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Background
Traditionally, gene expression studies have been carried out by non-quantitative or semi-
quantitative RNA gel blotting and later by reverse transcription-polymerase chain reac-
tion (RT-PCR) analyses. Development of real-time, quantitative PCR (qPCR) [1] took 
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the place of these techniques due to its higher specificity, sensitivity and broad quanti-
fication range. The use of an appropriate reference gene (RG) to avoid false results and 
for proper interpretation of gene expression data soon emerged as a significant concern 
in these experiments, mainly due to the increased sensitivity of qPCR with respect to 
Northern blotting and RT-PCR. The first RGs were brought from Northerns and usually 
encoded proteins involved in structural functions and basic cell metabolism due to their 
theoretical expression invariability in most tissues. This initial election was revealed 
inappropriate [2–4] and the quest of more reliable RGs has been pursued in the litera-
ture [5–8].

Conclusions of any qPCR experiment are depending on RGs, but also on the selection 
of an appropriate normalization method. Relative quantification is the most widely used 
method for normalization, where gene expression level is normalized by an internal RG 
that should remain constant in all experimental conditions under study. BestKeeper [9], 
geNorm [10] and NormFinder [11] are the most popular methods for normalization and 
confirming RGs. Based on the raw, relative quantities, geNorm calculates the minimal 
number of RGs for each experiment and NormFinder also provides a stability value for 
each gene. BestKeeper employs a pair-wise correlation analysis based on a geometric 
mean to determine the optimal RGs. But all of them are based on qPCR data, which 
produce a recursive problem since a qPCR is required to decide if a RG is appropriate for 
qPCR. Reports describing that several of the most commonly used housekeeping genes 
exhibit substantial variability in microarray data sets or under different experimental 
conditions are becoming more and more frequent [12, 13]. Consequently, the choice of 
the best RGs should be based on preliminary experimental evidence when comparing 
different developmental stages, tissues, cell types or environmental conditions, as well 
as in careful testing and validation [14]. Hence, the selection of both RGs and normaliza-
tion method are critical for obtaining reliable quantitative gene expression assessments 
to correct for non-specific variation, such as differences in RNA quantity and quality.

In the search for appropriate, stable RGs, a data mining strategy based on the use of 
publicly available microarray data repositories was envisaged. It was available only for 
some species, usually model organisms [15], and provided useful RGs [7]. When micro-
array data are unavailable (i.e. for non-model organisms or unusual experimental condi-
tions), other strategies must be regarded to establish suitable RGs. Such is the case of 
the olive tree (Olea europaea L.), one of the most important oil-producing plant species 
all over the world. Although a first draft genome of this plant has just been published 
[16] and some gene expression analyses have been reported [17, 18], further and longer 
studies will be required to select reliable RGs. Several attempts for the identification of 
putative RGs in this species have been carried out, by evaluating olive genes orthologs 
to the best-ranked RGs from other crops. They were selected according to their stabil-
ity in olive tissues, as it occurs in other plants, and throughout different experimental 
conditions: different developmental stages of the olive mesocarp tissue across differ-
ent cultivars [19], and several fruit developmental/ripening stages and leaves subjected 
to wounding [20, 21]. The peculiarity of plant reproductive tissues makes the search of 
these RGs particularly tricky, as some well known housekeeping genes display differen-
tial expression in pistil, pollen and other floral organs [15]. Nevertheless, other analyses 
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indicate that a large proportion of constitutive transcripts are shared by most somatic, 
reproductive, and haploid tissues [22]. Consequently, a reasonable thought is that RGs 
can be more easily detected in model organism such as Arabidopsis, mice or humans, 
where more microarray data are available. The only problem with these species relies 
on the experimental conditions for which new RGs are required. It can be concluded 
that ideally RGs for qPCR validation could be inferred from the experimental data to be 
analyzed.

The falling cost of NGS (next-generation sequencing) technologies has made their use 
more and more frequent. This has resulted in an explosive growth of data that are gath-
ered into the Sequence Read Archive (SRA) [23]. This public repository allows for new 
discoveries by comparing the archived data sets. Since any RNA-seq study requires fur-
ther, experimental validation, and qPCR has become the de facto standard, we thought 
that NGS data can also be analyzed as a source of RGs. With this aim, an automatic 
workflow has been constructed to obtain highly, but invariantly, expressed RGs for par-
ticular experimental conditions based on the coefficient of variation (CV) of normalized 
expression values by RPMM (reads per mapped million) and managing both Roche/454 
and Illumina reads. Candidate RGs have been proposed for reproductive tissues of olive 
tree, Arabidopsis thaliana flowers, and three different human cancers. Experimental val-
idation of olive tree RGs is also included.

Methods
Sequence reads and reference transcriptomes

Olea europaea (olive tree) reads (SRA BioProject PRJNA287107) correspond to a Roche 
GS-FLX Titanium + sequencing experiment for different developmental stages of pollen 
and pistil, as described in [17]. Reads (mean length 385 nt) were mapped only against 
transcripts coding for a complete protein (9157 transcripts) in the reproductive tran-
scriptome described in ReprOlive (http://reprolive.eez.csic.es) [17].

Arabidopsis thaliana reads were obtained from SRA BioProject PRJEB9470. A late 
flowering strain (Columbia) and the reference Killean were compared to determine 
genes involved in early flowering [24]. Three biological replicates from ten day-old seed-
lings were paired-end sequenced (100 bp) on a HiSeq 1000. The Arabidopsis reference 
transcriptome (35,386 transcripts) was downloaded from Phytozome (https://phyto-
zome.jgi.doe.gov) and refers to TAIR10 [25].

Sequencing reads from matched normal and malignant tissues from the same patient 
were considered for the study in humans. Matched normal and malignant prostate tis-
sues from 14 Chinese [26] were obtained from SRA BioProject PRJEB2449 (HiSeq 2000, 
90 nt paired-end reads). Sequencing of matched samples of normal lung and small-cell 
lung cancer of 17 patients [27] were available under permission at EGA under accession 
EGAS00001000334 (HiSeq 2000, 75 nt, paired-end reads). Matched samples of normal 
lung and lung adenocarcinoma from 50 patients [28] were downloaded from ENA under 
accession number ERP001058 (HiSeq  2000, 100 nt, paired-end reads). The three data 
sets of human reads were mapped onto the cDNA data set of 176,241 transcripts (down-
loaded from the ENSEMBL repository) deduced from the human GRCh38 genome.

http://reprolive.eez.csic.es
https://phytozome.jgi.doe.gov
https://phytozome.jgi.doe.gov
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Read count table

A scheme of the automatic workflow executed in this work for obtaining the matrix of 
read counts of transcripts vs. experimental conditions is shown in Fig. 1a for the Arabi-
dopsis datasets. It has been constructed using AutoFlow [29], a workflow manager devel-
oped in Ruby in our laboratory. The workflow receives as input files the raw reads and 
the transcriptome, both in Fasta format. Each file of raw reads is considered an experi-
mental condition. Raw reads are then pre-processed using SeqTrimNext [30] to remove 
noisy sequences and retain only reliable reads. Useful reads are then mapped to the cor-
responding transcriptome using Bowtie2 [31] with default parameters and the −a option 
to allow each read to map in all possible transcripts. Mapped reads are then counted 
with Bio-samtools from BioRuby [32] with the −f2 option to count only reads where 
both ends are mapping on the same transcript (only for Illumina reads). The output is 
the tab-delimited, read count table where columns are experimental conditions, rows are 
transcripts, and the values are the number of counts of each transcript at each condition. 
Other pre-processing and mapping approaches can also be used provided that a tab-
delimited read count table of transcripts vs. experimental conditions is obtained.

Detection of reference genes

A second workflow (called findRGs, Fig. 1b) will look for the candidate RGs and is the 
main contribution of this work. It is also based on AutoFlow, although the basic func-
tions could be also implemented in a spreadsheet. The input required are the previous 

Fig. 1 Flow diagram as provided by AutoFlow for the detection of RGs using the SRA datasets of PRJEB9470 
from Arabidopsis. a The first workflow that prepares the reads, maps them on the transcriptome and provides 
the read count table. b The findRGs workflow for detecting candidate RGs. In this example, several filtering 
parameters were tested: 10 and 20% for the maximum CV, and 10,000, 30,000 and 100,000 reads for the 
minimum counted reads per transcript and condition. One Venn diagram by each CV cut‑off is obtained, as 
shown in Figs. 2, 4, 5 and 6
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read count table and, optionally, a tab-delimited annotation table with at least two col-
umns: the first column containing the ID of each transcript, and the second column 
containing a reference ID of an orthologous gene. For convenience, it is recommended 
to add a third column containing the description of the ortholog. As shown in Fig. 1b, 
counts in the table are then normalized as the number of reads mapped on a transcript 
divided by the number of transcriptome-mapped reads of the corresponding sample 
(RPMM: reads per mapped million). Coefficient of variation (CV, ratio of the stand-
ard deviation to the mean, expressed as a percentage) of RPMM along all conditions is 
obtained per transcript. This normalized table containing the RPMMs and the CVs is 
analyzed by two customizable parameters: (1) CV (10% maximum, although the range 
can move from 0 up to 20) to select for genes whose expression is as invariant as pos-
sible, and (2) counted reads per transcript and condition (minimum of 10; we propose 
to start with a minimum value resulting from the multiplication of 0.00003 by the low-
est library size) to select for RG with the highest level of expression to warrant the cor-
rect amplification by PCR. The workflow allows combining different values of these two 
parameters in a single execution. When the reference transcriptome used for mapping 
overestimates the number of transcripts, many of them will refer to the same gene. In 
this case, the optional annotation table serves to detect transcripts sharing the same 
ortholog or ID, and filter them to retain only the one with the highest RPMM value. 
Finally, a Venn diagram showing the number of specific and common orthologs between 
the different combinations of tested parameters is generated, in order to visualize the 
results and check the suitability of such parameters.

To install findRGs, first install Ruby 1.9.3 or higher and R 3.0.2 or higher, and then 
install AutoFlow, the workflow manager, as a gem with the command gem install auto-
flow. Other dependiencies have to be downloaded with the command git clone ‘https://
github.com/seoanezonjic/general_scripts.git’, and then placed in a ‘custom’ direc-
tory. This custom directory containing AutoFlow scripts must be included in the 
$PATH environment variable of your computer as export PATH =  "path_to_custom_
directory:$PATH" in the.baschrc file. Finally download findRGs to the AutoFlow envi-
ronment with the commad AutoFlow –get_template_repository ‘https://github.com/
rosariocarmona/autoflow_templates.git’. The workflow can be executed as AutoFlow −w 
findRGs −V ‘$input_file = read_count_table,$min_reads = [10;50;100],$cv_filter = [10, 
20],$annot = annotation_table, where −w indicates that findRGs is the workflow tem-
plate to be executed and −V sets the default parameters.

Experimental validation of candidates to RG in olive tree

Preliminary validation of some olive tree candidates was performed by semi-quantita-
tive, real time PCR analysis according to Alché et al. [33] using 25 cycles to ensure an 
exponential amplification rate. Primers used are listed in Table 1. A total of 5 μl of the 
PCR reaction were loaded per lane and separated on 2% agarose gels in Tris–borate-
EDTA (TBE). Equal loading of the RT mixture used for PCR was ensured by using Bio-
analyzer (Agilent Technologies) accurate quantitation.

https://github.com/seoanezonjic/general_scripts.git
https://github.com/seoanezonjic/general_scripts.git
https://github.com/rosariocarmona/autoflow_templates.git
https://github.com/rosariocarmona/autoflow_templates.git
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Results and discussion
Pre‑processed reads

NGS reads cannot be used for mapping as obtained from the corresponding sequencing 
platform [30]. Therefore, they were pre-processed with SeqTrimNext and then mapped 
with Bowtie2. Dataset sizes collected for this study were intentionally very heterogene-
ous (Additional file 1) to test the workflow in different settings. The percent of useful 
reads seems to be homogeneous within Illumina reads (>64%, mean 85%, depending on 
datasets), as well as in 454/Roche reads (>50%, mean 54%). The percent of mapped reads 
with respect to useful reads is also homogeneous within technologies (last column on 
Additional file 1), suggesting the appropriateness of the pre-processing. Dataset size het-
erogeneity is regular within three samples: in olive tree, raw reads range from 217,163 
to 262,749 (1.2 times) and useful reads from 111,760 to 150,185 (1.3 times); in Arabi-
dopsis, raw reads range from 9,107,610 to 13,076,233 (1.4 times) and useful reads from 
8,859,088 to 12,678,437 (1.4 times); and in prostate cancer, data are also very homoge-
neous, with a range of 1.2 times for both raw and useful reads (Additional file 1). But 
more extreme situations can be found on lung cancer samples: in small-cell lung cancer, 
raw reads range from 68.5 to 19.3 million raw reads (3.5 times) and useful reads from 
16.8 to 62.6 million reads (3.72 times); and on adenocarcinoma, raw reads range from 
10.9 to 109.3 million reads (5.5 times) and useful reads from 8.7 to 93.4 million reads 
(10.7 times). With such an heterogeneity, and in contrast to previously published [34], 
the transcript RNA abundance must be normalized within samples in order to remove 
the bias due to the sequencing depth of a sample.

Since no comparison between transcripts is performed, normalization by the length 
or the RNA species is not required. A widely used method of count normalization is 
RPKM (reads per kilobase per million reads) for single-end reads and the FPKM (single 

Table 1 Primers used for PCR amplification

Gene Direction Sequence

18S Forward 5′‑TTT GAT GGT ACC TGC TAC TCG GAT AAC C

Reverse 5′‑CTC TCC GGA ATC GAA CCC TAA TTC TCC

Ubiquitin monomer to pentamer Forward 5′‑ATGCAGAT(C/T)TTTGTGAAGAC

Reverse 5′‑ACCACCACG(G/A)AGACGGAG

Actin Forward 5′‑TTG CTC TCG ACT ATG AAC AGG

Reverse 5′‑CTC TCG GCC CCA ATA GTA ATA

Mitogen‑activated protein kinase Forward 5′‑CCAGGCGAGATTTCAGAGAC

Reverse 5′‑TCGGTTTAAGGTCTCGATGG

Proline transporter Forward 5′‑TTGTAGTGAGGGGCGGTTAC

Reverse 5′‑CATGCAACCAAAGAAGCAGA

l‑Ascorbate oxidase homolog Forward 5′‑ACAAAAGGCATTGCTTGGTC

Reverse 5′‑GGCCAAAACGAAGTTTACCA

Gliceraldehyde‑3‑phosphate dehydrogenase Forward 5′‑GGGCAAGATCAAGATTGGAA

Reverse 5′‑GTCTTCTCGCCGAACAAAAG

Salicylic acid‑binding protein Forward 5′‑GCATTGACCCGAAAATCCTA

Reverse 5′‑AGGATGGCGGATTTGTAGTG

S‑adenosylmethionine decarboxylase proenzyme Forward 5′‑AGCTTCTGGCATCAGGAAAA

Reverse 5′‑AGCCAGTACCCTCTCAAGCA
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fragment per kilobase and million reads) [35], even though they have been revealed to be 
inconsistent for comparisons within the same sample [36]. However, in this work, gene 
expression is compared for one gene along all samples, making unnecessary that nor-
malization by length, as each transcript count along samples will be divided by the same 
constant (transcript length). Moreover, in some  non-model organisms (such as olive 
tree), the transcript length is not well known since only a fragment of the transcript has 
been reconstructed, or the transcript is divided in several independent contigs. That is 
why we have introduced a simplification of RPKM as the RPMM (reads per mapped mil-
lion) based on the counts per million.

Workflow execution times

Execution times for the different groups of tasks of the complete workflow (pre-pro-
cessing, mapping and analysis with findRGs; Fig. 1) using three datasets from different 
species, different sequencing technology and increasing number of reads was assessed 
(Table 2). Using the same number of CPUs, the pre-processing task is by far the longest 
stage in olive tree and Arabidopsis (98% of total workflow time in olive tree and almost 
70% in Arabidopsis), being much more lasting in olive tree pistil than in Arabidopsis, 
mainly due to the longer Roche/454 read length. In contrast, mapping is the longest 
task using human prostate reads (around 85% of total workflow time), due to the larger 
size of the transcriptome on which reads try to align. Analysis with findRGs is quite fast 
(below 1 min per 100,000 reads) in the three cases, regardless of read type or length, the 
species and the number of experimental conditions. Therefore, the analysing workflow is 
considerably fast and can be offered as a web tool, even though long reads or large tran-
scriptomes might decrease its performance.

Candidate RGs in reproductive tissues of olive tree

Some transcripts are better suited RGs for the analysis of gene expression within a given 
tissue. Moreover, some of these RGs can even be considered appropriate for gene expres-
sion analyses involving several tissues [37]. For this reason, three different executions 
of the workflow were made in olive: pollen, pistil and both together. Less variant tran-
scripts were retained with two CV cut-off values: 10% (default) and 20% (non-stringent). 
Taking into account that reads come from Roche/454 platform, the minimum number 

Table 2 Workflow execution times estimated for three datasets

All time values are referred to 100,000 reads when executed on  SUSE® Linux Enterprise Server v12 using Opteron processors 
with 4 GB/core of RAM

Species/
tissue

No. raw 
reads

Mean 
length (nt)

No. tran‑
scripts

Pre‑pro‑
cessing

Mapping FindRGs Total

Olive tree 
pistil

767,963 525 9157 24 min 45 s 26 s 5 s 25 min 16 s

8 nodes, 192 
cpus

3 nodes, 72 
cpus

1 node, 9 
cpus

Arabidopsis 23,821,198 
(x2)

100 (x2) 35,386 43 s 19 s 0.2 s 1 min 2 s

8 nodes, 192 
cpus

2 nodes, 48 
cpus

1 node, 9 
cpus

Human 
prostate

969,884,666 
(x2)

90 (x2) 176,241 28 s 2 min 37 s 0.03 s 3 min 5 s

96 nodes, 
2304 cpus

24 nodes, 
576 cpus

1 node, 9 
cpus
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of mapped reads per gene was set to 10, 50 or 100. A comparative summary of results is 
shown on Fig. 2. While a significant number of candidates are obtained for pollen and 
pistil, respectively, with the most stringent conditions (>100 reads and CV < 10%), no 
candidate is obtained for both pollen and pistil and just one with less rigorous parame-
ters (>50 reads, CV < 20%). This suggests that comparative expression analyses of repro-
ductive tissues require a careful selection of RGs.

A detailed analysis of RGs obtained for these experimental conditions in olive trees 
have already been suggested and/or used as RGs in others species. In the pistil of the 
olive tree (Fig. 2a), one of the best RG is ubiquitin (with three different sequences: rp11_
olive_006479, rp11_olive_031243, rp11_olive_045557; Additional file  2). Ubiquitin is a 
traditional and extensively used RG in plants, for example, in banana [38], peach [39] 
and rice [40], among others. Polyubiquitin 10 (rp11_olive_006473; Additional file 2) also 
appears as RG and its highly stable expression has been also proven in Arabidopsis [15]. 
It has been validated as an RG in blueberry [41], cotton [42] and poplar [14], and used 
for normalizing in a work regarding olive fruit development and ripening [43]. Elonga-
tion factor 1−α (two different sequences: rp11_olive_008243 and rp11_olive_009319; 
Additional file 2) also emerges as a candidate RG in the olive pistil. It was evaluated as 
candidate for RG in potato (Solanum tuberosum), resulting in the most stable among the 
group tested during biotic and abiotic stresses [44]. It is therefore suggested that pistil 
is another organ where this gene is stable. It has also been validated as a good RG in 
many species. Another candidate is glyceraldehyde-3-phosphate dehydrogenase (rp11_
olive_003751; Additional file  2), which was identified as one of the best RGs for olive 
fruit development and ripening [20] and used as normalizer for the analysis of cDNAs 
associated with alternate bearing in olive [45]. Other candidates obtained in olive 

Fig. 2 Venn diagrams summarizing the number of RGs obtained for reproductive tissues of olive tree. Two 
cut‑off values were used for CV and three for counted reads. Reproductive RGs were obtained after combin‑
ing both pollen and pistil reads



Page 9 of 23Carmona et al. BioMed Eng OnLine 2017, 16(Suppl 1):65

pistil have never been used before as RGs, but they show outstanding RPMM values and 
very low CV. This is the case, among others, of salicylic acid-binding protein 2 (rp11_
olive_003751) and methylesterase 1 (rp11_olive_015883). Their use should be carefully 
considered and evaluated in the near future.

A larger number of candidate RGs are suggested for olive pollen (Fig. 2b; Additional 
file 3). No evidence is present in literature about their use as RGs for most of them, in 
spite of their apparently low variation in their expression. This is the case of MOB kinase 
activator (rp11_olive_000239; Additional file 3) or cytochrome P450 (rp11_olive_006957; 
Additional file 3). Their effectiveness as RGs merits the testing. The only gene proposed 
by the workflow as suitable RG for olive pollen that has been previously used is cysteine 
proteinase (rp11_olive_005653; Additional file 3). This gene has been validated as stable 
and as a suitable RG in Coffea arabica [46]. It was also evaluated as RG in olive fruit, but 
it was not among the most stable tested genes [21], at least in this tissue.

For both pollen and pistil tissues (“Reproductive” in Fig. 2c), two recognized RGs have 
been proposed in our analysis (Table 3). One of them, S-adenosylmethionine decarboxy-
lase (rp11_olive_005197_split_1), was previously pointed out as one of the most abun-
dant sequence in expressed sequence tag (ESTs) libraries of potato (Solanum tuberosum) 
[47]. In fact, this gene also emerged as candidate RG in pollen (Additional file  3) and 
pistil (Additional file  2). On the other hand, actin 7 (rp11_olive_005099; Table  3) has 
been extensively employed as RG in many species, such as chicory [48], berry [49] and 
pea [50]. Likewise, actin 7 also appears as a RG in the pollen analysis (Additional file 3) 
and it can also be observed in pistil under slightly less restrictive conditions (>50 reads, 
CV  <  10%; results non shown). Once again, unknown candidate RGs are obtained. 
Shaggy-related protein kinase eta (rp11_olive_006695; Table 3), for instance, would be 
another interesting gene to test. We can conclude that the approach followed here for 
reproductive tissues, alone or in combination, yields a set of RGs which is widely sup-
ported by previous results described in the literature.

Since RG candidates for reproductive tissues were only obtained when less stringent 
parameters than in pollen or pistil separately were used (Fig. 2), special care should be 
taken with such reproductive candidates to RGs. Moreover, these differences may reflect 
substantial differences in the differentiation of both tissues, in such a way that nearly 
none gene has the same expression level in both tissues.

Experimental validation of RGs in olive tree

It can be thought that the number of reads in a 454/Roche sequencing experiment is 
not enough to obtain a reliable prediction of RGs. Therefore, an experimental valida-
tion was envisaged to further support the predicted RGs obtained with findRGs. Poly-
ubiquitin and actin were validated by RT-PCR in different olive tissues in comparison 
to 18S, a widely used RG (Fig.  3). Both genes show thick and similar expression lev-
els in reproductive tissues (mature pollen and pistil). However, while ubiquitin seems 
to be a good RG in pollen and pistil, as well as in inflorescences, leafs and seeds, actin 
was not a good RG for seed. The other commented RGs in previous section resulted 
in the following outcomes: Two of the transcripts with lower variation in mature pol-
len (rp11_olive_002359: Mitogen-activated protein kinase, and rp11_olive_009589: Pro-
line transporter 2) showed a good level of expression in both the mature pollen and the 
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whole olive inflorescence, however, they presented lower/null expression in the pistil, 
seed and leaf. As expected, RT-PCR amplification of rp11_olive_004773, l-ascorbate 
oxidase homolog (one of the most expressed transcripts in olive pollen), also displayed 
a similar pattern, with bands of very high intensity corresponding to both the mature 
pollen and the inflorescence. Regarding transcripts proposed as RGs for the olive pistil 
due to their low variation, testing of the transcript rp11_olive_003751, glyceraldehyde-
3-phosphate dehydrogenase, by RT-PCR resulted in high expression in the pistil, and 
lower expression in the remaining tissues, including vegetative tissues as those of the 
leaf. The highly expressed transcript in the pistil rp11_olive_019507, salicylic acid-bind-
ing protein 2, generated an intense amplification band in the pistil, the mature pollen 
and the whole inflorescence, with no amplification in vegetative/seed tissues. Finally, a 
similar pattern of expression was detected when the proposed RG for reproductive (pol-
len + pistil) tissues was validated by RT-PCR. In this case, bands of identical intensity 
were present in both the pollen and the pistil, and with lower intensity, in the whole 

Fig. 3 Preliminary RT‑PCR validation of RGs predicted in this work in olive tissues in comparison to 18S
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inflorescence. Overall, RT-PCR validations showed a high degree of consistency with 
the results obtained by bioinformatics methods, even though a limited number of long 
reads were obtained by 454/Roche platform. This finding suggests that our bioinformatic 
approach should be widely used before any RT-PCR or qPCR experiment is carried out. 
In conclusion, the preliminary RT-PCR validation of the predicted RGs provides reliabil-
ity to the findRGs workflow approach.

Candidate RGs in Arabidopsis thaliana

The successful use of findRGs in olive tree drove us to extend it use to more complex 
datasets. Using publicly available SRA data in PRJEB9470 from Arabidopsis, three exe-
cutions (per replicate) of the workflows in Fig.  1 were carried out (Fig.  4). As before, 
less variant transcripts were retained with two CV cut-off values: 10% (default) and 
20% (non-stringent), but, since these reads were obtained with the Illumina platform, a 
greater minimum value of counted reads per gene is required. This minimum was set to 
10,000, 30,000, and 100,000 for comparative reasons. The lower number of candidates 
shown in Fig. 4 with respect to Fig. 2 can be explained by the different count threshold 
due to the different sequencing technology. The number of candidate RGs with the most 
stringent conditions (>100,000 reads, CV < 10%) is very homogeneous for the three rep-
licates (Fig.  4a–c) and they refer almost exclusively to the same gene, ribulose-1,5-bi-
sphosphate carboxylase/oxygenase (rubisco) (AT1G67090, AT5G38410, AT5G38420, 
AT5G38430; Table 4), being by far the best candidate in all the cases since their RPMM 
is much greater than other candidate RGs emerging in less stringent conditions (Addi-
tional file 4). Rubisco has been previously used as RG in tea leaf tissues [51]. However, 

Fig. 4 Venn diagrams summarizing the number of RGs obtained for Arabidopsis thaliana. Two cut‑off values 
were used for CV and three for counted reads
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it is not a good candidate for non-green (non-photosynthetic) tissues like those of the 
anther, neither for pollen [52].

Making a comparison between candidate RGs obtained with less rigorous conditions 
(>10,000 reads and CV < 10%), 77 candidates are shared by the three replicates (Addi-
tional file 4). Several of these genes have been previously commented in this paper as 
widespread used RGs, such as glyceraldehyde-3-phosphate dehydrogenase (AT3G26650, 
AT1G42970, AT3G04120 and AT1G13440; Additional file 4), and S-adenosylmethionine 
decarboxylase (AT3G02470; Additional file 4). Additionally, other RGs commonly used 
in literature emerged, such as phosphoglycerate kinase 1 (AT3G12780; Additional file 4), 
typically used as control. It shows constant expression levels in leaves, fruit and flowers 
in tomato [37] and it has also been described as one of the best RGs in Chrysanthemum 
species subjected to different kind of stresses [53]. Several ribosomal proteins are within 
the candidates (AT1G43170, AT1G02780, AT3G25520, AT5G39740, AT1G56070 and 
AT5G20290; Additional file 4). They are listed as housekeeping genes and have been sug-
gested as RGs based on analysis of microarray data [54]. However, since all these genes 
have significant expression variation across tissues, their suitability should be tested in 
every particular situation. α-Tubulin (AT1G50010 and AT1G04820; Additional file  4) 
also emerged as candidate. Although it has been extensively used as RG, controversial 
data have been reported on its reliability, being considered the best in certain species 
and the worst one in others [20]. There are many others well positioned candidate RGs 

Table 4 Best RGs in Arabidopsis thaliana according to Fig. 4 and ranked by CV

They were obtained for the three replicates with CV < 10% and minimum counted reads of 100,000. Transcript_id: transcript 
identifiers in TAIR database

Arabidopsis transcript_
id

RPMM CV (%) Mean 
RPMM

Description

Col_0 Kil_0

Replicate 1 AT1G67090.1 9476 9191 1.53 9333.5 Ribulose bisphosphate carboxylase small 
chain 1A

AT5G38410.1 7760 8135 2.36 7947.5 Ribulose bisphosphate carboxylase (small 
chain) family protein

AT5G38430.1 7054 7548 3.38 7301 Ribulose bisphosphate carboxylase (small 
chain) family protein

AT2G39730.1 4051 4343 3.48 4197 Rubisco activase

AT5G38420.1 7329 7889 3.68 7609 Ribulose bisphosphate carboxylase (small 
chain) family protein

Replicate 2 AT2G39730.1 3906 4323 5.07 4114.5 Rubisco activase

AT1G67090.1 8523 9636 6.13 9079.5 ribulose bisphosphate carboxylase small 
chain 1A

AT1G21310.1 7013 7976 6.42 7494.5 Extensin 3

AT5G38410.1 7047 8438 8.98 7742.5 Ribulose bisphosphate carboxylase (small 
chain) family protein

Replicate 3 AT5G38420.1 8708 8526 1.06 8617 Ribulose bisphosphate carboxylase (small 
chain) family protein

AT5G38430.1 8424 8169 1.54 8296.5 Ribulose bisphosphate carboxylase (small 
chain) family protein

AT2G39730.1 4365 4524 1.79 4444.5 Rubisco activase

AT5G38410.1 9172 8822 1.95 8997 Ribulose bisphosphate carboxylase (small 
chain) family protein

AT1G67090.1 11,051 9694 6.54 10,372.5 Ribulose bisphosphate carboxylase small 
chain 1A
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emerging in all executions that would deserve experimental testing, for instance fruc-
tose-bisphosphate aldolase (AT2G21330 and AT4G38970; Additional file  4) or GTP 
binding elongation factor Tu (AT1G07920, AT1G07930, AT1G07940 and AT5G60390; 
Additional file 4).

The fact that the same gene appears as candidate RG in the three replicates separately 
indicates that the possible variability between replicates appears not to be affecting the 
estimation. The calculation of RGs combining all replicates extracted the same candi-
date RGs (results not shown), suggesting that an average number of reads per replicate 
of ~11,000,000 (Additional file 1) could be enough for the aim of the workflow. In con-
clusion, the list of candidate RGs obtained by means of our workflow offers a first and 
reliable estimation of the most appropriate RGs for expression studies between these 
two Arabidopsis strains in these particular experimental conditions. It also suggests 
that mapping with less than 11 millions of reads could be enough to obtain a reliable 
prediction.

RGs and human cancers

Many studies on cancer perform multiple comparisons (between tumors and normal 
tissues, different stages, response to treatments…). RGs needed for these comparisons 
should have consistent expression level in the conditions to be analyzed. The search of 
appropriate RGs in such cases becomes particularly tricky and challenging, since cancer 
is associated with changes in gene expression involving many pathways, and it is dem-
onstrated a huge heterogeneity within and among cancers [55]. Even traditional house-
keeping genes are likely to change their expression level during the course of the disease 
[56], since they might not only be implicated in the basal cell metabolism but also in 
other cell functions [57]. Therefore, it is crucial to perform preliminary evaluations for 
identifying the most stably expressed genes in each situation. Moreover, it is not unu-
sual that cancer experiments have many tens of replicates [28]. Therefore, this is a good 
situation to test if findRGs can cope with large amount of samples with sample size het-
erogeneity in a high throughput experiment. Taking into account the higher number of 
samples and the possible increase of variability, less stringent filtering parameters values 
of maximum CV and minimum counted reads were tested and adapted in each particu-
lar situation.

Candidate RGs for prostate cancer

Figure 5a shows the number of candidate RGs using different cut-off values for CV and 
counted reads in prostate samples. No candidate RG is obtained in the most stringent 
conditions (>100,000 and CV < 15%) and only one with a slightly more permissive maxi-
mum CV value of 20%. More RGs were obtained using less stringent conditions; those 
obtained with >30,000 and CV < 20% are presented in Table 5. Many of them have been 
used as RGs in cancer studies. For example, the tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein zeta polypeptide (ENST00000395957.6; Table  5) 
has been repeatedly studied as RG candidate in prostate cancer, although it has not been 
between the most stable genes [58, 59]. Nevertheless, it is one of the best ranked as sta-
ble genes for the comparison between cancer stem cells and native cells [60]. Nascent-
polypeptide-associated complex alpha polypeptide (ENST00000356769.7; Table 5) is a 
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human housekeeping gene evaluated and sometimes proposed as RG in several types 
of cancer, such as breast cancer [61] or colon cancer [11]. Phosphoglycerate kinase 1 
(ENST00000373316.4; Table 5), another human housekeeping gene, was typically used 
as RG, as in plants, and has been demonstrated to be affected between normal and 
malignant tissues in certain malignancies, but not in others [60, 62]. Genes encoding 
the different subunits of ATP synthase mitochondrial are considered human housekeep-
ing genes [63], some of them considered RGs for some tumors [11], whereas no in all 
[64]. Following our results, ENST00000398752.10 and ENST00000495596.5 (Table  5) 
should merit experimental consideration. Several ribosomal proteins are also pro-
posed as RGs (ENST00000314138.10, ENST00000519807.5, ENST00000338970.10 and 
ENST00000456530.6; Table 5). Despite their widely spread use as RGs, expression vari-
ations of these genes have been detected not only between tumors and healthy tissues 
[65], but also across normal tissues [54]. 

Candidate RGs for small‑cell lung cancer

No candidates were obtained with the same cut-offs of prostate cancer. Then, RG selec-
tion was carried out with minimum number of mapped reads set to 10,000 and 20,000 
and CV cut-off values 15 and 20% (Fig. 5b). Even so, the number of candidates with the 
most stringent CV cut-off (<15%) was very low, indicating variability between samples. 
The candidate RGs obtained with the less stringent combination of filtering parameters 
(>10,000 and CV < 20%) are given in Table 6. Ribosomal proteins (ENST00000456530.6, 
ENST00000422514.6 and ENST00000338970.10; Table 6) and a gene encoding a subunit 
of ATP synthase mitochondrial (ENST00000495596.5; Table 6) are present, as in pros-
tate. Ubiquitin A-52 residue ribosomal protein fusion product 1 (ENST00000442744.6; 
Table 6) is also suggested and has been identified as RG in breast cancer [61], as well as 

Fig. 5 Venn diagrams summarizing the number of RGs obtained for matched samples of normal and malig‑
nant tissues of three different human cancers: prostate, small‑cell lung cancer and lung adenocarcinoma. Two 
cut‑off values per cancer were used for CV and different counted reads depending on the tissue
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Table 5 Best candidate RGs for normal and malignant prostate tissues according to Fig. 5a 
and ranked by CV

They were obtained with CV < 20% and minimum counted reads of 30,000. Transcript_id: human transcript identifiers in 
ENSEMBL database

Transcript_id CV (%) Mean RPMM Gene Description

ENST00000510199.5 8.95 99.8 GNB2L1 Guanine nucleotide binding protein (G protein), 
beta polypeptide 2‑like 1

ENST00000425566.1 9.91 127.3 RPL23AP87 Ribosomal protein L23a pseudogene 87

ENST00000314138.10 10.52 134.9 RPL27A Ribosomal protein L27a

ENST00000412331.6 11.18 108.1 EIF3L Eukaryotic translation initiation factor 3 subunit L

ENST00000494591.1 11.49 78.4 RPSAP36 Ribosomal protein SA pseudogene 36

ENST00000519807.5 11.5 168.1 RPS20 Ribosomal protein S20

ENST00000356769.7 11.58 92.8 NACA Nascent polypeptide‑associated complex alpha 
subunit

ENST00000496593.5 12.28 253.5 RPLP0P2 Ribosomal protein, large, P0 pseudogene 2

ENST00000338970.10 12.63 176.9 RPL14 Ribosomal protein L14

ENST00000610672.4 12.74 244 MED22 Mediator complex subunit 22

ENST00000395957.6 12.97 95.5 YWHAZ Tyrosine 3‑monooxygenase/tryptophan 
5‑monooxygenase activation protein, zeta

ENST00000234831.9 13.69 108.1 TMEM59 Transmembrane protein 59

ENST00000353047.10 14.01 156.1 CTSB Cathepsin B

ENST00000556083.1 14.36 137.5 ACTN1 Actinin, alpha 1

ENST00000558264.5 14.59 129.8 TPM1 Tropomyosin 1 (alpha)

ENST00000394621.6 14.87 189.2 STEAP2 STEAP2 metalloreductase

ENST00000335508.10 15.15 116 SF3B1 Splicing factor 3b subunit 1

ENST00000341423.9 15.26 134.4 HMGB1 High mobility group box 1

ENST00000564521.6 15.84 167 ALDOA Aldolase, fructose‑bisphosphate A

ENST00000398752.10 16.45 200.6 ATP5A1 ATP synthase, H + transporting, mitochondrial F1 
complex, alpha subunit 1, cardiac muscle

ENST00000264657.9 16.84 137.7 STAT3 Signal transducer and activator of transcription 3 
(acute‑phase response factor)

ENST00000357214.5 17.4 105.5 SFPQ Splicing factor proline/glutamine‑rich

ENST00000456530.6 17.44 118.5 RPL15 Ribosomal protein L15

ENST00000495596.5 17.64 164.2 ATP5G2 ATP synthase, H + transporting, mitochondrial Fo 
complex subunit C2 (subunit 9)

ENST00000391959.5 17.67 125.6 PPP1R12B protein phosphatase 1 regulatory subunit 12B

ENST00000369936.2 17.97 235 KIAA1324 KIAA1324

ENST00000300619.11 19.01 104.5 ZNF91 Zinc finger protein 91

ENST00000401722.7 19.21 156.4 SLC25A3 Solute carrier family 25 (mitochondrial carrier; 
phosphate carrier), member 3

ENST00000618621.4 19.43 405.9 LPP LIM domain containing preferred translocation 
partner in lipoma

ENST00000249822.8 19.53 107.3 ARPP19 cAMP regulated phosphoprotein 19 kDa

ENST00000353411.10 19.68 122.8 SKP1 S‑phase kinase‑associated protein 1

ENST00000375856.4 19.76 151.8 IRS2 Insulin receptor substrate 2

ENST00000373316.4 19.79 118.1 PGK1 Phosphoglycerate kinase 1

ENST00000306085.10 19.9 159.2 TRIM56 Tripartite motif containing 56

ENST00000357308.8 20 105 GFPT1 Glutamine–fructose‑6‑phosphate transaminase 1
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in bladder or testis through microarray meta-analysis of human clinical samples [66]. 
Therefore, these less stringent cut-offs are providing reliable RGs.

Candidate RGs for lung adenocarcinoma

Figure  5c shows that samples of normal lung and lung adenocarcinoma are the more 
variant instances analyzed in this work since only 7 RGs are obtained using  >10,000 
mapped reads and CV  <  15%. Therefore the list of candidate RGs was obtained 
with a minimum counted reads of 30,000 and a CV cut-off of 20% (Table  7). Some 
of the RGs (ENST00000270460.10, ENST00000323443.6, ENST00000367975.6, 
ENST00000528973.1, ENST00000262160.10, ENST00000398004.3, ENST00000 
396444.7, ENST00000258711.7, ENST00000329627.11 and ENST00000238831.8; 
Table  7) have been described as human housekeeping genes [63], but there are no 
evidence about their use as RGs. Several zinc finger proteins (ENST00000328654.9, 
ENST00000307635.3 and ENST00000253115.6; Table  7) have already been suggested 
as RGs in cancerous kidney and lymph node tissues [66], but are not suitable RGs for 
normal and colorectal cancer tissues [64]; however, according our results, they seem to 
be appropriate for studies in normal and cancerous lung. Some of the candidate RGs 
previously commented for prostate or small-cell lung cancer, such as ribosomal proteins 

Table 6 Best candidate RGs for normal lung and small-cell lung cancer according to Fig. 5b 
and ranked by CV

They were obtained with CV < 20% and minimum counted reads of 10,000. Transcript_id: human transcript identifiers in 
ENSEMBL database

Transcript_id CV (%) Mean RPMM Gene Description

ENST00000425566.1 12.68 76.2 RPL23AP87 Ribosomal protein L23a pseudogene 87

ENST00000338970.10 12.96 103.3 RPL14 Ribosomal protein L14

ENST00000442744.6 13.28 69.4 UBA52 Ubiquitin A‑52 residue ribosomal protein fusion 
product 1

ENST00000456530.6 16.02 76.7 RPL15 Ribosomal protein L15

ENST00000553521.5 16.21 50.2 SRSF5 Serine/arginine‑rich splicing factor 5

ENST00000373242.6 16.8 73 SAR1A Secretion associated, Ras related GTPase 1A

ENST00000261890.6 16.88 55.3 RAB11A RAB11A, member RAS oncogene family

ENST00000510199.5 17.11 66 GNB2L1 Guanine nucleotide binding protein (G protein), 
beta polypeptide 2‑like 1

ENST00000234115.10 17.59 63.6 PLEKHB2 Pleckstrin homology domain containing B2

ENST00000401722.7 17.69 83.6 SLC25A3 Solute carrier family 25 (mitochondrial carrier; 
phosphate carrier), member 3

ENST00000412331.6 17.76 54.6 EIF3L Eukaryotic translation initiation factor 3 subunit L

ENST00000422514.6 18.83 80.3 RPL23A Ribosomal protein L23a

ENST00000342374.4 19.13 45.2 SERINC3 Serine incorporator 3

ENST00000483316.1 19.26 77.6 BAZ2B Bromodomain adjacent to zinc finger domain 2B

ENST00000335508.10 19.41 72.4 SF3B1 Splicing factor 3b subunit 1

ENST00000471227.3 19.62 66.4 RPL23AP2 Ribosomal protein L23a pseudogene 2

ENST00000334256.8 19.77 46.9 KPNA4 Karyopherin alpha 4 (importin alpha 3)

ENST00000332361.5 19.79 64.5 RPL23AP57 Ribosomal protein L23a pseudogene 57

ENST00000416139.1 19.81 64.5 RPL23AP18 Ribosomal protein L23a pseudogene 18

ENST00000495596.5 19.84 71.5 ATP5G2 ATP synthase, H + transporting, mitochondrial Fo 
complex subunit C2 (subunit 9)

ENST00000446445.1 19.87 64.1 RPL23AP43 Ribosomal protein L23a pseudogene 43
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(Tables 4, 5), are also retained for lung adenocarcinoma with the less stringent condi-
tions (>10,000 reads and CV < 20%; non shown results). This prompted us to think that 
those transcripts could finally be suitable for studies involving several types of normal 
and cancerous cells.

Candidate RGs for different combination of malignant and normal tissues

Although every cancer is an independent scenario that should be analyzed separately 
in the search of RGs, different combinations or tissues and/or states were tested. When 
combining normal and malignant lung samples, filtering parameters were still less strin-
gent: CV is maintained in 15 and 20% and the minimum counted reads was set to 7500 
and 10,000 (Fig. 6). The analysis was performed with only normal lung and combining 
normal and malignant samples. The resulting RG candidates for normal lung are listed 
in Additional file 5. The resulting RGs for combined normal and malignant lung samples 
are listed in Additional file 6.

Candidate RGs for normal lung tissues revealed some known RGs, such as nascent-
polypeptide-associated complex alpha polypeptide (ENST00000356769.7; Additional 
file  5) [11, 61], ornithine decarboxylase antizyme 1 (ENST00000586054.2; Additional 

Table 7 Best candidate RGs for normal normal lung and lung adenocarcinoma according 
to Fig. 5c and ranked by CV

They were obtained with CV < 20% and minimum counted reads of 30,000. Transcript_id: human transcript identifiers in 
ENSEMBL database

Transcript_id CV (%) Mean RPMM Gene Description

ENST00000411857.2 16.34 224.7 HNRNPA1P54 Heterogeneous nuclear ribonucleoprotein A1 
pseudogene 54

ENST00000270460.10 18.06 204.1 EPN1 Epsin 1

ENST00000373191.8 18.17 195.4 AGO3 Argonaute 3, RISC catalytic component

ENST00000323443.6 18.2 218.4 LRRC57 Leucine rich repeat containing 57

ENST00000367975.6 18.35 204.8 SDHC Succinate dehydrogenase complex subunit C

ENST00000528973.1 18.42 211 PCSK7 Proprotein convertase subtilisin/kexin type 7

ENST00000262160.10 18.7 214 SMAD2 SMAD family member 2

ENST00000607772.5 18.73 200.3 CNKSR3 CNKSR family member 3

ENST00000261854.9 18.85 198.2 SPPL2A Signal peptide peptidase like 2A

ENST00000398004.3 19.12 316.1 SLC35E3 Solute carrier family 35 member E3

ENST00000396444.7 19.21 294 USP8 Ubiquitin specific peptidase 8

ENST00000304177.9 19.28 212.4 C15orf40 Chromosome 15 open reading frame 40

ENST00000328654.9 19.31 241.8 ZNF26 Zinc finger protein 26

ENST00000307635.3 19.34 218.1 ZNF556 Zinc finger protein 556

ENST00000258711.7 19.38 323.7 CHST12 Carbohydrate (chondroitin 4) sulfotransferase 12

ENST00000329627.11 19.41 318.1 PEX26 Peroxisomal biogenesis factor 26

ENST00000322122.7 19.49 192.7 TRIM72 Tripartite motif containing 72, E3 ubiquitin 
protein ligase

ENST00000238831.8 19.5 291.1 YIPF4 Yip1 domain family member 4

ENST00000258149.9 19.71 222.8 MDM2 MDM2 proto‑oncogene, E3 ubiquitin protein 
ligase

ENST00000253115.6 19.72 227.3 ZNF426 Zinc finger protein 426

ENST00000614987.4 19.74 346.8 RPS6KA5 Ribosomal protein S6 kinase, 90 kDa, polypep‑
tide 5
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file  5) [66], although with some up-regulation in cancer [67], and small ubiquitin-like 
modifier 2 gene [66]. For the whole set of lung samples (Fig. 6b; Additional file 6), the 
ribosomal protein L14 (ENST00000338970.10; Additional files 5, 6), already described 
in normal and cancerous kidney tissues [66], was found. Interestingly, ATP synthase 
subunit alpha mitochondrial (ENST00000398752.10; Additional files 5, 6) has not been 
described as RG in literature and deserves a careful testing.

The analysis combining the whole normal and malignant human cancers samples 
described here (prostate cancer, small-cell cancer lung and lung adenocarcinoma) did 
not provide any RG, revealing that the addition of a completely different tissue (prostate) 
supposes a new source of variability between samples.

Conclusion
The automatic workflow presented in this work takes advantage of new and publicly 
available NGS data to predict the suitable RGs for every experimental situation. Those 
candidate RGs can be useful for qPCR validation in further expression analyses. The 
analysis is particularly suitable in non-model species, for which few or no RGs have 
been identified, or in new experimental conditions where no previous data are available. 
The workflow seems to be independent of the sequencing technology that generates the 
reads, the number of reads, as well as the read length, since it seems to work equally 
well with many short reads (Illumina from Arabidopsis and human) than with a few long 
reads (Roche/454 from olive tree). It supports massive data analyses with low (Arabidop-
sis) and high (adenocarcinoma) number of samples. Time executions for the different 

Fig. 6 Venn diagrams summarizing the number of RGs obtained for different combinations of lung samples: 
samples from only normal lung (a) or normal and malignant lung (b) were analyzed with two CV cut‑off 
values per combination and two different counted reads
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tasks of the workflow are reasonably short, since the time consuming parts (pre-process-
ing and mapping) are required for any NGS analysis and are performed only once. Our 
workflow is customizable and adaptable to the requirements of each experimental case. 
The algorithm in findRGs has been acceptably tested for three species (olive, Arabidopsis 
and human) in comparison studies focused in very different biological aspects, so as dif-
ferent developmental, physiological or pathological stages (reproductive tissues, flower 
and cancer). Lists of candidate RGs have been generated in every case, some of which 
have even been already described in the literature and others have been preliminarily 
validated here (Fig. 3); both findings are supporting this experimental approach. More 
interestingly, new and more suitable RGs can be discovered with findRGs. Even though 
the expression level and stability of these new RGs may require some experimental vali-
dation prior to their utilization for normalization, we encourage the utilization of find-
RGs where possible, since it can be quite helpful as a preliminary approximation about 
the best RG candidates, prior to each single expression experiment.
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