-predictive value
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Discussion
In this study, we examined the effect of segment window length on the performance 
of heartbeat interval LP-based AF detection. We used machine learning with CNN for 
generating discriminant models with varying segment window length. In general, the 
differences in LP images between non-AF and AF become clearer as the segment win-
dow length becomes longer (Fig. 2). Therefore, we originally intended to search for the 

Fig. 5  Relationship between AF burden and the ratio of detected AF LP over total LP. The number of 
beats written as inset of each panel represents the segment window length for LP. In each panel, each dot 
represents individual subject and a straight line shows the linear regression line. All correlation coefficients (r) 
are statistically significant

Table 7  Comparisons of AF detection performance in the PhysioNet database

AUC​ area under the curve, CoSen coefficient of sample entropy, NLR negative likelihood ratio, NPV negative-predictive value, 
PLR positive likelihood ratio, PPV positive-predictive value, SVM support vector machine
a  AF images were annotated with the non-strict criteria

AF detection 
method

Segment 
window length, 
beats

Classification performance

Sensitivity Specificity PPV NPV Accuracy PLR NLR AUC​

LP image CNN 
(this study)a

10 0.975 0.928 0.741 0.994 0.936 13.55 0.027 0.987

20 0.980 0.958 0.830 0.996 0.962 23.24 0.021 0.989

50 0.975 0.971 0.877 0.995 0.972 33.71 0.025 0.983

85 0.984 0.978 0.905 0.997 0.979 45.49 0.016 0.987

100 0.984 0.978 0.905 0.997 0.979 45.19 0.016 0.986

200 0.992 0.976 0.897 0.998 0.979 41.08 0.008 0.982

500 0.998 0.963 0.85 1.000 0.969 26.94 0.002 0.980

RdR map [9] 32 0.944 0.926 – – – – – 0.978

64 0.958 0.943 – – – – – 0.986

128 0.959 0.954 – – – – – 0.989

CoSen [13] 41 – – – – 0.911 – – –

Poincare plot [13] 82 – – – – 0.912 – – –

SVM [13] 65 – – – – 0.909 – – –

Normalized fuzzy 
entropy [11]

12 0.956 0.925 0.812 0.971 0.890 – – 0.927

30 0.967 0.952 0.852 0.973 0.914 – – 0.953

60 0.985 0.968 0.878 0.987 0.935 – – 0.968
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minimum segment window length required for properly detecting AF. In the training 
data consisting of LP images consisting either of pure AF or pure SR, the longer the 
segment window length, the higher the accuracy of AF classification by the CNN mod-
els, as expected (Table 3). In the test data consisting of PAF and non-AF, however, the 
positive likelihood ratio of AF detection showed a convex curve with a peak at around 
100 beats. This indicates that, in PAF detection using LP images, if the segment win-
dow length of the heartbeat interval is too long, the classification performance rather 
declines. As the result of precise analysis, the positive likelihood ratio for detecting PAF 
with 32 × 32-pixel LP image was estimated to peak at a segment window length of 85 
beats.

Although the LP of R–R intervals has long been recognized as a useful tool to discrim-
inate AF from other cardiac rhythms [15–18], the present study is the first to report the 
effects of segment window length on the performance of LP-based AF detection. Anan 
et  al. [15] used LP with R–R intervals of 60-min segments to estimate the functional 
refractory period of atrioventricular conduction during AF. In a study of the circadian 
variation of atrioventricular conduction properties during AF, Hayano et  al. [11] used 
LP with 512 beats. In a previous study, we selected LP images with a segment window 
length of 600 beats for AF detection by CNN [23]. None of these studies, however, have 
reported the rationale for choosing those segment window lengths for LP. In the pre-
sent study, we searched for optimal segment length for LP-based PAF detection between 
10 and 500 beats. The relationship between PAF detection performance and segment 
window length varied between performance metrics, but clinically useful metrics (posi-
tive likelihood ratio and estimated AF burden) were found to peak at a segment window 
length of 85 beats.

In this study, we used asymmetric datasets for training and test data for the machine 
learning. The training data consisted of pure LP images containing only AF beats or 
only SR beats containing few premature beats, while the test data consisted of mixed 
LP images containing various percentages of AF beats from 0 to 100% and also contain-
ing premature beats, simulating general clinical situations. This method allowed us to 
avoid annotating mixed LP images as AF or non-AF by using operational criteria, when 
generating the training data. Such operational criteria if used may result in generating 
discriminant models that fit the criteria, and so may the observed optimal segment win-
dow length. Instead, we observed how the discriminant models generated using pure LP 
images behave on the mixed LP images. First, we observed that in order for a mixed LP 
image to be detected as an AF image with 95% probability, it must contain 33 to 79% 
of AF beats and that the required AF beat ratio was lower for LP images with short (10 
beats) and long (500 beats) segment window lengths than for those with intermediate 
(20 to 200 beats) segment lengths (Table 4). This seems consistent with lower positive-
predictive values for the short and long segment window length, suggesting an exces-
sive (or false positive) sensitivity to LP images containing few AF beat (Fig. 3). Second, 
the observations of the behavior against LP images containing premature beats revealed 
a progressive decline in AF detection accuracy with increasing premature beat propor-
tion in LP images (Table 5). For any premature beat proportion, however, the accuracy 
was highest when the segment window length was 100 beats, suggesting the highest 
robustness against premature beats is obtained at this segment window length. Finally, 
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we observed that the CNN models behaved similarly between CAF and PAF and almost 
perfectly detected AF when LP images contain only AF beats (Table 6), suggesting the 
validity of using CAF data to generate CNN models to detect continuous AF beats dur-
ing PAF episodes.

In this study, we employed the likelihood ratio to determine the optimal segment 
window length for LP AF detection. The reason for using the likelihood ratio was that 
while other measures of performance, such as sensitivity, specificity, predictive values, 
and accuracy, are influenced by the prior probability of events, the likelihood ratio is 
known to be robust to the probability [24]. In the present study, the LP images were 
classified as AF if the segments included PAF even one beat. Therefore, the probability 
of an LP image being annotated as AF increased with the length of segment. Actually, 
the ratio of LP images classified as AF in the test data was higher for 500-beat LP images 
(16.1%) than 10-beat LP images (14.5%) (Table  2). With the coarse analysis, we found 
that the optimal segment window length of LP images for detecting PAF is around 100 
beats. Further analysis around 100 beats with fine steps, however, revealed that the posi-
tive likelihood ratio showed a variation near the peak (Fig. 4). Since the observed per-
formance metric was considered as a product from the probabilistic sample obtained 
by random segmentation of the RR intervals with the respective segment lengths, we 
thought that the position of the true peak should be estimated from the distribution of 
the data. We therefore performed a regression analysis of the relationships and the peak 
was estimated to exist at the segment window length of 85 beats.

Several mechanisms may be considered for the finding of this study. The mechanism 
by which the lower limit of segment window length exists may be straightforward. 
Assuming that AF is a semi-random sequence of R–R intervals, a certain number of 
points are required stochastically for the LP to form a characteristic shape to AF. Actu-
ally, the confusion matrices for the training data showed that longer segment window 
lengths improved classification performance (Table  3). In contrast, the mechanisms 
by which the upper limit of segment window length exists may be more complicated. 
First, it is obvious that this was caused by the fact that the test data consisted of mixed 
LP images containing AF, sinus rhythm, and premature beats in a varying proportion. 
Actually, when all LP images of AF consist only of AF beats, we observed no substantial 
difference in the detection sensitivity of the LP image between CAF and PAF (Table 6). 
We also observed that the AF detection accuracy declined with increasing proportion of 
premature beats in LP images (Table 5). This relationship was observed for all segment 
window length, but the accuracy also declined with increasing segment window length 
above 100 beats for any premature beat proportions > 0%. Second, although the propor-
tion of AF beats that need for LP images to be detected as AF was lower for 500-beat LP 
images than 100-beat images (Table 4), the absolute number of AF beats increased with 
segment window length (for example, to be detected with 95% provability, 39 and 165 
beats for 100- and 500-beat LP image, respectively). Since the median length (IOR) of 
individual PAF episode was 7 (4–23) beat in the test data, the proportion of mixed LP 
images consisted of both SR and AF beats increased with the segment window length 
(Table  2), which may have led a degradation of the AF detection performance when 
the segment window length exceeded 100 beats. From the above, the existence of the 
optimal point may be explained as a result of a trade-off between two different segment 
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window length effects that change in the opposite direction each other for the classifica-
tion performance.

The purpose of the present study was to determine the optimal segment window 
length for PAF detection by heartbeat interval LP. To avoid the operational definition 
for annotating mixed LP images containing both SR and AF beats from affecting the 
observed optimal segment length, we dared to use asymmetric datasets for the training 
and test data. Nevertheless, the generated CNN model showed an excellent classification 
performance between non-AF and AF segments. The comparison of the performance 
using common dataset from the PhysioNet database showed that the classification per-
formance of our models was comparable to or slightly better than those reported for the 
sophisticated metrics derived from the feature of beat interval time series [9, 11, 13]. 
Additionally, the optimal segment window length was 85 beats even for the PhysioNet 
database.

Clinical implications

We observed that the CNN model of 100-beat LP can detect PAF with 95% probabil-
ity when 65% of the segment window was occupied by AF beats. This suggests that the 
onset of PAF episodes can be detected by this model with a delay of 65 beats (⁓ 40  s 
when the mean heartbeat interval during AF is assumed as 600 ms). Similarly, the end 
of PAF episodes can be detected with a delay of 35 beats, thus both delays are expected 
to be offset, resulting in a more accurate measurement of the estimated PAF duration. 
Actually, we observed that the ratio of LP images of AF agreed with the AF burden of the 
PAF cases in the test data, with upper and lower limits of agreement of − 0.02 and 0.03, 
respectively. These support the potential clinical usefulness of this model not only for 
detecting PAF, but also for estimating the AF burden.

Limitations

This study has the following limitations. First, although the CAF segments in the training 
data and the PAF segments included transient atrial flutter or atrial flutter–fibrillation, 
we included patients with pure atrial flutter in neither training nor test data. Conse-
quently, the results of the present study cannot be extended to the classification between 
SR and atrial flutter. Similarly, we excluded patients with implanted pacemaker from the 
study subjects. Our findings are not applicable to such cases. Second, we used asym-
metric datasets for the training and test data, i.e., CAF for the training data and PAF for 
the test data. Thus, swapping the training and test data may give different results, but we 
did not examine it due to the reason we discussed above. It may be expected, however, 
that the inclusion of mixed LP images in the training data would lead an improvement of 
classification performance for the mixed LP images defined by the same annotation cri-
teria. Third, we used fivefold cross-validation to generate discriminant models by CNN. 
If the goal were to pursue the best discriminatory power, it might be worth looking into 
other fold numbers. Finally, the accuracy of the measurement of heartbeat interval may 
influence the performance of AF detection by LP images [13]. In this study, however, we 
used LP images with a resolution of 32 × 32 pixels, resulting in a pixel size of 80 × 80 ms. 
Thus, the beat interval measurement accuracy had a tolerance of 10 times the ECG sam-
pling interval (8 ms). Although we also performed AF detection with 64 × 64-pixel LP 
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images, the optimal segment window length was the same (data not shown), but the 
tolerance of beat interval measurement was halved for that. Given the computational 
power of currently commercialized Holter ECG analyzers, increasing the resolution of 
LP images may not be worth the computation time and load.

Conclusions
Using the machine learning of CNN discriminant models, we examined the effect of seg-
ment window length on the performance of PAF detection based on heartbeat interval 
LP image. We found that the segment window length is an important determinant of 
the performance and that the optimal segment window length for detecting PAF with 
32 × 32-pixel LP image is 85 beats.

Methods
Data selections

Study data were obtained from the ALLSTAR database of 24-h ambulatory ECG [20, 
21] and the PhysioNet database [22]. All Holter ECG data in the ALLSTAR database 
were sampled with Holter ECG recorders (Cardy pico series, Suzuken Co., Ltd., Nagoya, 
Japan) at 125 Hz and 10 bit (0.02 mV/digit) and analyzed by Holter ECG scanners (Cardy 
Analyzer 05, Suzuken Co., Ltd, Nagoya, Japan). The reliability of the analyzer has been 
certified by the product conformance test (IEC60601-2-47, International Electrotechni-
cal Commission, Geneva, Switzerland) including assessment of QRS detection accuracy 
with the American Heart Association (AHA) and Massachusetts Institute of Technol-
ogy (MIT) ECG databases (the test results are not published to avoid business risks). 
The ALLSTAR database was used for extracting both the training and test data. The use 
of this database for this study has been approved by the Institutional Review Board of 
Nagoya City University Graduate School of Medical Sciences and Nagoya City Univer-
sity Hospital (No. 709). The PhysioNet database was used only for the test data for the 
comparisons with earlier studies [9, 11, 13].

Training data

As the sources of the training data, we extracted 24-h Holter ECG data in 58 subjects 
with persistent SR and 52 subjects with CAF from ALLSTAR database. The inclusion 
criterion for the SR data was a 24-h ECG consisting of SR beats > 99% of total beats with-
out PAF episodes or frequent premature beats in subjects > 40 years old. The inclusion 
criterion for the CAF data was 24-h ECG consisting of persistent AF > 99% of total beats 
in patients > 40 years old. The data from patients with pacemaker implant were excluded 
from both the SR and CAF data. The cardiac rhythms were diagnosed and confirmed 
independently by multiple laboratory technicians and cardiologists. The training data 
were used for the machine learning to develop CNN discriminant models.

Test data

As the sources of the test data, we extracted 24-h Holter ECG data of other 52 subjects 
with SR without PAF and of 53 subjects with PAF from ALLSTAR database, indepen-
dently of the training data. In this study, PAF was defined as an AF episode that started 
and/or ended within each 24-h dataset. The inclusion criterion for SR data was a 24-h 
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ECG consisting of persistent SR beats without PAF episodes in subjects > 40 years old. 
The inclusion criterion for PAF data was 24-h ECG including at least one PAF episode in 
patients > 40 years old. For both SR and PAF test data, subjects were selected regardless 
of the number of premature beats, but patients with pacemaker implant was excluded 
from both. The cardiac rhythms were diagnosed and confirmed independently by mul-
tiple ECG technicians and cardiologists. The onset and offset points of each episode of 
PAF were determined by agreement between the ECG technicians and confirmed by 
clinical laboratory technicians. The authors in this research were not involved in these 
ECG assessments. The test data were used for evaluating the performance of discrimi-
nant model obtained from the training data.

Additionally, we used MIT-BIH AF database [6], MIT-BIH Arrhythmia Database [25], 
and MIT-BIH normal sinus rhythm (NSR) database [22] in the PhysioNet database. 
These data were used as another test data to compare the performance of the discrimi-
nation models generated by CNN with the performance of other methods reported by 
earlier studies [9, 11, 13].

Lorenz plot image

We used 24-h time-series data of R–R interval and QRS wave annotations. For the ini-
tial coarse analysis, 24-h R–R interval data were split into consecutive non-overlapping 
segment windows with lengths of 10, 20, 50, 100, 200, and 500 beats for generating LP 
images. For the secondary detained analysis, the finer steps from 10 beats to one beat 
were used for the segment window lengths between 50 and 130 beats.

LP was generated for each segment window length by plotting all R–R intervals in 
the segment but the first one as the y values against preceding R–R intervals as the x 
values [15, 17]. The obtained LPs were converted into the monochrome images of a 
32 × 32-pixel resolution with 3-bit scale for brightness level, resulting in a temporary 
resolution of 80 ms and a dynamic range between 0 and 2560 ms for both the x and y 
values. When (x, y) values scaled out of the range, the data were plotted at the edge of 
the image. The number of plots in each pixel was counted and was used as the brightness 
level of the pixel. When the number of plots was > 7, the level was set at 7. Figure 6 shows 
the example of LP images.

Machine learning with training data

Since the training data were generated from either pure (> 99%) SR or pure (> 99%) CAF 
cases, all LP images produced for any segment window lengths were consisted of either 
pure non-AF beats or pure AF beats. Consequently, LP images were simply annotated as 
non-AF and AF images accordingly.

The machine learning was performed by a CNN using keras (version 2.2.4) open-
source python machine learning library, using the Microsoft Windows 10 operating 
system on a computer equipped with an 8-core Intel Xeon E3-1275 V3 processor with 
32-GB memory. The computer was also equipped with an NVIDIA RTX 2080 Ti graphic 
board with 27-GB memory.

The CNN consisted of an input layer, 1st convolution layer, 2nd convolution layer, 
1st max pooling layer, 3rd convolution layer, 2nd max pooling layer, 1st dropout 
layer, a flatten layer, 1st dense layer, 2nd dropout layer, and 2nd dense layer. In all 
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convolution layers, the kernel size was set at 3 × 3 and the numbers of output filter 
were set at 32, 64, and 128 in the first, second, and third convolution layers, respec-
tively. In all pooling layers, the height and width were set to be half each. The dropout 
rate was set at 0.25. In the 1st and 2nd dense layers, the numbers of unit were set at 
128 and 2, respectively. Rectified linear unit was used for the activation function of all 
convolution layers and 1st dense layer and softmax for the activation function of the 
2nd dense layer in order to classify LP images. Binary cross-entropy was used for loss 
function and stochastic gradient descent (SGD) for optimizer. The hyperparameters 
of SGD were as follows: the learning rate = 0.001, the learning rate decay = 0.000001, 
and the momentum accelerating SGD = 0.9.

We enrolled fivefold cross-validation for the CNN. Briefly, for each segment win-
dow length, the LP images of training data were divided randomly into five subsets. For 
each cross-validation, one subset out of five was selected in order and used as a valida-
tion subset, and the remaining 4 subsets were used as training subsets. Consequently, 
we obtained five datasets with different training subsets and validation subsets. We set 
the batch size to 32. Accuracy and loss were updated for each batch. The number of the 
maximum epochs was set at 50 times per training. If the validation loss did not improve 
during 10 epochs, training stopped early. As a result, we obtained five models for each 
segment window length. The validation accuracy and the validation loss of each dataset 
were updated for each epoch. We obtained the final validation accuracy and the final 
validation loss of each dataset in the last epoch. Classification accuracy was evaluated 
by a cross-validation score and the confusion matrices. For the cross-validation score, 
probabilities were calculated by applying each of the five discriminant models to each LP 
image in the corresponding data subset from which the model was derived. LP images 
were classified as AF when the probability was ≥ 0.5 and as non-AF when the value < 0.5. 
The cross-validation score was obtained as the average accuracy of the five models.

Fig. 6  Representative LP images with a 32 × 32-pixel resolution and a 3-bit brightness level for AF (a, b) and 
non-AF (c, d) segments with lengths of 50 (a, c) and 500 (b, d) beats. The brightness level reflects the number 
of points in each pixel
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Classification of test data

In contrast to the training data, the test data were generated from either non-AF 
or PAF cases regardless of the number of premature beats. Thus, the produced LP 
images could contain AF beats at various ratios between 0 and 100%. We annotated 
them with strict and non-strict criteria. In the strict criteria, LP images were anno-
tated as AF images if they contained AF beat even one beat and LP images were anno-
tated as non-AF images if they contained no AF beat at all. In the non-strict criteria, 
LP images were annotated as AF image if they contained AF beats > 1/2 of total beats 
in the segment, and non-AF images otherwise. The strict criteria were used for the 
test data from the ALLSTAR database to examine the optimal segment window length 
for PAF detection. The non-strict criteria were used for the test data from both ALL-
STAR and PhysioNet databases to compare the classification performance between 
the models developed in the present study and those reported by earlier studies [9, 
11, 13].

The confusion matrices for the test data were obtained as follows. For test data of 
each segment window length, five discriminant models were applied to all of each LP 
images in the test data and five probabilities were calculated. LP images were classi-
fied as AF when the average of the five probabilities was ≥ 0.5 and as non-AF when it 
was < 0.5. The classification results were summarized as a confusion matrix for each 
segment window length.

To examine if AF burden is estimated by LP-based AF detection, AF burden was 
calculated as the ratio of AF beats among the total recorded beats in each 24-h data-
set and compared with the ratio of AF LP images among the total LP images gener-
ated from each 24-h dataset for each segment window length.

Statistical analysis

The receiver operating characteristics curve and the area under the curve were cal-
culated for the classification performance in the test data. The sensitivity, specific-
ity, positive-predictive value, negative-predictive value, accuracy, and positive and 
negative likelihood ratios of classifications were calculated for each segment window 
length. The relationships between these performance metrics and segment window 
length were analyzed by regression curve fitting. The logarithmic transformation of 
axis was used as necessary to the better fitting of regression curves. Among these 
indices of classification performance, the optimal segment window length was deter-
mined based on the likelihood ratios that are known to provide a fair evaluation for 
classification performance independent of prior probability [24]. To examine if AF 
burden is estimated by LP-based AF detection, AF burden was calculated as the ratio 
of AF beats among the total recorded beats in each 24-h dataset and compared with 
the ratio of AF LP images among the total LP images generated from each 24-h data-
set for each segment window length. The agreement between the AF burden and the 
ratio of AF LP images was evaluated with the upper and lower limits of agreement of 
Bland and Altman method [26]. These analyses were performed with numpy (version 
1.15.4) and scikit-learn (version 0.20.2) open-source python machine learning library.
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