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Background
Laboratory rats play a critical role in research because they provide a biological model 
that can be used for evaluating the affectation of diseases and injuries, and for the evalu-
ation of the effectiveness of new drugs and treatments [1–3]. In particular, the analysis of 
locomotion in laboratory rats allows us to understand the motor defects in diseases such 
as osteoarthrosis [4], Parkinson’s disease, Huntington’s disease, and amyotrophic lateral 
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sclerosis [5, 6], as well as the damage and recovery after peripheral and central nervous 
system injury [7].

Current methodologies for the analyses of laboratory rats’ locomotion can be catego-
rized as “forced” when the speed of march is imposed on the rat by means of a treadmill 
(e.g., [8]), or “unforced” when the rat is free to move at any speed on the ground or an 
activity wheel [7]. In general, forced analysis have the advantage of allowing to perform 
direct comparisons between the recollected gait variables, since all of the subjects will 
be moving at similar speeds. However, for some research cases, these strategies may be 
unsuitable, since the movement of the rats could be different from their normal locomo-
tion patterns [9]. For these cases, unforced methods may be a better option with the 
main disadvantage that the comparison of the gait variables would require a more elabo-
rated metric, exclusion of samples, or a normalization of the data.

There currently are qualitative methods for the assessment of locomotion variables, 
such as the Tarlov scale [10] and the inclined plane test [11], and the Basso, Beattie and 
Bresnahan (BBB) rating [12]. BBB is the most widely accepted method for assessing loco-
motion on unforced-open field tests. The BBB rating consists of a semi-quantitative scale 
which takes values ranging from zero to twenty one, based on the opinion of an observer 
regarding the hindlimb movements, joint movements, forelimb and hindlimb coordina-
tion, stepping, trunk position and stability, paw placement and tail position. The scale 
score is divided into three stages: (i) Early stage (score of 0–7): composed of isolated 
joint movements with little or no hindlimb movement; (ii) Intermediate stage (score of 
8–13): intervals of uncoordinated stepping, and (iii) Late stage (score of 14–21): forelimb 
and hindlimb coordination.

Since the BBB score is determined by a person based on his own experience and exper-
tise, the major limitation of the this and other qualitative methodologies is the reduced 
reproducibility and non-satisfactory sensitivity for some cases of locomotion studies 
[13].

To overcome this challenge, an automated gait analysis method based on the analysis 
of paw-floor contact was developed by Hammers et al. [14], which allows the quantifica-
tion of a number of locomotion variables regarding the step cycle, pressure applied, and 
stance phases.

Another approach consists of performing an analysis of the patterns generated by the 
configuration of the rat’s extremity joints during their movement, either using a forced 
or an unforced methodology (e.g., [15–18]. These approaches rely on the use of video 
sequence recording at high speed (i.e., in general above 90 frames per second) that are 
analyzed through the inspection of the angles between the joints of the extremity of 
interest obtained by manual annotations of the extremity along the recorded frames. The 
curves corresponding to changes of the joint angles with respect to time can then be 
used to compare the gait patterns of different experimental rat groups [7].

However, the great challenge of this approach is the significant amount of effort 
required for the manual annotation of the frames of the videos. The person who does the 
annotations may also perform poorly due to lack of experience or fatigue.

Therefore, it is necessary to the automate the annotation process and the subsequent 
computation of angle variations with respect to time. In this work, we present a method 
that is based on the use of a bio-inspired algorithm that fits a kinematic model of the 
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hind limb of rats to a binary image corresponding to the segmented marker of an image 
of the rat while walking. The bio-inspired algorithm combines a genetic algorithm for a 
group of the optimization variables with a local search for a second group of the optimi-
zation variables. Our results indicate the feasibility of employing the proposed approach 
for the automatic annotation and analysis of the locomotion patterns of the posterior 
extremities of laboratory rats.

Methods
The proposed method is based on the adjustment of a rat hind limb kinematic model to 
a frame in a rat’s gait video sequence, where the hind limb of the rat has been marked 
with line-marks corresponding to the the rat’s leg bones ( Fig. 1a). The model consists of 
points representing the joints named as P1, . . . ,P5 , the lengths of each element of the leg 
l1, . . . , l4 , and the angle of each element by θ1, . . . , θ4 . Although leg widths are meaning-
less for the kinematic model, there are useful for the sake of fitting the virtual model to 
the video frames. Thus, they are marked with wi in Fig. 2.

Fig. 1  a Example of marks placed on the skin of the hind limb of a laboratory rat, and b the binary image 
corresponding to the marks

Fig. 2  Kinematic model of the rat hind limb
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Given the upper-most point P1 = (x1, y1) , the rest of the points can be obtained by:

for n = 2...5.
Thus, the hind limb model for a given position can be represented as a fourteen-

dimensional vector:

where li , with i ∈ {1..4} , are the lengths of the leg elements, and θi and wi are angles and 
widths of the elements, respectively (Fig. 2).

Therefore, the problem consist of finding a vector of parameters X∗ which produces a 
binary image E(x, y) which fits the most (i.e., is the most similar) to a binary image S(x, y) 
representing the hind limb marks on a given frame (Fig. 1b). A fitting score f(X) can be 
obtained by:

Where TP is the number of true positives, which are the number of white pixels in E(x, y) 
that are white in S(x,  y). TN is the number of true negatives, negatives, which are the 
number of black pixels in E(x, y) that are black in S(x, y). P and N are the total number of 
positives and negatives in S(x, y). This measure is known, in the context of binary classi-
fiers, as accuracy. The maximum value of the objective function is 1.

In this work, we propose to compute the solution X∗ using a two-step method that 
consists of a genetic algorithm for finding the values of the initial point (x1, y1) and 
lengths and a local search algorithm for the other variables.

Genetic algorithm

We implemented the Elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 
[19], since it has demonstrated outstanding performance and is currently one of the 
most widely used evolutionary algorithms. The initial population Zz=0 is generated 
using aleatory values for the uppermost point P1 and lengths li of the kinematic model. 
P1 is selected from the uppermost white pixels. Therefore, we use a single optimization 
variable (the index of the pixel), A local search is then performed to find the best angles 
(θi) and widths (wi) for the given uppermost point and section lengths. Each individual 
of the population Xz

c  is evaluated on the objective function and the result is established 
as the fitness score F. Notice that the evaluation procedure is, actually, the local search 
procedure. The genetic algorithm provides the initial point and length, while the local 
search find angles and widths. In contrast with most hybrid algorithms, our global and 
local procedures affect different optimization variables. After evaluating the population, 

(1)xn = xn−1 + ln−1(cos(θn−1))

(2)yn = yn−1 + ln−1(sin(θn−1))

(3)X = [x1, y1, l1, l2, l3, l4, θ1, θ2, θ3, θ4,w1,w2,w3,w4]

(4)f (X) =
TP + TN

P + N
.



Page 37 of 118Valdez et al. BioMed Eng OnLine 2018, 17(Suppl 1):134

the best individual X∗z is selected to be incorporated into the next generation popula-
tion Zz+1 (elitism). The rest of the individuals are selected for reproduction using binary 
tournament [20], which consists of several comparisons of objective function value 
(“tournaments”) among a set of individuals chosen at random from the population. The 
winner of each tournament (the one with the best fitness) is selected for reproduction.

The reproduction of two selected individuals Xz
c1

 and Xz
c2

 is performed using the simu-
lated binary cross-over(SBX) method [19], which consists of the generation of a random 
number u in the range of [0, 1] that is is used for determining the contribution β̄ of the 
characteristics from each parent to each children as:

where nc = 1 . A pair of children Xz+1
c1

 and Xz+1
c2

 are then generated according to the fol-
lowing equations:

Finally, to prevent the population from getting stuck in local minimums and maintain 
diversity in the exploration of the solution space, we employed the polynomial muta-
tion method [21] on which the value of an element of an individual may change with 
a probability m. The new value is determined by a polynomial probability distribution: 
P(δ) = 0.5(ηm + 1)(1− |δ|)ηm ; xUi  and xLi  are the lower and upper bound of xi respec-
tively. The mutated children together with the elite individual (best-known solution) 
become the new population. The loop of evaluation, elitism, selection, reproduction and 
mutation are repeated until a stopping criterion is met. In this work, the stopping crite-
rion depends on the consecutive number of generations Nmaxelite in which the elite indi-
vidual is not improved.

Algorithm  1 list the steps of the first part of the proposed approach based on the 
genetic algorithm.

(5)β̄ =







(2 · u)
1

nc+1 if u < 0.5
�

1
2(1−u)

�
1

nc+1
otherwise

(6)
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2
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Local search

The local search method intends to find the optimal values of θi and wi for each hind 
limb segment by searching in a given range of angular values θ infi  and θ supi  , using the 
objective function in Eq. 4. The method consists of two stages of refinement, where in 
each of these, the search is performed with a higher precision in a reduced range.

The first step starts with an initial width of w0 = 10 . The method performs a search 
every four degrees of the angle in which the overlap of the line drawn in the image DI

i  
and the image S(x, y) is maximized, according to Eq. 4. The best angle found is stored in 
the variable θ I.

A second search is performed around this last value, every one degree. For each angle 
in the second search, we intend to improve the width of the segment looking for a new 
width. The best angle found is stored in the variable θ I , and the best width in the variable 
wII
n−1 . Finally, the values of the width and the angle are stored and the limits updated. 

The procedure is repeated until all angles and widths are estimated. Algorithm 2 lists the 
steps of the proposed local search method.
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Leg pendulum‑like movement computation

A possible way to quantitatively evaluate the gait properties of rats is by comparing 
the curves that are generated by the movement of the extremities during the steps. 
One of the curves that can be employed to perform a comparison of hind limbs 
locomotion is the leg pendulum-like movement (PLM) of the hind limb which cor-
responds to the angle between the the 5th lumbar vertebra and fifth metatarsophalan-
geal joint (first and last points) [7]. In this work, we computed this angle for each 
frame, interpolated missing angles in case of non convergence of the algorithm, and 
then applied a robust weighted moving average filter with an outliers parameter of 6σ.

Results
Six hundred frames corresponding to steps from fourteen laboratory rats marked on 
their hind limb using a red water-based non-toxic marker were obtained from video 
sequences recorded at 90 frames per second at a resolution of 640 x 480 pixels. Seg-
mentation of the marked region during the steps were obtained automatically by con-
verting each frame into an HSV color space and then applying a threshold over the 
Hue channel of the image.
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The genetic algorithm with local search is applied on each frame using a population 
size of 400, mutation probability of 0.11, crossover probability of 0.9, number of elite 
individuals preserver through a generation is 3, and value of Nmaxelite = 8 as stopping 
criterion. Figure 3 depicts an example of the best adjusted model on 21 frames corre-
sponding to a step of a rat. Note that the kinematic model adjusted by the proposed 
method is very similar to the segmented marked region.

Table 1 depicts the statistics of the variation of the results of five independent execu-
tions of the proposed method on 100 randomly selected frames using Bootstrapping 
and a re-sampling parameter of N = 1000 . Figure 4 depicts an example of the computed 
angles for the four angles in five independent executions (dots), along with a weighted 
mean (gray line), and a cubic spline interpolation (green line). Note that the computed 
angles have a small dispersion, which indicates that the algorithm is robust with respect 
to the variability of the rat’s hind limbs.

The feasibility of the proposed method to be used to perform the quantitative analysis 
is evaluated by comparing the PLM of the hind limb of each rat’s step obtained with the 
proposed method (A), with the corresponding curve obtained from the annotations of 
two observers (O1 and O2) on the image sequences (Fig. 5). Note that, in general the 
three curves are very similar in the pattern they describe, with exception of some local-
ized differences.

The similarity of the PLM curves for each rat step obtained with the proposed method 
and with the observer’s annotations was assessed by the computation of the Frechet dis-
tance [22], which is a measure of similarity between curves that takes into account the 
location and ordering of the points along the curves. The mean difference between A 
and O1 was 0.453 ± 0.147, the difference between A and O2 was 0.544 ± 0.25, while 
the difference between the O1 vs O2 was 0.298 ± 0.093. We performed a two-sample 
T-test with a significance level of 0.05 to determine if the differences in the performance 
between the automatic method and the human observers was comparable. The results 
for the comparison of A vs O1 and O1 vs O2, the null-hypothesis was rejected with a 
value of p = 0.068 , which indicate that there are not statistically significant differences 

Fig. 3  Examples of the kinematic model adjustments over the binary images corresponding to the hind limb 
marks of a rat employing the proposed method
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between the performance of the proposed method and Observer one. However, for the 
case of the comparison comparison of A vs O2 and O1 vs O2, there was not enough 
statistical evidence to reject the null-hypothesis ( p = 0.00524 ) which suggests that the 

Fig. 4  From up to down, left to right angles. Dots are θ1, θ2, θ3 and θ4 estimated values from five executions 
per frame. The gray line is a weighted mean, each value is weighted by the normalized objective function 
(the normalized objective function values from the five executions sums to one) . The green line is a 
cubic-spline interpolation of the weighted mean

Table 1  Statistics of  the  variation of  the  results of  the  adjusted kinematic model 
employing the  proposed method five times  on  100 randomly selected frames using 
Bootstrapping and a re-sampling parameter of N = 1000

Variable Mean difference (std) 95% 
Confidence 
interval

l1 (pixels) 2.39 (4.87) 1.95–3.02

l2 (pixels) 1.86 (3.56) 1.56–2.35

l3 (pixels) 3.32 (6.27) 2.65–4.12

l4 (pixels) 12.59 (10.48) 11.41–13.79

θ1 (rad) 0.02 (0.06) 0.018–0.034

θ2 (rad) 0.01 (0.03) 0.013–0.022

θ3 (rad) 0.01 (0.02) 0.013–0.019

θ4 (rad) 0.36 (1.58) 0.210–0.582
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differences of the proposed method with respect to the annotations of O2 are greater 
than the differences of O1 and O2.

Discussion
The obtained results indicate the feasibility of employing the proposed method for the 
adjustment of the hind limb kinematic model to markers of the video frames corre-
sponding to rat’s gait sequences. The obtained joint configuration could then be used to 
analyze the motion patterns during the steps, which, in turn, can be useful for perform-
ing quantitative evaluations of the effect of lesions and treatments on rats models.

In our experiments, we noted that the lengths and widths of the hind limb segments 
vary with respect to the step cycle instant. For instance, for all executions on frames in 
Fig. 3, the length’s means and standard deviations are µl = {67.2, 108.09, 94.35, 101.56} 

Fig. 5  Examples of the the leg pendulum-like movement of the hind limb obtained with the proposed 
method (A), and with the annotations of two observers (O1 and O2)
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and σl = {5.69, 5.493, 16.00, 16.82} for { l1, l2, l3, l4 } respectively, and the width’s means and 
standard deviations are µw = {15.71, 15.56, 15.35, 14.57} and σw = {1.67, 1.62, 1.67, 2.48} 
for { w1,w2,w3,w4 }, respectively. All measurements are in pixels. This variation could be 
explained by the three dimensional movement of the leg which occurs in the direction of 
the cameras. We believe that it could be possible to estimate the characteristics of this 
motion by comparing the obtained lengths and widths with the real proportions of these 
features. Another option could be to employ more than one camera at different known 
positions, then perform the model fitting, and finally estimate the 3D motion by triangu-
lation of the known corresponding points.

Future work includes the addition of a kinematic model for the forelimbs, and the 
comparison of the results obtained with the proposed method with manual annotations 
performed by an observer over the same video sequences.

Conclusion
We have presented a method that is based on the use of a bio-inspired algorithm that fits 
a kinematic model of the hind limb of rats to binary images corresponding to the seg-
mented marker of images corresponding to rats’ gait. The obtained results indicate the 
feasibility of employing the proposed approach for the automatic annotation and analy-
sis of the locomotion patterns of the posterior extremities of laboratory rats.
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