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Background
Health care is one of the largest components of the global economy. According to 
the World Bank, in 2014, health care expenditures accounted for 9.95% of the world’s 
total gross domestic product (GDP). Additionally, per capita health expenditures have 
increased during the last decade. In the United States, the Centers for Medicare & 
Medicaid Services (CMS) reported that in 2014, health care accounted for 17.5% of 
the national GDP [1]. This amount is expected to increase over the next several years. 
because of the expansion of insurance coverage under the Affordable Care Act. In 
addition, resources, in terms of expenditures, are disproportionately consumed by a 
relatively small proportion of the health care utilizing population [2]. As a result, this 
group of health care utilizers has been termed high-cost, high-need (HCHN) patients 
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due to its disproportionate spending concentration [3] and highly prevalent comor-
bid chronic condition profile [4, 5]. Stakeholders have argued the need for higher 
efficiency health care, especially for HCHN patients [4]. For example, managed care 
organizations and health plans (MCOs) have been deployed and funded under capita-
tion payment systems to incentivize health care providers to deliver more cost-effec-
tive services [6–8].

Information technology provides a new, promising way to approach a wide-range 
of health care problems, especially in the “Big Data” era [9]. Health care utilization 
routinely generates vast amounts of data from sources ranging from electronic medi-
cal records, insurance claims, vital signs, and patient-reported outcomes. Moreover, 
predicting health outcomes using data modeling approaches is an emerging field that 
can reveal important insights into factors associated with disproportionate spending 
patterns. Specifically, if we are able to forecast expenditures at the patient-level with 
good accuracy, we could improve targeted care by anticipating health care needs of 
HCHN patients. Moreover, predictive modeling can improve our understanding of 
causal pathways leading to our understanding of expensive events which informs sys-
tem-level strategies for prevention. Indeed, prevention one of the most effective ways 
to lower health care expenditures while delivering better quality of care [10–12].

HCHN patients have shown a high degree of persistence in medical expenditures 
reflected in administrative claims data [2, 13], although some recent studies have 
concluded that the high utilization may be temporary and not persistent [14]. The 
purpose of this study is to better understand these temporal patterns and to apply 
machine learning-based models to predict expenditures. Additionally, we would like 
to determine if practical timeframes (e.g. 1 month, 6 months) are feasible choices for 
predicting expenditures.

Approaches to predictive modeling include risk adjustment models that are linear 
in design and form the basis of many capitation payment systems [6–8]. This models 
suffer from a number of limitations including use of (1) variables with limited predic-
tive accuracy, (2) specific patient populations or type of care, and (3) population-level 
models that offer limited information at the patient-level [15–17]. The authors in [18] 
analyzed the temporal utilization pattern of high utilizers in a large public state insur-
ance program [19]. Studies that attempt to predict HCHN status using patient-level 
expenditures are lacking. This study aims to address this gap in the literature.

The key contributions of our paper are as follows:

•	 We used a large longitudinal administrative claims dataset from a public insur-
ance program with millions of enrollees to examine the correlation of patient-level 
health expenditures across time periods of varying length.

•	 We applied machine learning models to predict future health expenditures, espe-
cially for the HCHN patients, defined here as being in the top 10% of expendi-
tures. The methods scale to input variables of thousands dimensions and millions 
of patients. The findings indicated that health care expenditures can be effectively 
predicted (overall R-squared > 0.7 ). The prediction error for the HCHN patients 
is lower than the general population, suggesting better model performance for 
HCHN patients.
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•	 Contributions of input variables to explaining model variance were quantified for 
each single prediction so that model users can identify potentially modifiable risk 
factors for possible intervention.

The remaining sections of the paper are organized as follows: In “Methods” section, we 
introduce the dataset and preprocessing methods used for the study. “Results” section 
presents our examination of the temporal correlation of expenditures and a detailed 
explanation of the mechanisms involved with deployed machine-learning models. “Dis-
cussion” section provides descriptive results of the temporal correlation of health expen-
ditures and the predictive modeling results. Here, we discuss multiple strategies to better 
predict expenditures. In “Conclusions” section, we provide our overall conclusions and 
future directions.

Methods
Data and preprocessing

Data

Study population This study examines administrative insurance claims from the Med-
icaid program of the state of Texas which has approximately the third largest Medicaid 
population (annual enrollment of 4.7 million) in the United States [20]. During the study 
period (2011–2014), there were 1,734,896 adults (ages 18–65) enrolled in the Texas 
Medicaid program for at least one month. To be included in any analysis, enrolled status 
needed to be maintained for more than two-thirds of the time for any period-of-inter-
est (either observed or forecasted). Minimum enrollment criteria are applied to avoid 
including patients enrolled for very short periods of time with highly-variable health 
care profiles relative to the general medicaid population. For this population, total medi-
cal expenditure was defined as the sum of professional, institutional, and dental claims. 
Pharmacy expenditures were not included in this study. During the study period, the 
Texas Medicaid program was structured as both fee-for-service (FFS) and MCO-based 
payment models while FFS was being phased out. For both models, we used the final 
paid amounts to represent expenditures.

Variables available included diagnosis codes (International Classification of Diseases, 
Ninth Revision, Clinical Modification, ICD-9-CM), procedure codes (ICD-9-CM pro-
cedure codes, Current Procedural Terminology [CPT] and Healthcare Common Proce-
dure Coding System [HCPCS]), and medication codes (National Drug Codes [NDC]). 
During the study period, 3233 unique ICD-9-CM procedure codes, 21,374 unique ICD-
9-CM diagnosis codes, 21,603 unique CPT and HCPCS codes, and 28,366 NDC codes 
were identified. This study was approved by the IRB of the University of Florida.

Chronic condition cohorts We examined the temporal correlation of health expendi-
tures among entire study population as well as four chronic disease cohorts (diabetes, 
chronic obstructive pulmonary disease [COPD], asthma and hypertension). The dif-
ference in correlation strength among chronic disease cohorts as compared to general 
population was assessed. We identified these clinical cohorts using the Clinical Clas-
sifications Software (CCS) [21], using all diagnostic codes, as follows: diabetes (CCS 
category 49 and 50), COPD (CCS category 127), asthma (CCS category 128) and hyper-
tension (CCS category 98 and 99).



Page 84 of 118Yang et al. BioMed Eng OnLine 2018, 17(Suppl 1):131

Objectives

We constructed predictive models to forecast patient expenditures based on data 
from prior time periods-of-interest. We examined three prediction objectives (i.e., 
outcomes):

•	 Per member per month dollar amount (PMPM, total medical expenditure divided 
by number of months enrolled in medicaid). This measure is commonly used for 
expenditure analyses in medicaid programs [22].

•	 Per member per month dollar amount with log base 10 transformed, logPMPM).
•	 Rank percentiles of the per member per month dollar amount (pctlPMPM). This is 

a continuous measure obtained by dividing the descending ordered rank of PMPM 
by the number of enrollees in the dataset. Values range from 0 to 1.

Various periods-of-interest were examined in the analysis using periods of 1 month, 3 
months, 6 months and 12 months. These time periods are commonly used in studies 
of health care utilization.

Predictors

We designed multiple features as the input variables of the predictive models. For 
each previous time period consistent with the desired forecast time period:

•	 Diagnostic codes (ICD-9-CM) grouped into CCS categories (283 categories) [21].
•	 Procedures codes (CPT and HCPCS) grouped into CCS [21] categories (231 cat-

egories).
•	 Medication information represented by National Drug Codes (NDC). These are 

grouped by pharmacy classes (893 classes) provided by the U.S. Food and Drug 
Administration (FDA)’s NDC Directory (Updated Oct. 20, 2015).

•	 Demographic variables such as age, sex, race/ethnicity (White, Black, Hispanic, 
American Indian or Alaskan, Asian, Unknown/Other), and disabled status.

After inputting these features, each model consists of approximately 1300 input 
variables.

Experiment setup

To examine the temporal correlation of patients total medical expenditures between 
consecutive time periods (1 month, 3 months, 6 months, 12 months), we used the 
Pearson product-moment correlation coefficient [23]. We also tested the tempo-
ral correlation for four clinical cohorts of chronically-ill patients (diabetes, COPD, 
asthma and hypertension) prevalent in Medicaid populations of the United States 
[24]. Then we constructed predictive models to forecast expenditures based on pre-
vious expenditures, diagnoses, medical procedures and medications. Details are 
described as follows:
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Correlation test

We used a two-step process to test the Pearson product-moment correlation between 
expenditure rank percentiles using the four aggregations of time periods (1 month, 3 
months, 6 months, and 12 months):

Step 1:	� Rank order all the patients in period 1 and period 2 based on PMPM 
expenditures.

Step 2:	� Compute the Pearson product-moment correlation coefficient between the 
rank percentiles in the two periods.

Predictive models

Four predictive models are applied to forecast the patients’ expenditures based on the 
previous time periods, including ordinary least squares linear regression (LR), regular-
ized regression (LASSO), gradient boosting machine (GBM), and recurrent neural net-
works (RNN, a deep learning approach). Futoma et al. [25] compared these models in 
depth for predictive tasks in medicine. The following section describes the details for 
these models.

Ordinary least squares linear regression (LR) Regression is the most widely used 
method in predictive modeling. It serves as the base risk-adjustment model [6, 7] for 
modeling risk-based payment systems in health care. Using the input variables as 
described above, we fit a LR model using least squares to predict future expenditures.

Regularized regression (LASSO) Regularized regression, as known as the least absolute 
shrinkage and selection operator (LASSO) [26], fits a regular linear regression model 
but penalizes solutions with a large number of nonzero coefficients at the same time. It 
is broadly utilized as the default approach in many supervised machine learning tasks. 
Given M training instances {(xi, yi), i = 1, 2, ...,M} , where xi ∈ R

N is a N-dimensional 
input variable vector, yi is the predicting objective, L1 regularized regression tries to 
minimize the objective function below:

where θ ∈ R
N are the linear coefficients. The first term of the equation above is the 

objective function that LR minimizes during optimization. The regularizing term ‖θ‖1 
ensures that a large number of entries of θ are driven to zero. This property is favorable 
in our case because it makes the model robust to high-dimensional input and selects the 
most influential input variables. In our study, we use the implementation of LASSO pro-
vided by the original authors of the method [26]. A tenfold cross validation approach is 
used to select the hyper-parameter β.

Gradient boosting machine (GBM) Gradient boosting [27] is another set of success-
ful machine learning techniques that can handle high dimensional input variables. It 
generates an ensemble of decision trees ft to be used as the predictive model. It learns 
these trees in an additive manner. In each round, it learns a new tree ft by optimizing the 
objective function of:

(1)min
θ

M
∑

i=1

||yi − θxi||
2
2 + β�θ�1
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where gi and hi are the first- and second-order derivatives of the loss function, which, in 
our case, the squared error between predicted and true values. T is the number of leaves 
in the decision tree ft and wj are the leaf weights. The last two terms are regularizers to 
limit mode complexity.

One advantageous property of GBM is that the information gain of the nodes in the 
decision trees can be aggregated as a measure of input variable importance, which is 
similar to the coefficients in LASSO. This enables interpretability of tree methods 
in applications. In practice, we use the implementation of GBM provided by [28]. We 
trained 1000 decision trees for each GBM. We perform a grid search and fivefold cross 
validation to optimize the choices of other hyper-parameters such as learning rate and 
tree depth.

Recurrent neural networks (RNN) Recurrent neural networks are a set of deep learning 
models designed to process sequential data. These models have proven to be very effec-
tive in dealing with a variety of sequence tasks, such as speech recognition [29], machine 
translation [30], sunspot number prediction [31] and video understanding [32]. In health 
care, RNN models have been used for early detection of heart failure onset from elec-
tronic health records [33]. The health claims dataset used in our case to predict medical 
expenditures could be organized as sequential events (e.g. date of diagnosis, date of pro-
cedure, and date of medication use). Thus, we apply RNN to model these events as time 
series to take advantage of the chronological order, rather than including them in the 
models as unordered events.

For a patient {(xi, yi), i = 1, 2, ...,M} , where xi ∈ R
N is the input variable vec-

tor, yi is the predicting objective, we assumed that xi consists of T periods. Each 
period xti  is a K dimensional vector of input variables. Also, for non-temporal input 
variables such as demographics, we denote it as a vector xNTi  of dimension L. Thus, 
xi = {x1i , x

2
i , ..., x

T
i , x

NT
i } . We use a RNN with similar structure of [34] to perform a 

regression task to predict yi . The network structure is described in Fig. 1.
The model takes a three-step approach to make predictions in the following:

•	 Step 1: To reduce the dimensionality of input, {x1i , x
2
i , ..., x

T
i } and xNTi  are mapped to 

E dimensional embedding vectors of {e1, e2, ..., eT } and eNT using embedding matri-
ces WT ∈ R

E×K  and WNT ∈ R
E×L respectively, i.e. 

•	 Step 2: A RNN with single gated recurrent unit (GRU) layer [35] is used to gener-
ate attention weights from the sequential embeddings {e1, e2, ..., eT } . Attention is a 
mechanism in deep learning introduced in machine translation [36] and visual rec-
ognition [37] tasks that can dynamically decide which part of the sequence should be 
assigned additional weights. Our model contains two kinds of attention:

(2)min
ft

M
∑

i=1

(

gift(xi)+
1

2
hif

2
t (xi)

)

+ γT + �

T
∑

j=1

w2
j

(3)et =WTx
t
i

(4)eNT =WNTx
Nt
i
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–	 αt is scalar that determines that weight of period t.
–	 βt is an E dimensional vector that determines the importance of elements in each 

embedding et.

	  In the GRU layer, recurrent hidden state gt and ht is used to generate αt and 
βt respectively. The right panel of Fig. 1 describes the process used to generate 
βt . The same process is applied to generate αt . The intermediate memory unit ĥt 
takes input from et and ht−1 to update ht . The reset gate rt determines which por-
tion of ht−1 is absorbed into ĥt . The update gate zt determines the weights of ĥt 
and ht−1 when generating ht . Formally, the updating rules for rt , ĥt , zt , ht and βt 
are described as follows. 

 where σ() is the sigmoid function, ⊗ and ⊕ are element-wise multiplication and ele-
ment-wise addition, respectively.

•	 Step 3: After obtaining the attention values αt and βt , context vector can be gener-
ated as follows: 

(5)rt = σ(Wre
t +Urh

t−1 + br)

(6)ĥt = tanh(Whe
t + rt ⊗Uhh

t−1 + bh)

(7)zt = σ(Wze
t + Uzh

t−1 + bz)

(8)ht = (zt ⊗ ht−1)⊕ ((1− zt)⊗ ĥt)

(9)βt = tanh(Wβh
t + bβ)

(10)ct = αtβt ⊗ et

⊗

⊗
⊗
⊗ ⊗

⊗
⊗
⊕

x1
i

x2
i

x3
i

xT
i

hT

h1

h2

h3 β3

β1

β2

βT

αT

α1

α2
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Fig. 1  Schematic diagram of the deployed RNN model. The whole process consists of several steps. Step 1: 
Input variables are embedded; Step 2: A RNN with single gated recurrent unit (GRU) layer is used to generate 
attention from the sequential embeddings; Step 3: Attentions and embeddings are summed to make the 
context vector. The context vector is later transformed to output
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 The term “context” came from the field of natural language processing, indicating 
that underlying representation contains information from the preceding and suc-
ceeding sequences. The context vectors are aggregated with the embedding vector 
of non-temporal variables eNT and multiplied by the output coefficients to make 
predictions: 

In our implementation, we used embedding size of 128. Dropout [38] was applied in 
embedding and context vectors to control overfitting. The dropout ratio was set to 0.5. 
To learn all the parameters, adaptive learning rate method ADADELTA [39] is used as 
the optimization method when performing back-propagation.

Interpreting predictions

For predictive models in health care, in addition to high accuracy, interpretability is 
also crucial [34, 40, 41]. Many machine learning models are often regarded as black-box 
focusing on pure prediction rather than understanding the degree of variances explained 
by each component of the model or medical cause-effect pathways. To improve inter-
pretability, we applied additional strategies to quantify the contribution from each single 
input variable so that model users can interpret and diagnose the predictions. Below are 
the approaches that we took for each model.

Ordinary least squares linear regression (LR) and regularized regression (LASSO) For 
the two linear models, pulling the contributions of each input variable is straightfor-
ward. The product of linear coefficients and variable value are readily converted into the 
contribution of the corresponding variable.

Gradient boosting machine (GBM) As in [42, 43], for each single decision tree learned 
by the GBM, each test instance is assigned to a leaf following a decision path. The deci-
sion path consists of splitting nodes described by input variables. The weights of the 
leaves are assigned back to the splitting nodes on the decision path and weighed by the 
gain in each node. As a result, the predictors in the splitting nodes receive a portion of 
the weights. The contributions are the sums of these portions of weights by input vari-
ables across all trees.

Recurrent neural networks (RNN) Using methods similar to one proposed in [34], we 
can show that each prediction ŷi made by RNN can be derived from Eqs.  3 to 12, as 
follows:

(11)c =

T
∑

t=1

ct + eNT

(12)ŷi = wc + b

(13)

ŷi =w

(

T
∑

t=1

αtβt ⊗ et + eNT

)

+ b

=

T
∑

t=1

K
∑

k=1

xtkα
tw(βt ⊗WT [:, k])+

L
∑

l=1

xlwWNT [:, l] + b
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where xtk is the k-th element of temporal input variable vector xti  and xl is the l-th ele-
ment of non-temporal input variable vector xNTi .

From the above equation, the contribution of xtk and xl are αtw(βt ⊗WT [:, k]) and 
wWNT [:, l] respectively. It is worth noting that regular RNN is a non-interpretable 
black-box model because of the recurrent hidden states. However, in our model, the 
recurrences here are used to generate attention weights rather than directly to make pre-
dictions. Thus, the model is partially interpretable in terms of input variables.

Model selection and validation

For models with hyperparameters (LASSO, GBM and RNN), we selected best fit-
ting models using cross-validation as described above. To validate these models on 
test dataset, we trained the models to predict period t and tested the models to pre-
dict period t + 1 . During training, the information of period t + 1 was never accessed. 
We reported the R-squared and root mean squared error (RMSE) of rank percentiles 
as the performance measure. Given the policy interests associated with HCHN patients 
[2, 3], throughout the study, we used the threshold of top 10% of PMPM expenditure to 
identify HCHN patients. In order to get robust results, we used at least three different 
t values to have multiple times training and testing. We reported the results using the 
averaged numbers from these multiple experiments. The only exception is for time peri-
ods of 12 months. In this case, we didn’t have sufficient data, giving us only one training 
set and one testing set.

Results
We first present the temporal correlation of expenditures for the adult population, 
HCHN, and patients with chronic conditions. We then present the predictive accuracy 
for each of the modeling methods. We also describe how these models can be used for 
potential cause-effect analysis for each patient.

Temporal correlation

We first present our results for the entire adult population, followed by correlation in 
expenditures of HCHN and cohorts with specific chronic diseases.

Entire adult population The temporal correlation for the adult population is presented 
in Table 1. A scatter plot of expenditure percentiles between two consecutive time periods 
for different period aggregations are shown in Fig. 2. The x-axis of each point corresponds 
to a time period while the y-axis corresponds to an immediate subsequent time period. 

Table 1  Average correlation for the entire adult population

The correlation increases as the period length increases and decreases as the examined periods become more temporally 
distant

Period length (months) One period later Two periods later Three 
periods 
later

1 0.564 0.526 0.521

3 0.651 0.584 0.516

6 0.653 0.566 0.515

12 0.676 0.594 –
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One can make the following two important observations from Table 1 and Fig. 2. (1) Areas 
representing HCHN patients are denser, implying HCHN patients have more consistent 
expenditures than other adults. (2) Correlation is higher with larger period length, which 
implies patients expenditures are relatively less consistent when the time period is small.

Temporal correlation for the top 10% population Table 2 shows the percentage of the 
top 10% patients that stayed in the top 10% during the next period. Table 3 shows the 
average percentile and standard deviation for the top 10% population in the next period. 
Figure 3 provides a more focused description of the distribution of percentiles of the top 
10% in two consecutive periods. This data clearly shows that the expenditures of the top 
10% population tend to be consistent. Though a substantial portion of them fell out of the 
top 10% in the next period, their average expenditure percentiles stayed high. Also, the 
consistency of high utilization increases for longer durations (at least up to 12 months).

Chronic conditions cohorts We investigated four specific chronic conditions prev-
alent in the Medicaid population of the United States diabetes, COPD, asthma and 

Fig. 2  Scatter plot of expenditure percentiles between two consecutive time periods for different period 
lengths. The upper right corner is denser, implying the HCHN patients are more temporally consistent. From 
left to right, x axis are the last month, last 3 months, last 6 months, and entire 12 months of 2012 respectively. 
The y axis are the first month, first 3 months, first 6 months, and entire 12 months of 2013 respectively

Table 2  Percentage of top 10% patients that stayed in top 10%

The percentages go up as the period length increases. This suggests that the HCHN patient expenditures are more 
consistent in longer periods

Period length (months) One period later Two periods later Three 
periods 
later

1 45.61 43.10 47.89

3 53.76 50.16 47.57

6 58.38 53.76 51.00

12 61.13 55.25 –

Table 3  Average percentile ± standard deviation in the following periods of the top 10%

The standard deviation decreases as the period length increases, again suggesting that HCHN patients are more stable in 
longer periods

Period length (months) One period later Two periods later Three periods later

1 72.19 ± 33.36 68.98 ±  35.88 72.70 ± 33.76

3 80.84 ± 24.42 78.12 ± 27.09 76.58 ± 28.09

6 83.13 ± 21.11 80.60 ± 23.37 79.33 ± 24.12

12 85.39 ± 18.01 82.91 ± 20.19 –
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hypertension. The results showed that a large percentage of the top 10% in the cohort 
stayed in the top 10% in the next period. We calculated their average percentiles and 
standard deviation. The counterparts of Tables  1, 2 and 3 and Figs.  2 and 3 for the 
diabetes cohort are shown in Tables  4, 5 and 6 and Figs.  4 and 5 respectively. The 

Fig. 3  Scatter plot of expenditure percentiles of the top 10% population between two consecutive time 
periods for different period lengths. The majority of HCHN patients stay above 80% for the next period. 
From left to right, the x axis are the last month, last 3 months, last 6 months, and entire 12 months of 2012 
respectively. The y axis are the first month, first 3 months, first 6 months, and entire 12 months of 2013 
respectively

Table 4  Average correlation for the diabetes cohort

For one period later, the correlation increases as the period length increases. However, when the subsequent periods are 
more temporally distant (two or three periods later), this is no longer true

Period length (months) One period later Two periods later Three 
periods 
later

1 0.611 0.566 0.553

3 0.649 0.592 0.559

6 0.662 0.594 0.541

12 0.675 0.581 -

Table 5  Percentage of patients from the diabetes cohorts that stayed in the top 10%

HCHN patients are more consistent in longer periods (as is the entire adult population)

Period length (months) One period later Two periods later Three 
periods 
later

1 44.28 40.89 39.28

3 45.00 41.31 39.56

6 48.21 44.01 41.63

12 52.66 46.46 –

Table 6  Average percentile ± standard deviation in the following periods of the top 10% 
in the diabetes cohort

We observe less variation for longer time periods

Period length (months) One period later Two periods later Three periods later

1 76.33 ±  25.80 74.08 ±  27.43 73.30 ±  27.78

3 78.39 ±  23.24 75.98 ±  24.92 74.93 ±  25.52

6 80.43 ±  21.75 77.95 ±  23.60 76.50 ±  24.50

12 83.07 ±  19.61 79.85 ± 22.27 –
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results for patients with COPD, asthma and hypertension are not presented here but 
the scatter plots for these cohorts are similar to the diabetes cohort.

Just as we found in the general population, for each disease cohort, we observed 
a significant correlation in expenditures from one time period to the next. This cor-
relation was stronger for the HCHN population than the general population, and was 
sustained for longer period lengths.

Table  7 compares the temporal correlation for each of the chronic disease cohorts. 
We observe that chronic-disease cohorts have similar correlations to the overall adult 
population. The diabetes cohort has a slightly stronger short-term correlation while the 
asthma cohort show a slightly stronger longer-term correlation.

Prediction

In this section, results for predicting the expenditures at the patient-level using prior 
expenditure information is presented. Only expenditure data for the immediate preced-
ing period-of-interest followed by up to 4 subsequent periods and other claims-based 
information available for the patient is used.

Baseline Baseline models below using one prior period-of-interest and only prior 
expenditures variables (prior PMPM, pctlPMPM or logPMPM depending on predict-
ing objective) are presented. Table  8 shows the baseline results of quarter-to-quarter 

Fig. 4  Scatter plot of expenditure percentiles of the diabetes cohort between two consecutive time periods 
for different period lengths. The conclusions are similar to the entire adult population’s. The HCHN patients 
in the upper right corner are consistent. The low-cost population in the lower left also shows consistency. 
From left to right, the x axis are the last month, last 3 months, last 6 months, and entire 12 months of 2012 
respectively. The y axis are the first month, first 3 months, first 6 months, and entire 12 months of 2013 
respectively

Fig. 5  Scatter plot of expenditure percentiles of the top 10% population in the diabetes cohort between 
two consecutive time periods for different period lengths. HCHN diabetes patients are likely to stay in the top 
20%. From left to right, the x axis are the last month, last 3 months, last 6 months, and entire 12 months of 
2012 respectively. The y axis are the first month, first 3 months, first 6 months, and entire 12 months of 2013 
respectively
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prediction. Baseline models fit reasonably-well as indicated by the R-squared values. 
More than 40% of the variation is explained by the transformed models (pctlPMPM and 
logPMPM). RNN is the best model for all measures. The differences between RNN and 

Table 7  Temporal correlation comparison between cohorts

The difference in the correlation is small between these cohorts

Period length 
and lags

General 
Medicaid 
population

Diabetes cohort COPD cohort Hypertension 
cohort

Asthma cohort

1 month, One period 
later

0.564 0.611 0.591 0.588 0.587

1 month, Two periods 
later

0.526 0.566 0.548 0.543 0.548

1 month, Three periods 
later

0.521 0.553 0.526 0.530 0.533

3 months, One period 
later

0.651 0.649 0.611 0.629 0.640

3 months, Two periods 
later

0.584 0.592 0.554 0.572 0.600

3 months, Three peri-
ods later

0.516 0.559 0.526 0.541 0.567

6 months, One period 
later

0.653 0.662 0.626 0.644 0.680

6 months, Two periods 
later

0.566 0.594 0.568 0.581 0.624

6 months, Three peri-
ods later

0.515 0.541 0.522 0.530 0.585

12 months, One period 
later

0.676 0.675 0.651 0.664 0.718

12 months, Two peri-
ods later

0.594 0.581 0.563 0.570 0.631

Table 8  Baseline predictive model results

RNN outperforms other models in this case

Predicting objective Model Train Test

R-squared RMSE RMSE 
for Top 
10%

R-squared RMSE RMSE 
for Top 
10%

PMPM LR 0.145 0.306 0.264 0.141 0.306 0.264

LASSO 0.145 0.306 0.265 0.141 0.306 0.264

GBM 0.199 0.317 0.270 0.172 0.314 0.272

RNN 0.302 0.201 0.180 0.298 0.204 0.183

logPMPM LR 0.401 0.306 0.265 0.402 0.306 0.264

LASSO 0.401 0.306 0.265 0.402 0.306 0.264

GBM 0.399 0.316 0.267 0.394 0.314 0.269

RNN 0.445 0.220 0.184 0.442 0.223 0.187

pctlPMPM LR 0.399 0.306 0.265 0.400 0.306 0.264

LASSO 0.398 0.306 0.265 0.400 0.306 0.264

GBM 0.384 0.314 0.275 0.382 0.312 0.277

RNN 0.405 0.232 0.203 0.400 0.235 0.203
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other models in RMSEs are substantial, implying that expenditures are ranked much 
closer to the true rankings by RNN.

Choice of period length We extended the prediction period, in part, based on prelim-
inary results indicating that Medicaid expenditures are more consistent over longer 
periods. Figure 6 shows the results for 3 months, 6 months and 12 months. Predic-
tion accuracy results are presented for the test data only. As the period-of-interest 
increases from 3 to 12 months, fit measures generally improve, with the exception of 
the R-squared statistic for LASSO and GBM in predicting logPMPM and pctlPMPM; 
and RMSE for RNN in predicting PMPM. These results generally show that predictive 
models are more effective for longer periods. This finding is expected as aggregation 
over longer periods tends to reduce short-term deviations from the models. Even so, 
reasonable consistency in expenditures is present from one period to the next, which 
offers utility in predicting high utilizers in practical scenarios.

Using additional information In this subsection, we present results after incorporat-
ing additional information to our baseline models. In particular, we added Medicaid 
administrative claims data, such as patient-level demographics, diagnoses, medical pro-
cedures and medications. Figure 7 shows performance improvement after adding these 
inputs during a quarter-to-quarter prediction. Nearly all measures improved substan-
tially with this additional information. When we repeated this procedure for periods of 
6 months and 12 months, the improvement persisted. Thus, though historic costs are 
strong predictors of future costs, additional information, such as demographics, diagno-
ses, medical procedures and medications, improves prediction accuracy. We note that 
these models use thousands of variables making overfitting a concern, but the number 
of individual patients represented in the data approaches 1 million. Thus, as long as the 
models are well-regularized, the possibility of overfitting is reduced.

Including additional prior periods In this section, we increase the number of prior 
periods used for prediction as this should improve prediction performance. Figure  8 
shows the performance changes after adding more periods. Only quarter-to-quarter 

Fig. 6  Comparison of different period lengths. Generally performance improves when the time period 
becomes longer, which is consistent with higher correlation in the same trend. However, GBM and LASSO 
seem to find their best R-squared when period length = 6 months in predicting pctlPMPM and logPMPM
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prediction results are presented. Other quarterly inputs include diagnoses, medical pro-
cedures and medications. Demographic variables are entered into the models once as 
they are assumed to be fixed over the study period.

The models appear to reach an improvement ceiling at approximately three prior peri-
ods. The RNN model benefits the most by the use of additional periods, which is consist-
ent with literature showing that they are effective in modeling temporal relationships.

The R-squared of the linear models for the testing data decreases when the predicting 
objective is PMPM. This is likely due to the fact that PMPM is not linearly distributed in 
the parameter space unlike its transformed versions (logPMPM and pctlPMPM). Using 
a large number of parameters and prior periods (effectively inducing a multiplicative 
effect on the number of parameters) in a linear model increases the likelihood of overfit. 

Fig. 7  All four models improved after adding demographics, diagnoses, medical procedures and 
medications as input variables, suggesting that though prior expenditures already provide a good 
approximation for future spending, additional information is useful in predictive modeling

Fig. 8  Performance changes after adding more prior periods. Most measures substantially improved after 
adding the first three periods. The gain for adding a fourth period to LR, LASSO and GBM is minimal. RNN 
benefits most, indicating its stronger ability to model temporal relations
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We found that the R-squared for the training dataset in the same setting increased with 
the number of prior periods, which supports our claim of overfitting and preference for 
models that can adjust this risk, such as LASSO and GBM. The results above were simi-
lar with using 6-month periods.

Interpreting the models

For better understanding each prediction, we quantify the contribution from every single 
input variable in each model used. Figures 9, 10, and 11 present the contributions pulled 
from LASSO, GBM, and RNN models for the same patient. Both expenditures and addi-
tional information for four prior periods were used to train the models. We selected per 
member per month expenditure percentiles (pctlPMPM) as the prediction objective. To 
examine the variations for the same model, we resampled the training data with replace-
ment for 10 times and trained a different model for each round. These models were then 

Fig. 9  Contributions derived from a prediction by LASSO. The radius of the circle corresponds to the 
standard deviation of the contribution

Fig. 10  Contributions derived from the same prediction by GBM. We observe a larger variation in 
contributions. But the variation in predicted value is similar

Fig. 11  Contributions derived from a prediction by RNN. When comparing LASSO, GBM and RNN, LASSO 
not only gives stable predicted value, but also generates stable contributions. GBM has consistent predicted 
values, but is less stable in contributions. RNN is unstable in both, possibly due to its non-convex optimization 
procedure
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used to make 10 different predictions for the same patient. The average predicted score 
and its standard deviations (sd) are shown are the graphics. For visualizing contribu-
tions, we plotted each input variable as a circle on the timeline. The center and radius of 
each circle represent the average contribution of the variable and its standard deviation 
respectively. Results for LR (not presented) are similar to LASSO.

We repeated the process described above for 50 patients and the result for one patient 
are shown in Figs. 9, 10, and 11. For all these test cases, including the one shown here, 
the results demonstrates that all three models make robust predictions. LASSO and 
GBM have comparatively lower standard deviations. LASSO is the most stable model 
that consistently generates similar contributions. GBM has a larger standard deviation in 
contributions but can still derive influential ones from all variables. However, the contri-
butions of each variable generated by RNN are very unstable. Clearly this method is not 
effective for deriving the importance of input variables. Considering that deciding the 
parameters of RNN requires a non-convex optimization procedure using the stochas-
tic gradient descent may end up with any local minima, it is not surprising that a sto-
chastic algorithm would give different solutions (generally corresponding to a different 
local minimum) each time, leading to much larger variations in contribution estimates 
of input variables.

In conclusion, LASSO and GBM are more effective in generating interpretable contri-
butions and find important input variables than the RNN model.

Choosing the best model

The choice of the best model depends on whether the goal is to best predict expenditure 
or better understand the contributions of underlying factors. From Figs. 7 and 8, we can 
conclude that RNN is the best model for prediction. GBM is slightly better in R-squared 
and RMSE for top 10% than LASSO, but GBM performs similarly with LSAAO for 
RMSE. However, for clearer interpretation of a particular prediction, LASSO and GBM 
are more suitable.

In terms of comparing different prediction objectives, RNN seems to perform best 
using pctlPMPM. The reason for this could be that pctlPMPM is strictly contained in 
[0,1], which is less likely to cause significant gradient vanishing or exploding issues that 
are common in back-propagation when optimizing neural networks. For LR, GBM and 
LASSO, the choice of predicting objectives is a task-specific decision. If minimal RMSE 
for top 10% is the goal, one should use PMPM as the predicting objective. If optimizing 
R-squared is more important, one should consider using logPMPM or pctlPMPM. All 
three objectives are similar in overall RMSE.

Discussion
In 2014, the top 1 percent of expenditures in health care accounted for approximately 
one-fifth of total health care expenditures [2, 44]. As a result, this group has been termed 
HCHN patients. Disproportionate spending concentration in this group is also prevalent 
in other countries [5]. Prior literature [14] has suggested that these expenditures may be 
episodic and not temporally consistent. If this is indeed the case, the benefit of modeling 
patterns of high expenditures may be severely limited by a high degree of randomness in 
their health care utilization.
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However, our study clearly shows that health care expenditures are significantly auto-
correlated within the Texas Medicaid program. With around 5 million enrollees. Texas 
has the third largest Medicaid population in the United States. This result may motivate 
preventive interventions. Auto-correlation suggests an underlying process structure that 
may be driven by modifiable factors. Thus, highly predictive machine-learning models 
can enable providers to direct these interventions to the right HCHN population.

This study has several limitations. First, we conducted the study within one states 
Medicaid program. The results may vary by state and/or payer type. Second, we 
applied only general-purpose machine-learning models. Some tailored models may 
have better performance. Third, the predictive models provide little guidance on 
the preventive factors needed to inform interventions. Finally, health status deter-
mined from claims data only is limited. It may be necessary to include additional data 
sources, such as narrative components of electronic health records (EHR), disease 
severity measures, and/or social determinants of health.

Future work will address some of these limitations. We plan to expand the analy-
sis to different types of health care programs. We will also collect additional data, 
mentioned above, to evaluate predictive performance. Moreover, we will collaborate 
with clinicians and policy experts to make the models clinically-relevant by integrat-
ing domain expertise to better direct preventive interventions.

Conclusions
In this work, we tested the temporal correlation of health care expenditures for mul-
tiple time periods. Our results show that health care expenditures are temporally 
consistent. Further, this correlation is significantly higher for the HCHN patients as 
compared to the general population. For patients with chronic conditions, the tem-
poral consistency of expenditures was high, but not appreciably higher than the gen-
eral population. This finding was somewhat surprising, as one would have expected 
chronic conditions to lead to more consistent expenditures.

Overall, machine learning models are very predictive to forecast health care expen-
ditures. We iteratively developed several predictive models to forecast expenditures. 
First, we started from a baseline case using only expenditures and step-wisely added 
input variables to the models. We showed that additional information such as clini-
cal information and demographics are useful to improve prediction performance. In 
addition, we showed that it is beneficial to have historical data from more prior time 
periods. The improvements due to additional prior periods saturates after three to 
four periods. The prediction accuracy of RNN outperforms LR, LASSO and GBM. In 
terms of prediction interpretability, LASSO and GBM consistently select similar vari-
ables and generate stable contributions independent of the resampling process.
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