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Abstract

Background: The users of today’s commercial prosthetic hands are not given any
conscious sensory feedback. To overcome this deficiency in prosthetic hands we
have recently proposed a sensory feedback system utilising a “tactile display” on
the remaining amputation residual limb acting as man-machine interface. Our
system uses the recorded pressure in a hand prosthesis and feeds back this
pressure onto the forearm skin. Here we describe the design and technical
solution of the sensory feedback system aimed at hand prostheses for trans-radial/
humeral amputees. Critical parameters for the sensory feedback system were
investigated.

Methods: A sensory feedback system consisting of five actuators, control electronics
and a test application running on a computer has been designed and built. Firstly,
we investigate which force levels were applied to the forearm skin of the user while
operating the sensory feedback system. Secondly, we study if the proposed system
could be used together with a myoelectric control system. The displacement of the
skin caused by the sensory feedback system would generate artefacts in the
recorded myoelectric signals. Accordingly, EMG recordings were performed and an
analysis of the these are included. The sensory feedback system was also
preliminarily evaluated in a laboratory setting on two healthy non-amputated test
subjects with a computer generating the stimuli, with regards to spatial resolution
and force discrimination.

Results: We showed that the sensory feedback system generated approximately
proportional force to the angle of control. The system can be used together with a
myoelectric system as the artefacts, generated by the actuators, were easily removed
using a simple filter. Furthermore, the application of the system on two test subjects
showed that they were able to discriminate tactile sensation with regards to spatial
resolution and level of force.

Conclusions: The results of these initial experiments in non-amputees indicate that
the proposed tactile display, in its simple form, can be used to relocate tactile input
from an artificial hand to the forearm and that the system can coexist with a
myoelectric control systems. The proposed system may be a valuable addition to
users of myoelectric prosthesis providing conscious sensory feedback during
manipulation of objects.
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Background
In the intact hand, sensory feedback results from the stimulation and activation of the

mechanoreceptors of the skin [1] and is important for the control of the hand [2].

When the signals from these receptors result from an active exploratory procedure,

they can be used to perceive the shape of a novel object [3,4]. This information is also

merged with contextual information and expectations based on previous experiences

[5] and works together with working memory to form representations of the shape of

an object [6]. In addition, the receptors of the hand and the sensory inflow are neces-

sary to produce the feeling that the hand is a part of the body. The lack of sensation

from an extremity can even give rise to effects where the extremity is no longer felt as

a part of the body [7].

Today’s commercial prosthetic hands provide no conscious sensory feedback to the

user. To overcome this deficiency in prosthetic hands a sensory feedback system utilis-

ing a “tactile display” on the remaining residual limb acting as man-machine interface

could be used. Earlier proposed systems have focused on vibrations or an electric cur-

rent to convey the sensory feedback [8-11]. These systems have enhanced the ability of

the user to discriminate the applied pressure/force to the prosthetic hand, but they are

based on transforming one physical stimuli to another, e.g. pressure to vibration.

Other systems using direct pressure to pressure feedback [12-14] using a single site of

stimulation have focused on the feedback of the total grasp force in a prosthetic hand.

Targeted reinnervation surgery is the base for an elegant type of indirect sensory

feedback that recently has been proposed for full-arm amputees. Targeted reinnerva-

tion takes nerves that once served the hand, a skin region of high functional impor-

tance, and redirects them to less functionally relevant skin areas, typically on the chest

adjacent to the amputation site. When some of these individuals are touched on this

reinnervated skin they feel as though they are being touched on their missing limb

[15,16]. The proposed sensory feedback system could well be used on these patients.

For an amputee using a prosthetic hand, the absence of tactile feedback is noticeable

and might influence intuitive use of the prosthesis as well as sense of ownership of the

prosthesis [17-21]. There exist myoelectric prostheses with sensors that provide feed-

back to a closed control system which tightens a grip as slippage of an held object is

detected [22]. However, the sensation is not fed back to the user and prostheses that

lack the ability of giving sensory feedback to the user have a higher risk of not being

used [23].

We have recently presented a new concept and initial evaluation in non-amputees of

a tactile display aimed for sensory feedback in hand prostheses [24]. Our concept is

based on tactile sensors in the prosthesis connected to an array of tactile stimulators

on the residual limb. When the sensors are activated by touch and manipulation of

objects in every day use of the prosthesis it causes a tactile stimulation on the residual

limb. A system has been designed and built consisting of five actuators, control elec-

tronics and a test application running on a computer. Five actuators are mounted on

the forearm skin providing sensory information to the user. Each finger is represented

by one actuator providing spatial and force sensory feedback on the forearm. The con-

cept utilises the neural mechanoreceptors for pressure in the forearm skin, hereby

inducing physiologically natural tactile stimuli. The hypothesis is that the sensation

produced on the forearm provides a proportional pressure sensation to the stimuli and
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that it can be used in coexistence with a myoelectric control system thus providing

useful and acceptable feedback. Here we present the design and technical solution of

such a “tactile display” together with an investigation of critical parameters.

Methods
Design and technical description of the system

The tactile display consists of the following components: a number of actuators to be

placed on the amputee’s residual limb providing tactile feedback and control electro-

nics and software. A hardware interface is also available that makes it possible to con-

trol the tactile display from software running on computer in addition to the normal

control which is based on the sensors placed on the prosthetic hand. This facilitates

sensory feedback tests. The components and a prosthetic hand would be connected as

described in the system block diagram presented in Fig. 1. The actuators used were

digital servos (Graupner DS281, Germany). Affixed to the servo shaft is a 15 mm long

lever at the end of which there is a plastic button, with a 12 mm diameter, see Fig. 2,

that is pressed against the skin. The plastic button is fixed to the lever using a hinge

mechanism to allow the plastic button to always be parallel to the skin. As the motor

rotates the plastic button will cause a displacement of the skin. A microcontroller

(MSP430F149, Texas Instruments) and associated hardware was used to control the

digital servos.

A user application for a computer was developed to enable a graphical user interface

when testing the sensory feedback system (see Fig. 3). It communicates with the hard-

ware through a virtual serial port on the computer (USB). The software is more flex-

ible, easier to use and it is faster to develop new test programs and schemes compared

to re-programming the microcontroller. During tests, the computer software was used

to log the participant’s performance, for randomly selecting stimuli and to provide

feedback to participants during the training sessions. The software was built using Lab-

VIEW to facilitate the test and use of the tactile display. The software was used to

train the user by applying a stimuli and at the same time providing a visual

Figure 1 Tactile Display and Prosthetic Hand Block Diagram. The sensory feedback system was
evaluated in a lab setting with a PC generating the stimuli wrt spatial resolution and force discrimination.
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representation of the stimuli. In the validation tests the program was used to generate

randomly selected stimuli.

Applicability of the system in an environment with myoelectric signals

EMG-signals, that would be used to control a prosthetic hand, would be influenced by

the tactile display as the actuators for the tactile display and the EMG electrodes would

be placed fairly close to one another. To see how this would influence the EMG, signal

Figure 2 Placement of actuators on the forearm reflecting the placements of the fingertips of an
open hand drawn onto the forearm.

Figure 3 Tactile Display LabView application frontend. Controls and virtual hand as seen on the
program used to generate the stimuli.
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measurements with electrodes (Ag/AgCl Red Dot electrodes from 3 M) close to the

actuators (~1 cm) were performed. The recorded EMG signal was subsequently filtered

with FIR high-pass filter with a cut-off frequency of 20 Hz to remove the artefacts.

Applied force and displacement of skin

The actuators, i.e. servomotors, were operated by giving an angle command. A lever

fixed on the axle of the servomotor was then pushing on the skin. As the servo arm

can be rotated in fixed steps, the displacement of the button at the end of the lever

can be calculated. The displacement of the button pushing on the skin then follows a

sine function of the controlled motor angle (see Fig. 4a). An increasing displacement

then corresponds to an increase in force. This simplification was investigated by mea-

suring force as a function of displacement of skin and tissue on the forearm on two

participants using a force gauge (Lutron FG-5000A, Lutron Electronics, Taiwan). The

force gauge was mounted on a vertical “slider” with a ruler and the displacement was

measured with this ruler while pressing the force gauge down on the skin to a certain

force based on the reading from the force gauge.

Evaluation on two healthy non-amputated subjects

To evaluate the system we performed experiments on two healthy non-amputees who

have not previously been exposed to the system. The tactile display was placed (see

Fig. 2) and fixated on the right forearm of the participant using an elastic restraining

bandage. During the tests the participants were sitting in front of the computer screen

with the arm in a relaxed position resting on a table. Earmuffs were worn at all times

to prevent auditory stimuli from the sound of the servo motors. In each test the stimu-

lus was randomly selected and presented for three seconds. The participant was blind-

folded and had to guess finger discrimination and force level without any feedback

during the test session.

Three different tests were carried out to investigate localization discrimination (i.e.

which finger/site was being stimulated) of the fingers and force sensitivity at a single

site of feedback. The first test was to discriminate between the thumb (D1), long finger

(D3) and little finger (D5). The second test was to discriminate between all the fingers;

thumb, index, long, ring and little finger (D1-D5, respectively) and the third was to

test the force sensitivity on a single digit. A static mapping between skin displacement

Figure 4 Mapping between servo displacement and force . An increasing servo displacement
corresponds to an increase in force. This simplification was investigated by measuring force as a function
of displacement of skin and tissue on two participants.
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and force was used. Five levels, named L1-L3-L5-L7-L9, were used for the force sensi-

tivity test. L9 representing the largest force. Each of the tests was proceeded by a learn-

ing phase consisting of an equal amount of stimulation as the actual test. The learning

phase and the test phase lasted approximately ten minutes each. In the learning phase,

the participants watched the computer screen showing the LabVIEW application

which revealed the site of stimulation in the localization discrimination tests and the

level of force in the force sensitivity tests. In this way, the participants learned the dif-

ferent stimulation sites and the force level.

Results
A tactile display consisting of five actuators, control electronics and a test application

has been designed and realised. The tactile display was controlled from a computer

using a serial interface. A PC application with the capacity to generate arbitrary sti-

muli, selecting one or several actuators, individual levels on each actuator and duration

of stimuli was used.

The relationship between force, skin displacement and angle value for the digital ser-

vos was studied. A calculated mapping between the different angles of the servomotor

and the displacement of the lever can be seen in Fig. 4a. Measurements on skin inden-

tation and force applied to the skin can be seen in Fig. 4b. As can be seen in Fig. 4 a

mapping between force on the skin and angle command to the servo can be estimated.

An investigation was made to see if the displacement caused by the actuators of tac-

tile display would influence EMG-signals. The recorded EMG signals during operation

of the sensory feedback system can be seen in Fig. 5a. The arrows in the figure indicate

when the sensory feedback system actuator was activated. Thus the closely located

actuator did influence the EMG signal. The EMG signals were then filtered using a

high-pass filter, to remove the artefacts caused by the tactile display. The filtered EMG

signals can be seen in Fig. 5b were the artefacts have been completely removed.

A test of the tactile display was also carried out on healthy test subjects. Table 1

describes which test, the number of stimuli of a particular test, the results of the test

and a nearest neighbour analysis. D1 to D5 denotes which digit the stimuli represents

(D1 being the thumb and D5 being the little finger). L1 to L9 represents the force

level of a stimuli. The percentage values indicate how many correct answers were

given during the test and the number in parentheses the number of stimuli.

Figure 5 Tactile Display influence on EMG-signal. (a)Tactile Display influence on EMG-signal, shown by
the arrows (b) Tactile Display artefacts removed from the EMG-signal with a high-pass filter.
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The “+/-” columns shows that both a positive and a negative nearest neighbour

answer is also deemed correct. E. g. an answer stating digit 4 or digit 2 would also be

judged as correct for a stimulus at digit 3. Using an analysis such as the one described

above, it is possible to see a bias in the answers. Thus, when the answer was incorrect

it was most often one of the neighbouring digits.

Discussion and conclusions
We have previously presented a system for sensory feedback in hand prostheses to

provide the user with a sense of touch and here we elaborate the details of the techni-

cal solution. The system aims at relocating tactile input from a hand prosthesis

equipped with sensors to the forearm skin using actuators mounted on the forearm,

thus providing sensory information to the user. The concept utilises the neural

mechanoreceptors for pressure in the forearm skin. Every time the user touches and

manipulates an object with the prosthesis, the mechanoreceptors of the forearm skin

are activated by the tactile display.

One concern was that the actuator relaying pressure onto the forearm would gener-

ate artefacts in the recorded myoelectric signals as electrodes would also be located on

the forearm. The EMG measurement from very closely located electrodes (1 cm)

shows some influence on the recorded EMG that was easily filtered out by a high pass

filter with a 20 Hz corner frequency. This filter would also reduce artefacts in the

EMG originating from movement of the prosthesis. Filtering out signals below 20 Hz

will also filter out EMG signals. However, the lower frequencies have been filtered out

in earlier works of myoelectric control [25] where a high pass filter with a corner fre-

quency as high as 200 Hz was reported with a high recognition ratio on a group of

amputees. A cut-off frequency of 20 Hz should therefore not reduce the performance

of a myoelectric control system.

An important issue is that the spatial resolution of the forearm is an order of magni-

tude less than the spatial resolution of the fingertips. In the work of Weinstein [26],

two-point discrimination on different parts of the body have been investigated

The two-point discrimination of the forearm is about four cm suggesting this to be

interdistance between actuators which closely corresponds with our placement. Thus

the actuator elements need to be placed with a quite high degree of separation on the

forearm. This put restrains on how well the sensory input could be fed back to the

participants. The actuators were initially placed on a line except for the actuator for

the thumb that was placed towards the hand. Testing different placements later

revealed that a placement of the actuators reflecting the placements of the fingertips of

an open hand drawn onto the forearm was more intuitive and also increased the dis-

tance between the actuators.

Table 1 Results from pilot test

D1-D3-D5 D1-D2-D3-D4-D5 L1-L3-L5-L7-L9

Participant All +/- All +/- All +/-

I 72% (25) 100% 48% (25) 96% 50% (25) 100%

II 100% (25) 100% 81% (55) 100% 66% (100) 100%

Three digit discrimination (D1-D3-D5), five digit discrimination (D1-D2-D3-D4-D5) and five level discrimination (L1-L3-L5-
L7-L9). All means the actual result, +/- means that both positive and negative nearest neighbour are included.
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The proposed sensory feedback system provides dynamic and static pressure feed-

back to the user. This could also be used on patients that have undergone targeted

muscle reinnervation, placing the tactile display on the reinnervated areas of the chest.

However, this type of procedure is more suitable for a shoulder disarticulation amputa-

tion as to the invasive nature of the procedure.

The accuracy presented in our results with two individuals shows promising out-

comes for the use of such a tactile display with five actuators to represent the five fin-

gers. It is likely that an even higher accuracy would be gained after more training.

Different methods of training could also help, e.g. reinforced learning were the partici-

pant is blindfolded and guessing which stimuli that have been applied where after the

test supervisor provides feedback in the form of a correct answer. Having more sensing

elements on the thenar and hypothenar regions of the hand seems to be a natural

region to cover and may increase haptic perception. However, the result also shows

that the five fingers were not easily separated by all participants and increasing the

number of actuators would definitely demand more training of the user. The number

of sensors and hence the number of actuators were based on having one sensing ele-

ment per finger of the human hand.

The force level discrimination experiment had basically the same resolution as the

finger discrimination experiment. Usually the force delivered by the actuator would be

measured and controlled, however, using the displacement of the actuator lever will

give a good force estimate.

A disadvantage with servomotors is their power consumption which is quite high.

Power consumption will always be an issue in prosthetics and the usefulness of the

proposed device as perceived by the user vs. power consumption are also fundamental

parameters that needs to be investigated.

Actuators were mounted on the forearm on two participants providing sensory feed-

back addressing both spatial as well as the level of force of the stimuli. The evaluation

of the system in the present study as well in the previously presented study where the

system was applied on 11 healthy test subjects [21] suggests that this is a viable

method for providing sensory feedback to forearm amputees using prosthetic devices.

A quite distal placement of actuators of the same size as the ones here proposed

should be possible in a prosthetic socket without compromising the appearance of the

socket. If the actuators were to be integrated into a socket, the socket itself would pro-

vide some attenuation of the sound generated by the motors. Using a sensory feedback

system in a prosthetic device would also be to improve user acceptance of the prosthe-

tic device as a whole.

Although it remains unrealistic to expect the proposed sensory feedback system to

provide as accurate sensibility as a real hand, our system does provide a relatively sim-

ple and non-invasive way to restore rudimentary sensory feedback in prostheses used

by transradial/-humeral amputees. Future work will focus on application of the system

on amputees, training methods, cognitive aspects and finding a solution with actuators

that have a lower power consumption.
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